Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 604

Question Number 159121    Answers: 0   Comments: 0

Consider f(x) = x^3 + 2x −1. Use the intermidiate value theorem and the Rolle theorem to establish that the equation f(x) = 0 has a unique solution denoted a_0 ∈] 0,1[.

$$\mathrm{Consider} \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{2}{x}\:−\mathrm{1}. \\ $$$$\mathrm{Use}\:\mathrm{the}\:\mathrm{intermidiate}\:\mathrm{value}\:\mathrm{theorem}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{Rolle}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{establish}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{f}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{a}\:\mathrm{unique}\:\mathrm{solution} \\ $$$$\left.\mathrm{denoted}\:{a}_{\mathrm{0}} \in\right]\:\mathrm{0},\mathrm{1}\left[.\:\right. \\ $$

Question Number 159119    Answers: 0   Comments: 0

Assume x;y;z>0 and x^2 +y^2 +z^2 =12 Prove that: Σ_(cycl) (((x/y) + 1 + (y/x))/((1/x) + (1/y))) ≤ 9

$$\mathrm{Assume}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{12} \\ $$$$\mathrm{Prove}\:\mathrm{that}:\:\:\underset{\boldsymbol{\mathrm{cycl}}} {\sum}\:\frac{\frac{\mathrm{x}}{\mathrm{y}}\:+\:\mathrm{1}\:+\:\frac{\mathrm{y}}{\mathrm{x}}}{\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}}\:\leqslant\:\mathrm{9} \\ $$

Question Number 159118    Answers: 0   Comments: 0

Let F(r) = { ((mkr, 0 ≤ r < R)),((((mgR^2 )/r^2 ), r≥ R)) :} find D_F

$$\mathrm{Let}\:{F}\left({r}\right)\:=\:\begin{cases}{{mkr},\:\:\mathrm{0}\:\leqslant\:{r}\:<\:{R}}\\{\frac{{m}\mathrm{g}{R}^{\mathrm{2}} }{{r}^{\mathrm{2}} },\:{r}\geqslant\:{R}}\end{cases} \\ $$$$\mathrm{find}\:{D}_{{F}} \\ $$

Question Number 159111    Answers: 1   Comments: 0

Given A^→ =5t^2 i^→ +tj^→ −t^3 k^→ and B^→ =sin(t)i^→ −cos(t)j^→ . Calculate ((d(A^→ .B^→ ))/dx) ; ((d(A^→ ∧B^→ ))/dx) and ((d(A^→ .A^→ ))/dx).

$${Given}\:\overset{\rightarrow} {{A}}=\mathrm{5}{t}^{\mathrm{2}} \overset{\rightarrow} {{i}}+{t}\overset{\rightarrow} {{j}}−{t}^{\mathrm{3}} \overset{\rightarrow} {{k}}\:{and} \\ $$$$\overset{\rightarrow} {{B}}={sin}\left({t}\right)\overset{\rightarrow} {{i}}−{cos}\left({t}\right)\overset{\rightarrow} {{j}}. \\ $$$${Calculate}\:\frac{{d}\left(\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}\right)}{{dx}}\:;\:\frac{{d}\left(\overset{\rightarrow} {{A}}\wedge\overset{\rightarrow} {{B}}\right)}{{dx}}\:\:{and} \\ $$$$\frac{{d}\left(\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{A}}\right)}{{dx}}. \\ $$

Question Number 159109    Answers: 0   Comments: 0

Show that ∀ V_i ^→ and V_j ^→ : V_i ^→ ∧[V_j ^→ ∧(V_j ^→ ∧V_i ^→ )]=−V_j ^→ ∧[V_i ^→ ∧(V_i ^→ ∧V_j ^→ )]

$${Show}\:{that}\:\forall\:\overset{\rightarrow} {{V}}_{{i}} \:{and}\:\overset{\rightarrow} {{V}}_{{j}} : \\ $$$$\overset{\rightarrow} {{V}}_{{i}} \wedge\left[\overset{\rightarrow} {{V}}_{{j}} \wedge\left(\overset{\rightarrow} {{V}}_{{j}} \wedge\overset{\rightarrow} {{V}}_{{i}} \right)\right]=−\overset{\rightarrow} {{V}}_{{j}} \wedge\left[\overset{\rightarrow} {{V}}_{{i}} \wedge\left(\overset{\rightarrow} {{V}}_{{i}} \wedge\overset{\rightarrow} {{V}}_{{j}} \right)\right] \\ $$

Question Number 160090    Answers: 0   Comments: 2

There are 40 oranges, 20 apples, and 20 lemons in a bag. What is the minimum number of fruits that you have to take out of the bag with your eyes closed before you are sure that one of them is an orange?

$$\mathrm{There}\:\mathrm{are}\:\mathrm{40}\:\mathrm{oranges},\:\mathrm{20}\:\mathrm{apples},\:\mathrm{and}\: \\ $$$$\mathrm{20}\:\mathrm{lemons}\:\mathrm{in}\:\mathrm{a}\:\mathrm{bag}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\: \\ $$$$\mathrm{minimum}\:\mathrm{number}\:\mathrm{of}\:\mathrm{fruits}\:\mathrm{that}\:\mathrm{you}\: \\ $$$$\mathrm{have}\:\mathrm{to}\:\mathrm{take}\:\mathrm{out}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bag}\:\mathrm{with}\:\mathrm{your}\: \\ $$$$\mathrm{eyes}\:\mathrm{closed}\:\mathrm{before}\:\mathrm{you}\:\mathrm{are}\:\mathrm{sure}\:\mathrm{that}\: \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{them}\:\mathrm{is}\:\mathrm{an}\:\mathrm{orange}? \\ $$

Question Number 159125    Answers: 0   Comments: 3

for a, b, c >0 and a+b+c=2 find min(2ab^2 +b^3 c, 2bc^2 +c^3 a, 2ca^2 +a^3 b) or disprove that such a minimum doesn′t exist.

$${for}\:{a},\:{b},\:{c}\:>\mathrm{0}\:{and}\:{a}+{b}+{c}=\mathrm{2} \\ $$$${find}\:{min}\left(\mathrm{2}{ab}^{\mathrm{2}} +{b}^{\mathrm{3}} {c},\:\mathrm{2}{bc}^{\mathrm{2}} +{c}^{\mathrm{3}} {a},\:\mathrm{2}{ca}^{\mathrm{2}} +{a}^{\mathrm{3}} {b}\right) \\ $$$${or}\:{disprove}\:{that}\:{such}\:{a}\:{minimum} \\ $$$${doesn}'{t}\:{exist}. \\ $$

Question Number 159106    Answers: 0   Comments: 0

∫_0 ^π ((sin(nz))/(z^4 sin(πz)))dz

$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sin}\left({nz}\right)}{\mathrm{z}^{\mathrm{4}} \mathrm{sin}\left(\pi{z}\right)}{dz} \\ $$

Question Number 159099    Answers: 1   Comments: 0

Question Number 159097    Answers: 0   Comments: 0

f(x)=log_(2 ) ^x (((x^2 −1)/( (√(x+1)))))+∣x∣^2

$${f}\left({x}\right)={log}_{\mathrm{2}\:} ^{{x}} \left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{{x}+\mathrm{1}}}\right)+\mid{x}\mid^{\mathrm{2}} \\ $$

Question Number 159092    Answers: 1   Comments: 0

Question Number 159087    Answers: 0   Comments: 0

Question Number 159086    Answers: 0   Comments: 0

Question Number 159085    Answers: 1   Comments: 0

Question Number 159080    Answers: 1   Comments: 0

Σ_(n=0) ^∞ (1/(n!(n^4 +n^2 +1)))=?

$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}!\left(\mathrm{n}^{\mathrm{4}} +\mathrm{n}^{\mathrm{2}} +\mathrm{1}\right)}=? \\ $$

Question Number 159079    Answers: 1   Comments: 0

Prove that 2+(√3) , (((√3)−2)/3) and (1/( (√3)−5)) are the number irrational

$${Prove}\:{that}\:\:\mathrm{2}+\sqrt{\mathrm{3}}\:,\:\frac{\sqrt{\mathrm{3}}−\mathrm{2}}{\mathrm{3}}\:\:{and}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}−\mathrm{5}}\: \\ $$$${are}\:{the}\:{number}\:{irrational} \\ $$

Question Number 159078    Answers: 0   Comments: 0

1) Prove by recurrence that for n≥28, n!≥11^n 2) On subtract the limit of the suite (((n!)/(10^n ))) when n tended at +∞

$$\left.\mathrm{1}\right)\:{Prove}\:{by}\:{recurrence}\:{that}\: \\ $$$${for}\:{n}\geqslant\mathrm{28},\:\:\:{n}!\geqslant\mathrm{11}^{{n}} \: \\ $$$$\left.\mathrm{2}\right)\:{On}\:{subtract}\:{the}\:{limit}\:{of}\:{the}\: \\ $$$${suite}\:\left(\frac{{n}!}{\mathrm{10}^{{n}} }\right)\:{when}\:{n}\:{tended}\:{at}\:+\infty \\ $$

Question Number 159072    Answers: 0   Comments: 1

Question Number 159071    Answers: 1   Comments: 0

Determine the cardinality and power set of B = {{a,b,c},{d,e},{f,g,h,i}

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{cardinality}\:\mathrm{and}\:\mathrm{power} \\ $$$$\mathrm{set}\:\mathrm{of} \\ $$$${B}\:=\:\left\{\left\{{a},{b},{c}\right\},\left\{{d},{e}\right\},\left\{{f},{g},{h},{i}\right\}\right. \\ $$

Question Number 159070    Answers: 1   Comments: 0

Ω:= ∫_0 ^( ∞) ( H_( (i/x)) + H_( −(i/x)) ) dx=?

$$ \\ $$$$ \\ $$$$\:\:\:\:\Omega:=\:\int_{\mathrm{0}} ^{\:\infty} \left(\:\mathrm{H}_{\:\frac{{i}}{{x}}} \:+\:\mathrm{H}_{\:−\frac{{i}}{{x}}} \:\right)\:{dx}=? \\ $$$$ \\ $$

Question Number 159069    Answers: 0   Comments: 0

Question Number 159066    Answers: 0   Comments: 1

16/4(2+2)=?

$$\mathrm{16}/\mathrm{4}\left(\mathrm{2}+\mathrm{2}\right)=? \\ $$

Question Number 159057    Answers: 1   Comments: 1

Solve for positive integers: a^3 + 9b^2 + 9c^2 = 2017 where a ≥ b ≥ c

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{positive}\:\mathrm{integers}: \\ $$$$\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{9b}^{\mathrm{2}} \:+\:\mathrm{9c}^{\mathrm{2}} \:=\:\mathrm{2017} \\ $$$$\mathrm{where}\:\:\mathrm{a}\:\geqslant\:\mathrm{b}\:\geqslant\:\mathrm{c} \\ $$$$ \\ $$

Question Number 159049    Answers: 2   Comments: 0

solve the following equation: sin^( 6) (x) +cos^( 6) (x)+sin^4 (x)+cos^( 4) (x)=(3/4)

$$ \\ $$$$\:\:\:\:\:\:{solve}\:{the}\:{following}\:{equation}: \\ $$$$\: \\ $$$${sin}^{\:\mathrm{6}} \left({x}\right)\:+{cos}^{\:\mathrm{6}} \left({x}\right)+{sin}^{\mathrm{4}} \left({x}\right)+{cos}^{\:\mathrm{4}} \left({x}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$

Question Number 159046    Answers: 1   Comments: 2

Question Number 159030    Answers: 1   Comments: 0

(arcsin (cos 93°))^2 =?

$$\:\left(\mathrm{arcsin}\:\left(\mathrm{cos}\:\mathrm{93}°\right)\right)^{\mathrm{2}} =? \\ $$

  Pg 599      Pg 600      Pg 601      Pg 602      Pg 603      Pg 604      Pg 605      Pg 606      Pg 607      Pg 608   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com