Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 604
Question Number 158097 Answers: 2 Comments: 0
Question Number 158098 Answers: 0 Comments: 1
$$\: \\ $$$$\mathrm{The}\:\mathrm{result}\:\mathrm{of}: \\ $$$$\:\left[\mathrm{5}\:+\:\left\{\left(\mathrm{8}\right)\:×\:\left(−\:\:\mathrm{2}\right)\right\}\right]\:+\mathrm{3}\left\{\mathrm{6}\:+\:\left(\:\:\mathrm{2}\right)\right\}\:\mathrm{is}\:.\:.\: \\ $$
Question Number 158088 Answers: 1 Comments: 1
$$\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\left({x}\right) \\ $$$${what}\:{is}\:{x}\:{note}\:{not}\:\mathrm{6} \\ $$
Question Number 158087 Answers: 0 Comments: 0
$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{8}\right){dx}+\sqrt{\mathrm{2}{x}+\mathrm{5}}\:\left({y}+\mathrm{3}\right){dy}=\mathrm{0}\: \\ $$
Question Number 158085 Answers: 0 Comments: 0
Question Number 158081 Answers: 1 Comments: 0
$${determine}\:{the}\:{angle}\:{between}\:{two}\:{vectors} \\ $$$${A}=\mathrm{4}{ax}+{ay}−\mathrm{3}{az}\:\:{and}\:\:{B}=\mathrm{2}{ax}+\mathrm{4}{ay}−\mathrm{3}{az} \\ $$
Question Number 158182 Answers: 1 Comments: 1
Question Number 158079 Answers: 2 Comments: 1
Question Number 158453 Answers: 0 Comments: 2
$${prove}\:\frac{{d}}{{dx}}{sec}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}\:=\:\mathrm{2} \\ $$
Question Number 158069 Answers: 1 Comments: 0
Question Number 158067 Answers: 0 Comments: 0
$$\:\:{f}\left({x}\right)=\left(\frac{\mathrm{4}}{\mathrm{9}}\right)\frac{\left(\omega{x}+\mathrm{2}\right)^{\mathrm{2}} }{\left[\left(\omega{x}+\mathrm{11}\right)^{\mathrm{2}} −\mathrm{117}\right]} \\ $$$$\:\:\:\:\:+\left(\frac{\mathrm{8}}{\mathrm{5}}\right)\frac{\mathrm{1}}{\left[\left(\omega{x}+\mathrm{11}\right)^{\mathrm{2}} −\mathrm{117}\right]} \\ $$$${find}\:{real}\:{x}\:{such}\:{that}\:{f}\left({x}\right) \\ $$$${is}\:{real}.\:\:{I}\:{dont}\:{want}\:{x}=−\mathrm{2}. \\ $$
Question Number 158066 Answers: 0 Comments: 0
Question Number 158065 Answers: 1 Comments: 0
Question Number 158064 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\mathrm{Make}\:\mathrm{tangen}\:\mathrm{line}\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\left(\mathrm{2},\mathrm{3}\right).\: \\ $$$$ \\ $$
Question Number 158060 Answers: 1 Comments: 0
Question Number 158255 Answers: 2 Comments: 2
Question Number 158054 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{composition}\:\mathrm{function} \\ $$$$\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{form}\:\mathrm{from}\:\mathrm{two}\:\mathrm{this} \\ $$$$\mathrm{single}\:\mathrm{functions}\:\mathrm{below}\:: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{4}\: \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\:\frac{\mathrm{2x}−\mathrm{7}}{\mathrm{3x}} \\ $$$$\bullet\:\mathrm{fog}\left(\mathrm{x}\right)=....... \\ $$$$\bullet\:\mathrm{gof}\left(\mathrm{x}\right)=...... \\ $$
Question Number 158053 Answers: 2 Comments: 0
$$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{4}} {x}} \\ $$
Question Number 158050 Answers: 1 Comments: 0
$$\:\mathrm{what}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{9}!! \\ $$
Question Number 158049 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$$$\left.\mathrm{1}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{x}.\mathrm{sin}\:\mathrm{x} \\ $$$$\left.\mathrm{2}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{e}^{\mathrm{5x}} .\:\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{3x}\right) \\ $$$$\left.\mathrm{3}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{3}^{\mathrm{3x}} .\left(\mathrm{2x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{4}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{3x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{4x}+\mathrm{1}} \\ $$
Question Number 158118 Answers: 0 Comments: 0
Question Number 158035 Answers: 1 Comments: 0
Question Number 158030 Answers: 1 Comments: 1
$$\:\:\:\:{solve}\:{equation}\: \\ $$$$\:\:\:\mathrm{5}#+\left(\sqrt{\frac{\mathrm{5}!+\mathrm{5}}{\mathrm{5}!!+\mathrm{5}!!!}+!\mathrm{5}}−\mathrm{5}\right)\$=\mathrm{2}^{{x}} \\ $$
Question Number 158017 Answers: 0 Comments: 1
Question Number 158014 Answers: 4 Comments: 0
$$ \\ $$$$ \\ $$
Question Number 158009 Answers: 2 Comments: 0
Pg 599 Pg 600 Pg 601 Pg 602 Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608
Terms of Service
Privacy Policy
Contact: info@tinkutara.com