Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 604

Question Number 158097    Answers: 2   Comments: 0

Question Number 158098    Answers: 0   Comments: 1

The result of: [5 + {(8) × (− 2)}] +3{6 + ( 2)} is . .

$$\: \\ $$$$\mathrm{The}\:\mathrm{result}\:\mathrm{of}: \\ $$$$\:\left[\mathrm{5}\:+\:\left\{\left(\mathrm{8}\right)\:×\:\left(−\:\:\mathrm{2}\right)\right\}\right]\:+\mathrm{3}\left\{\mathrm{6}\:+\:\left(\:\:\mathrm{2}\right)\right\}\:\mathrm{is}\:.\:.\: \\ $$

Question Number 158088    Answers: 1   Comments: 1

1,2,3,4,5,(x) what is x note not 6

$$\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\left({x}\right) \\ $$$${what}\:{is}\:{x}\:{note}\:{not}\:\mathrm{6} \\ $$

Question Number 158087    Answers: 0   Comments: 0

(y^2 +4y+8)dx+(√(2x+5)) (y+3)dy=0

$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{8}\right){dx}+\sqrt{\mathrm{2}{x}+\mathrm{5}}\:\left({y}+\mathrm{3}\right){dy}=\mathrm{0}\: \\ $$

Question Number 158085    Answers: 0   Comments: 0

Question Number 158081    Answers: 1   Comments: 0

determine the angle between two vectors A=4ax+ay−3az and B=2ax+4ay−3az

$${determine}\:{the}\:{angle}\:{between}\:{two}\:{vectors} \\ $$$${A}=\mathrm{4}{ax}+{ay}−\mathrm{3}{az}\:\:{and}\:\:{B}=\mathrm{2}{ax}+\mathrm{4}{ay}−\mathrm{3}{az} \\ $$

Question Number 158182    Answers: 1   Comments: 1

Question Number 158079    Answers: 2   Comments: 1

Question Number 158453    Answers: 0   Comments: 2

prove (d/dx)sec^2 (π/4) = 2

$${prove}\:\frac{{d}}{{dx}}{sec}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}\:=\:\mathrm{2} \\ $$

Question Number 158069    Answers: 1   Comments: 0

Question Number 158067    Answers: 0   Comments: 0

f(x)=((4/9))(((ωx+2)^2 )/([(ωx+11)^2 −117])) +((8/5))(1/([(ωx+11)^2 −117])) find real x such that f(x) is real. I dont want x=−2.

$$\:\:{f}\left({x}\right)=\left(\frac{\mathrm{4}}{\mathrm{9}}\right)\frac{\left(\omega{x}+\mathrm{2}\right)^{\mathrm{2}} }{\left[\left(\omega{x}+\mathrm{11}\right)^{\mathrm{2}} −\mathrm{117}\right]} \\ $$$$\:\:\:\:\:+\left(\frac{\mathrm{8}}{\mathrm{5}}\right)\frac{\mathrm{1}}{\left[\left(\omega{x}+\mathrm{11}\right)^{\mathrm{2}} −\mathrm{117}\right]} \\ $$$${find}\:{real}\:{x}\:{such}\:{that}\:{f}\left({x}\right) \\ $$$${is}\:{real}.\:\:{I}\:{dont}\:{want}\:{x}=−\mathrm{2}. \\ $$

Question Number 158066    Answers: 0   Comments: 0

Question Number 158065    Answers: 1   Comments: 0

Question Number 158064    Answers: 1   Comments: 0

Make tangen line at point (2,3).

$$ \\ $$$$ \\ $$$$\mathrm{Make}\:\mathrm{tangen}\:\mathrm{line}\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\left(\mathrm{2},\mathrm{3}\right).\: \\ $$$$ \\ $$

Question Number 158060    Answers: 1   Comments: 0

Question Number 158255    Answers: 2   Comments: 2

Question Number 158054    Answers: 1   Comments: 0

Find the composition function that can be form from two this single functions below : f(x)=2x+4 g(x)= ((2x−7)/(3x)) • fog(x)=....... • gof(x)=......

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{composition}\:\mathrm{function} \\ $$$$\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{form}\:\mathrm{from}\:\mathrm{two}\:\mathrm{this} \\ $$$$\mathrm{single}\:\mathrm{functions}\:\mathrm{below}\:: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{4}\: \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\:\frac{\mathrm{2x}−\mathrm{7}}{\mathrm{3x}} \\ $$$$\bullet\:\mathrm{fog}\left(\mathrm{x}\right)=....... \\ $$$$\bullet\:\mathrm{gof}\left(\mathrm{x}\right)=...... \\ $$

Question Number 158053    Answers: 2   Comments: 0

∫(dx/(sin^4 x))

$$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{4}} {x}} \\ $$

Question Number 158050    Answers: 1   Comments: 0

what is the value of 9!!

$$\:\mathrm{what}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{9}!! \\ $$

Question Number 158049    Answers: 2   Comments: 0

Find derivative of this function 1). f(x)= x.sin x 2). f(x)= e^(5x) . log _2 (3x) 3). f(x)= 3^(3x) .(2x−1) 4). f(x)= ((3x^2 −2)/(4x+1))

$$\mathrm{Find}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$$$\left.\mathrm{1}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{x}.\mathrm{sin}\:\mathrm{x} \\ $$$$\left.\mathrm{2}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{e}^{\mathrm{5x}} .\:\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{3x}\right) \\ $$$$\left.\mathrm{3}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{3}^{\mathrm{3x}} .\left(\mathrm{2x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{4}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{3x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{4x}+\mathrm{1}} \\ $$

Question Number 158118    Answers: 0   Comments: 0

Question Number 158035    Answers: 1   Comments: 0

Question Number 158030    Answers: 1   Comments: 1

solve equation 5#+((√(((5!+5)/(5!!+5!!!))+!5))−5)$=2^x

$$\:\:\:\:{solve}\:{equation}\: \\ $$$$\:\:\:\mathrm{5}#+\left(\sqrt{\frac{\mathrm{5}!+\mathrm{5}}{\mathrm{5}!!+\mathrm{5}!!!}+!\mathrm{5}}−\mathrm{5}\right)\$=\mathrm{2}^{{x}} \\ $$

Question Number 158017    Answers: 0   Comments: 1

Question Number 158014    Answers: 4   Comments: 0

$$ \\ $$$$ \\ $$

Question Number 158009    Answers: 2   Comments: 0

$$ \\ $$$$ \\ $$

  Pg 599      Pg 600      Pg 601      Pg 602      Pg 603      Pg 604      Pg 605      Pg 606      Pg 607      Pg 608   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com