Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 604
Question Number 158593 Answers: 1 Comments: 0
Question Number 158591 Answers: 0 Comments: 2
$$\:{I}=\int\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{6}} }\:=? \\ $$
Question Number 158586 Answers: 0 Comments: 5
Question Number 158567 Answers: 0 Comments: 2
$$\:\mathrm{show}\:\mathrm{that}\:\sqrt{\mathrm{3}}\:\mathrm{is}\:\mathrm{an}\: \\ $$$$\:\mathrm{irrarional}\:\mathrm{number} \\ $$
Question Number 158561 Answers: 0 Comments: 2
Question Number 159045 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$
Question Number 158559 Answers: 1 Comments: 0
Question Number 158615 Answers: 0 Comments: 0
Question Number 158543 Answers: 1 Comments: 4
Question Number 158537 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{all}\:\mathrm{subgroup}\:\mathrm{of}\:\left(\mathrm{Z}_{\mathrm{7}} ,+\right)\: \\ $$
Question Number 158535 Answers: 0 Comments: 0
Question Number 158534 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{a}^{\mathrm{2}} \mathrm{tan}^{\boldsymbol{\mathrm{k}}} \mathrm{x}+\mathrm{b}^{\mathrm{2}} \mathrm{sin}^{\boldsymbol{\mathrm{k}}} \mathrm{x}\:>\:\mathrm{2abx}^{\boldsymbol{\mathrm{k}}} \\ $$$$\mathrm{for}\:\mathrm{all}\:\:\mathrm{x}\in\left(\mathrm{0}\:;\:\frac{\pi}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{positive}\:\mathrm{integer}\:\boldsymbol{\mathrm{k}} \\ $$$$ \\ $$
Question Number 158524 Answers: 0 Comments: 0
$${find}\:{the}\:{differintial}\:\:{equation}\:{by}\:{cancel}\:{the}\: \\ $$$${conestant}\: \\ $$$${lny}\:=\:{ax}^{\mathrm{2}} +{bx}+{c}\: \\ $$
Question Number 158523 Answers: 1 Comments: 0
$${find}\:{the}\:{number}\:{of}\:{values}\:{of}\:{p} \\ $$$${for}\:{which}\:{equation}\: \\ $$$$\mathrm{sin}^{\mathrm{3}} {x}+\mathrm{1}+{p}^{\mathrm{3}} −\mathrm{3}{p}\:\mathrm{sin}\:{x}\:=\mathrm{0}\left({p}>\mathrm{0}\right) \\ $$$${has}\:{a}\:{root}? \\ $$
Question Number 158522 Answers: 1 Comments: 0
$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(\zeta\left({n}\right)−{n}\right)}{\mathrm{2}^{{n}} }=? \\ $$
Question Number 158517 Answers: 0 Comments: 0
$$\:\:\:\vartheta\:=\int_{\:\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{{dx}}{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {x}}\right)^{\mathrm{2}} }\:? \\ $$
Question Number 158715 Answers: 0 Comments: 0
Question Number 158531 Answers: 1 Comments: 0
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} \left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$
Question Number 158506 Answers: 0 Comments: 0
Question Number 158508 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{xyz}=\mathrm{27}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{27}}\:+\:\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} +\mathrm{27}}\:+\:\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} +\mathrm{27}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Question Number 158503 Answers: 0 Comments: 5
Question Number 158590 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{prove}\:{that}\: \\ $$$$\mathrm{1}.\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left(\:{x}+{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}\:=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}.\:\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({x}−{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}=\left(\frac{\mathrm{1}}{{e}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi \\ $$$$ \\ $$
Question Number 158494 Answers: 0 Comments: 0
Question Number 158492 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{7}} }\:? \\ $$
Question Number 158489 Answers: 0 Comments: 0
$${find}\:{the}\:{partial}\:{derivatives}\:{of}\:{the}\:{function} \\ $$$${with}\:{respect}\:{to}\:{each}\:{variable} \\ $$$${f}\left({x},{y}\right)=\int_{{x}} ^{{y}} {g}\left({t}\right)\:{dt} \\ $$
Question Number 158483 Answers: 0 Comments: 0
Pg 599 Pg 600 Pg 601 Pg 602 Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608
Terms of Service
Privacy Policy
Contact: info@tinkutara.com