Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 589
Question Number 159645 Answers: 0 Comments: 0
Question Number 159642 Answers: 2 Comments: 1
$${minimum}\:{value}\:{of}\:{function}\: \\ $$$$\:\:\:{f}\left({x}\right)=\sqrt{\left(\mathrm{3sin}\:{x}−\mathrm{4cos}\:{x}−\mathrm{10}\right)\left(\mathrm{3sin}\:{x}+\mathrm{4cos}\:{x}−\mathrm{10}\right)} \\ $$
Question Number 159641 Answers: 0 Comments: 1
$${minimum}\:{value}\:{of}\:{f}\left({x}\right)=\mathrm{256}\:\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)+\mathrm{324}\:\mathrm{cosec}\:^{\mathrm{2}} \left({x}\right) \\ $$$$\:\forall{x}\in\:\mathbb{R}\: \\ $$
Question Number 159639 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{9}−\mathrm{3}^{\mathrm{x}} \right)−\mathrm{3}}\:\leqslant\:\mathrm{1}\: \\ $$
Question Number 159638 Answers: 0 Comments: 0
$${x}\:,\:{y}\:\in\:\mathbb{R}\:{such}\:{that}\:{x}\neq\mathrm{1}\:{and}\:{y}\neq\mathrm{1}. \\ $$$${Show}\:{that}\: \\ $$$${if}\:{x}\neq{y}\:{then}\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\neq\frac{\mathrm{1}}{{y}−\mathrm{1}} \\ $$
Question Number 159635 Answers: 0 Comments: 1
Question Number 159621 Answers: 0 Comments: 1
Question Number 159613 Answers: 0 Comments: 5
Question Number 159611 Answers: 2 Comments: 0
Question Number 159612 Answers: 2 Comments: 0
Question Number 159606 Answers: 2 Comments: 1
Question Number 159598 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sums}; \\ $$$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{nk}^{\mathrm{2}} +{k}+\mathrm{1}} \\ $$$${v}_{{n}} =\underset{\mathrm{1}\leqslant{k}\leqslant\mathrm{2}{n}} {\sum}\frac{{n}^{\mathrm{2}} }{{kn}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$$${w}_{{n}} =\underset{\mathrm{1}\leqslant{k}\leqslant{n}^{\mathrm{2}} } {\sum}\frac{\mathrm{sin}{k}}{{k}^{\mathrm{2}} }\left(\frac{{k}}{{k}+\mathrm{1}}\right)^{{n}} \\ $$
Question Number 159597 Answers: 1 Comments: 0
Question Number 159592 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{calculate}: \\ $$$$ \\ $$$$\:\:\:\mathcal{I}\::=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{arctan}\left({x}\right)}{{x}}\right)^{\mathrm{3}} {dx}=? \\ $$$$ \\ $$
Question Number 159591 Answers: 0 Comments: 0
$$\sqrt{\mathrm{3}}\:{and}\:\sqrt{\mathrm{5}}\:{are}\:{irrational}\:{numbers}. \\ $$$${Given}\:{i}=\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}\:. \\ $$$${Show}\:{that}\:{i}\:{is}\:{irrational}\:. \\ $$
Question Number 159587 Answers: 1 Comments: 1
$$\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{3}−{x}}\:+\:\sqrt{\mathrm{3}−{x}}\:\sqrt{\mathrm{4}−{x}}\:+\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{4}−{x}}\:=\:{x}+\mathrm{2} \\ $$$$ \\ $$
Question Number 159581 Answers: 1 Comments: 3
Question Number 159578 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{1}}\right)\right)^{\mathrm{2}} }{\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)}\right) \\ $$$$\mathrm{Answer}:\:\:\mathrm{0} \\ $$
Question Number 159568 Answers: 1 Comments: 1
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\:\int\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\centerdot\:\mathrm{cos}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$
Question Number 159556 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\mathrm{2}\nmid\:{a}\:\Rightarrow\:\mathrm{240}\mid\:{a}^{\:\mathrm{5}} \:−\:{a}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 159552 Answers: 1 Comments: 4
Question Number 159551 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\:: \\ $$$$\:\:\:\:\:\underset{\underset{>} {\boldsymbol{{x}}\rightarrow\mathrm{0}}} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{E}}\:\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{x}}}\right)\:=\:?\: \\ $$
Question Number 159549 Answers: 1 Comments: 0
Question Number 159548 Answers: 0 Comments: 0
Question Number 159561 Answers: 0 Comments: 0
Question Number 159560 Answers: 1 Comments: 0
$${Resolve}\: \\ $$$$\mathrm{1}.\:{u}_{{n}+\mathrm{2}} −\mathrm{2}{u}_{{n}+\mathrm{1}} +\mathrm{4}{u}_{{n}} =\mathrm{3}^{{n}} \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =−\mathrm{2} \\ $$$$\mathrm{2}.\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} −{u}_{{n}−\mathrm{2}} +\mathrm{2sin}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right) \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =\mathrm{2} \\ $$
Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591 Pg 592 Pg 593
Terms of Service
Privacy Policy
Contact: info@tinkutara.com