Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 589

Question Number 160933    Answers: 1   Comments: 0

In the given equation below , applying the formula for the derivative of inverse trigonometric functions , what is the ′′u ′′ from the given function. y = cosec^(−1) [ sin (((1+sin x)/(cos x)))]

$$\:{In}\:{the}\:{given}\:{equation}\:{below}\:,\:{applying} \\ $$$${the}\:{formula}\:{for}\:{the}\:{derivative}\:{of} \\ $$$$\:{inverse}\:{trigonometric}\:{functions}\:, \\ $$$$\:{what}\:{is}\:{the}\:''{u}\:''\:{from}\:{the}\:{given}\:{function}. \\ $$$$\:{y}\:=\:\mathrm{cosec}^{−\mathrm{1}} \left[\:\mathrm{sin}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right)\right] \\ $$

Question Number 160931    Answers: 1   Comments: 0

x = 2^(log _5 (x+3)) ; x=?

$$\:\:{x}\:=\:\mathrm{2}^{\mathrm{log}\:_{\mathrm{5}} \left({x}+\mathrm{3}\right)} \:;\:{x}=? \\ $$

Question Number 160928    Answers: 1   Comments: 0

calculate Ω = Σ_(n=1) ^∞ (( ζ ( 1+ n ) −1)/(n + 1)) =^? 1− γ −−−−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\:{calculate} \\ $$$$ \\ $$$$\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\:\mathrm{1}+\:{n}\:\right)\:−\mathrm{1}}{{n}\:+\:\mathrm{1}}\:\overset{?} {=}\:\mathrm{1}−\:\gamma\: \\ $$$$\:−−−−−−−−−−− \\ $$

Question Number 160924    Answers: 1   Comments: 1

Question Number 160923    Answers: 0   Comments: 1

{ (((x+y)^(2021) = z)),(((x+z)^(2021) = y)),(((y+z)^(2021) = x)) :} (x,y,z)=...

$$\:\:\begin{cases}{\left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{2021}} =\:\mathrm{z}}\\{\left(\mathrm{x}+\mathrm{z}\right)^{\mathrm{2021}} \:=\:\mathrm{y}}\\{\left(\mathrm{y}+\mathrm{z}\right)^{\mathrm{2021}} \:=\:\mathrm{x}}\end{cases} \\ $$$$\:\:\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=... \\ $$

Question Number 160922    Answers: 1   Comments: 0

monter que (3+(√5))^n +(3−(√5))^(n ) est divisible par 2^n beson d′aide svp

$${monter}\:{que}\:\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{{n}} +\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)^{{n}\:} \\ $$$${est}\:{divisible}\:{par}\:\mathrm{2}^{{n}} \\ $$$${beson}\:{d}'{aide}\:{svp} \\ $$

Question Number 160921    Answers: 0   Comments: 0

Find: 𝛀 =∫_( 1) ^( 21) (dx/e^([2x + (1/4)]) ) ; [∗]-GIF

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{1}} {\overset{\:\mathrm{21}} {\int}}\:\frac{\mathrm{dx}}{\boldsymbol{\mathrm{e}}^{\left[\mathrm{2}\boldsymbol{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right]} }\:\:\:;\:\:\:\left[\ast\right]-\mathrm{GIF} \\ $$

Question Number 160917    Answers: 1   Comments: 0

Calculate a)lim_(x→+∞) (((x−1)/(x+1)))^x^2 b) lim_(x→0) ((2^(1/x) −1)/(2^(1/x) +1))

$${Calculate} \\ $$$$\left.{a}\right)\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{{x}^{\mathrm{2}} } \\ $$$$\left.{b}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}}{{x}}} +\mathrm{1}} \\ $$

Question Number 160912    Answers: 1   Comments: 0

lim_(x→0) ((tan (x+2)tan (2−x)−tan^2 (2))/(3x tan x)) =?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{x}+\mathrm{2}\right)\mathrm{tan}\:\left(\mathrm{2}−\mathrm{x}\right)−\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{3x}\:\mathrm{tan}\:\mathrm{x}}\:=? \\ $$

Question Number 160910    Answers: 1   Comments: 0

Question Number 160909    Answers: 2   Comments: 0

How many 3−digits number such that sum of its digits is 11 ?

$${How}\:\:{many}\:\:\mathrm{3}−{digits}\:\:{number}\:\:{such}\:\:{that}\:\:{sum}\:\:{of}\:\:{its}\:\:{digits}\:\:{is}\:\:\mathrm{11}\:? \\ $$

Question Number 160908    Answers: 0   Comments: 1

x,y,z ∈ R^+ Find the minimum value of this expression ((xyz)/((1+3x)(x+8y)(y+9z)(6+z)))

$${x},{y},{z}\:\:\in\:\:\mathbb{R}^{+} \\ $$$${Find}\:\:{the}\:\:{minimum}\:\:{value}\:\:{of}\:\:{this}\:\:{expression}\: \\ $$$$\:\:\:\:\:\:\frac{{xyz}}{\left(\mathrm{1}+\mathrm{3}{x}\right)\left({x}+\mathrm{8}{y}\right)\left({y}+\mathrm{9}{z}\right)\left(\mathrm{6}+{z}\right)}\:\: \\ $$$$ \\ $$

Question Number 160906    Answers: 0   Comments: 0

Question Number 160903    Answers: 2   Comments: 0

(1+x^2 )y ′= 2xy +(1+x^2 )^2

$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}\:'=\:\mathrm{2}{xy}\:+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} \: \\ $$

Question Number 160902    Answers: 1   Comments: 0

∫ (dx/( (√(sin^3 x)) (√(cos^5 x)))) =?

$$\:\:\int\:\frac{{dx}}{\:\sqrt{\mathrm{sin}\:^{\mathrm{3}} {x}}\:\sqrt{\mathrm{cos}\:^{\mathrm{5}} {x}}}\:=? \\ $$

Question Number 160900    Answers: 0   Comments: 2

Calculate 1) lim_(x→0) (((x+1)/(2x+1)))^x^2 lim_(x→a) (((sin x)/(sin a)))^(1/(x−a))

$${Calculate} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right)^{{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{a}}\right)^{\frac{\mathrm{1}}{{x}−{a}}} \\ $$

Question Number 160895    Answers: 1   Comments: 0

Prove that: ∫_( 0) ^( 1) ((ln(x))/(x^n + x^(n-1) + ... + 1)) dx = (1/n^2 ) [𝛙^((1)) ((2/n)) - 𝛙^((1)) ((1/n))]

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{x}^{\boldsymbol{\mathrm{n}}-\mathrm{1}} \:+\:...\:+\:\mathrm{1}}\:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:\left[\boldsymbol{\psi}^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{2}}{\mathrm{n}}\right)\:-\:\boldsymbol{\psi}^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right] \\ $$

Question Number 160894    Answers: 1   Comments: 0

Question Number 160886    Answers: 0   Comments: 0

a_n is root of equation x^n +x=1,a_n ∈(0,1). Find lim_(n→∞) ((n−na_n −lnn)/(ln(lnn)))=?

$$\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{root}\:\mathrm{of}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{n}} +\mathrm{x}=\mathrm{1},\mathrm{a}_{\mathrm{n}} \in\left(\mathrm{0},\mathrm{1}\right). \\ $$$$\mathrm{Find}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}−\mathrm{na}_{\mathrm{n}} −\mathrm{lnn}}{\mathrm{ln}\left(\mathrm{lnn}\right)}=? \\ $$

Question Number 160885    Answers: 0   Comments: 0

lim_(n→∞) Σ_(k=1) ^n ((n+(1/k))/( (√(n^2 +k^2 ))))∙sin (1/n)=?

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}+\frac{\mathrm{1}}{\mathrm{k}}}{\:\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} }}\centerdot\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{n}}=? \\ $$

Question Number 160883    Answers: 1   Comments: 0

(√(x+1)) = ((x^2 −x−2 ((2x+1))^(1/3) )/( ((2x+1))^(1/3) −3 )) x ∈R

$$\:\sqrt{\mathrm{x}+\mathrm{1}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{2x}+\mathrm{1}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2x}+\mathrm{1}}\:−\mathrm{3}\:}\: \\ $$$$\:\mathrm{x}\:\in\mathbb{R}\: \\ $$

Question Number 160875    Answers: 1   Comments: 0

lim_(n→∞) ((5^n +7^n ))^(1/n) =?

$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{n}}]{\mathrm{5}^{\mathrm{n}} +\mathrm{7}^{\mathrm{n}} }\:=? \\ $$

Question Number 160873    Answers: 2   Comments: 0

Question Number 160871    Answers: 1   Comments: 0

(((2 (((2(√(13))+5)/( (√5)+2)))^(1/3) +2 (((2(√(13))−5)/( (√5)−2)))^(1/3) +1)^2 −1))^(1/6) =?

$$\:\:\sqrt[{\mathrm{6}}]{\left(\mathrm{2}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{13}}+\mathrm{5}}{\:\sqrt{\mathrm{5}}+\mathrm{2}}}\:+\mathrm{2}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{13}}−\mathrm{5}}{\:\sqrt{\mathrm{5}}−\mathrm{2}}}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}=? \\ $$

Question Number 160869    Answers: 0   Comments: 2

Find: 𝛀 =∫_( 0) ^( ∞) ((x ln (1 + x))/((x + 1)(x^2 + 1))) dx = ?

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{x}\:\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx}\:=\:? \\ $$

Question Number 160867    Answers: 0   Comments: 0

A piece of metal in the form of an equilateral triangle that has been subjected to hammering, and its circumference expands at a rate of 6 cm/s so that it remains preserved in its shape. The rate of change in its area when its side length is 12 cm

$$ \\ $$A piece of metal in the form of an equilateral triangle that has been subjected to hammering, and its circumference expands at a rate of 6 cm/s so that it remains preserved in its shape. The rate of change in its area when its side length is 12 cm

  Pg 584      Pg 585      Pg 586      Pg 587      Pg 588      Pg 589      Pg 590      Pg 591      Pg 592      Pg 593   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com