Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 589
Question Number 160590 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{\:{arcsinh}\left({x}\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$
Question Number 160589 Answers: 0 Comments: 0
Question Number 160577 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} {tan}^{\:−\mathrm{1}} \:\left({x}\right).{ln}\left({x}\right)\:=\:? \\ $$$$\:\:\:\:\:−−−−{solution}−−−− \\ $$$$\:\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} {tan}^{\:−\mathrm{1}} \left(\:{x}\right)\:.{x}^{\:{a}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}+{a}−\mathrm{1}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\left(\frac{\mathrm{1}}{\mathrm{2}{n}+\:{a}}\:\right) \\ $$$$\:\:\:\:\:\Omega=\:{f}\:'\:\left({a}\:\right)\mid_{{a}=\mathrm{0}} =\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\:\mathrm{2}{n}+\:{a}\right)^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\Omega=\:{f}\:'\:\left(\mathrm{0}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}\Sigma\frac{\:\left(−\mathrm{1}\:\right)^{{n}−\mathrm{1}} \left(\mathrm{2}{n}−\mathrm{1}−\mathrm{2}{n}\:\right)\:}{\left(\:\mathrm{2}{n}−\mathrm{1}\right){n}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\:\mathrm{2}} }\:−\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)} \\ $$$$\:\:\:\:\:\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{48}}\:−\left\{\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:−\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}}\right\}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\Omega\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{48}}\:−\:\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Question Number 160576 Answers: 1 Comments: 2
Question Number 160580 Answers: 0 Comments: 0
$${Calculate}\: \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{1}+{e}^{{x}−\mathrm{3}} } \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{3}} +\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Question Number 160569 Answers: 1 Comments: 0
$${Calculate}\: \\ $$$$\mathrm{1}.\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right]^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}×\mathrm{2}^{{x}} }{\mathrm{1}+{x}×\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$ \\ $$
Question Number 160564 Answers: 3 Comments: 2
$${if}\:{the}\:{roots}\:{of}\:{th}\mathrm{e}\:{equation}\:\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0} \\ $$$${are}\:{in}\:{the}\:{ratio}\:\mathrm{3}:\mathrm{4},{then}\:{show}\:{that}\: \\ $$$$\mathrm{12b}^{\mathrm{2}} =\mathrm{49ac}. \\ $$
Question Number 160563 Answers: 1 Comments: 0
$$\int\mathrm{x}\left\{\mathrm{x}\right\}\left[\mathrm{x}\right]\mathrm{dx}=? \\ $$
Question Number 160561 Answers: 0 Comments: 0
Question Number 160560 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$
Question Number 160558 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{solve} \\ $$$$ \\ $$$$\lfloor\:{x}−\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:\rfloor+\lfloor\:{x}+\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:\rfloor=\mathrm{0} \\ $$$$ \\ $$
Question Number 160556 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{arctg}}\left(\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}}\centerdot\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{x}}}}=? \\ $$
Question Number 160553 Answers: 0 Comments: 0
Question Number 160551 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{arctan}\:\mathrm{x}\centerdot\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=? \\ $$
Question Number 160550 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{sin}\boldsymbol{\mathrm{x}}\:+\:\mathrm{sin}\boldsymbol{\mathrm{y}}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cos}\boldsymbol{\mathrm{y}}}}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Question Number 160547 Answers: 1 Comments: 0
$$\:\:{solve} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \:\right)\sqrt{\:{x}}}\:{dx}=\:? \\ $$$$−−−−−−−− \\ $$
Question Number 160545 Answers: 0 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{k}}\: \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}\:} {\overset{{n}} {\sum}}{cos}\left(\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}\right) \\ $$$${convergente}? \\ $$$$ \\ $$
Question Number 160544 Answers: 0 Comments: 2
Question Number 160543 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{6}} \frac{\:\Gamma\:\left(\:{sin}\left(\:\frac{\pi}{{x}}\right)\right)−\Gamma\:\left(\frac{\mathrm{3}}{{x}}\:\right)}{{sin}\left(\:\pi{x}\:\right)}=\:? \\ $$$$ \\ $$
Question Number 160539 Answers: 1 Comments: 0
$${Prove}\:{by}\:{recurrence}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} },\:\forall{n}\geqslant\mathrm{1}. \\ $$
Question Number 160530 Answers: 2 Comments: 0
Question Number 160529 Answers: 2 Comments: 0
$${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$
Question Number 160528 Answers: 0 Comments: 0
$$\left(\mathrm{2}\boldsymbol{\mathrm{cosh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dx}}+\left(\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dy}}=\mathrm{0} \\ $$
Question Number 160526 Answers: 1 Comments: 0
$${Montre}\:{que}\:{Sup}\left({A}−{B}\right)={Sup}\left({A}\right)−{Inf}\left({B}\right) \\ $$$${Avec}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in\:{A}\:,\:{b}\in\:{B}\right\} \\ $$
Question Number 160522 Answers: 1 Comments: 0
Question Number 160521 Answers: 0 Comments: 0
$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}\right)\sqrt{{x}+\mathrm{2}}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{y}}\right)^{\mathrm{2}} +{x}=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{3} \\ $$
Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591 Pg 592 Pg 593
Terms of Service
Privacy Policy
Contact: info@tinkutara.com