Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 589

Question Number 160590    Answers: 0   Comments: 0

Ω:=∫_0 ^( (1/2)) (( arcsinh(x))/x) dx =^? (π^2 /(20))

$$ \\ $$$$\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{\:{arcsinh}\left({x}\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$

Question Number 160589    Answers: 0   Comments: 0

Question Number 160577    Answers: 1   Comments: 0

Ω=∫_0 ^( 1) tan^( −1) (x).ln(x) = ? −−−−solution−−−− f(a)=∫_0 ^( 1) tan^( −1) ( x) .x^( a) dx = Σ_(n=1) ^∞ (( (−1)^( n−1) )/(2n−1)) ∫_0 ^( 1) x^( 2n+a−1) dx = Σ_(n=0) ^∞ (((−1)^( n−1) )/(2n−1)) ((1/(2n+ a)) ) Ω= f ′ (a )∣_(a=0) = Σ_(n=1) ^∞ (((−1)^n )/((2n−1)( 2n+ a)^( 2) )) Ω= f ′ (0 )=(1/4)Σ(( (−1 )^(n−1) (2n−1−2n ) )/(( 2n−1)n^( 2) )) =(1/4) Σ_(n=1) ^∞ (((−1)^(n−1) )/n^( 2) ) − Σ_(n=1) ^∞ (((−1)^( n−1) )/((2n−1)(2n))) = (π^( 2) /(48)) −{ Σ_(n=1) ^∞ {(((−1)^(n−1) )/(2n−1)) −(((−1)^( n−1) )/(2n))}} ∴ Ω = (π^( 2) /(48)) − (π/4) +(1/2) ln(2)

$$ \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} {tan}^{\:−\mathrm{1}} \:\left({x}\right).{ln}\left({x}\right)\:=\:? \\ $$$$\:\:\:\:\:−−−−{solution}−−−− \\ $$$$\:\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} {tan}^{\:−\mathrm{1}} \left(\:{x}\right)\:.{x}^{\:{a}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}+{a}−\mathrm{1}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\left(\frac{\mathrm{1}}{\mathrm{2}{n}+\:{a}}\:\right) \\ $$$$\:\:\:\:\:\Omega=\:{f}\:'\:\left({a}\:\right)\mid_{{a}=\mathrm{0}} =\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\:\mathrm{2}{n}+\:{a}\right)^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\Omega=\:{f}\:'\:\left(\mathrm{0}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}\Sigma\frac{\:\left(−\mathrm{1}\:\right)^{{n}−\mathrm{1}} \left(\mathrm{2}{n}−\mathrm{1}−\mathrm{2}{n}\:\right)\:}{\left(\:\mathrm{2}{n}−\mathrm{1}\right){n}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\:\mathrm{2}} }\:−\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)} \\ $$$$\:\:\:\:\:\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{48}}\:−\left\{\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:−\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}}\right\}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\Omega\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{48}}\:−\:\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$

Question Number 160576    Answers: 1   Comments: 2

Question Number 160580    Answers: 0   Comments: 0

Calculate 1. lim_(x→+∞) ((x(√(ln (x^2 +1))))/(1+e^(x−3) )) 2. lim_(x→+∞) (((x^3 +5)/(x^2 +2)))^((x+1)/(x^2 +1))

$${Calculate}\: \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{1}+{e}^{{x}−\mathrm{3}} } \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{3}} +\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$

Question Number 160569    Answers: 1   Comments: 0

Calculate 1. lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x) 2. lim_(x→0) (((1+x×2^x )/(1+x×3^x )))^(1/x^2 )

$${Calculate}\: \\ $$$$\mathrm{1}.\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right]^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}×\mathrm{2}^{{x}} }{\mathrm{1}+{x}×\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$ \\ $$

Question Number 160564    Answers: 3   Comments: 2

if the roots of the equation ax^2 +bx+c=0 are in the ratio 3:4,then show that 12b^2 =49ac.

$${if}\:{the}\:{roots}\:{of}\:{th}\mathrm{e}\:{equation}\:\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0} \\ $$$${are}\:{in}\:{the}\:{ratio}\:\mathrm{3}:\mathrm{4},{then}\:{show}\:{that}\: \\ $$$$\mathrm{12b}^{\mathrm{2}} =\mathrm{49ac}. \\ $$

Question Number 160563    Answers: 1   Comments: 0

∫x{x}[x]dx=?

$$\int\mathrm{x}\left\{\mathrm{x}\right\}\left[\mathrm{x}\right]\mathrm{dx}=? \\ $$

Question Number 160561    Answers: 0   Comments: 0

Question Number 160560    Answers: 1   Comments: 0

Find: 𝛀 =∫_( 1) ^( ∞) ((ln(x))/(x^4 + x^2 + 1)) dx = ?

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$

Question Number 160558    Answers: 1   Comments: 0

solve ⌊ x− (√(1−x^( 2) )) ⌋+⌊ x+ (√(1−x^( 2) )) ⌋=0

$$ \\ $$$$\:\:\:\:{solve} \\ $$$$ \\ $$$$\lfloor\:{x}−\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:\rfloor+\lfloor\:{x}+\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:\rfloor=\mathrm{0} \\ $$$$ \\ $$

Question Number 160556    Answers: 0   Comments: 0

∫_0 ^∞ ((arctg(x))/(1+x))∙(dx/( (x)^(1/4) ))=?

$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{arctg}}\left(\boldsymbol{\mathrm{x}}\right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}}\centerdot\frac{\boldsymbol{\mathrm{dx}}}{\:\sqrt[{\mathrm{4}}]{\boldsymbol{\mathrm{x}}}}=? \\ $$

Question Number 160553    Answers: 0   Comments: 0

Question Number 160551    Answers: 1   Comments: 2

∫_0 ^1 arctan x∙ln(1+x)dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{arctan}\:\mathrm{x}\centerdot\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=? \\ $$

Question Number 160550    Answers: 1   Comments: 0

if x;y∈(0;(π/2)) then: (1/((1/(sinx + siny)) + (1/(cosx + cosy)))) ≤ ((√2)/2)

$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{sin}\boldsymbol{\mathrm{x}}\:+\:\mathrm{sin}\boldsymbol{\mathrm{y}}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cos}\boldsymbol{\mathrm{y}}}}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Question Number 160547    Answers: 1   Comments: 0

solve Ω=∫_0 ^( ∞) (( tan^( −1) ( x ))/((1+ x^( 2) )(√( x)))) dx= ? −−−−−−−−

$$\:\:{solve} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \:\right)\sqrt{\:{x}}}\:{dx}=\:? \\ $$$$−−−−−−−− \\ $$

Question Number 160545    Answers: 0   Comments: 0

Σ_(k=1) ^n (n/(n^2 +k)) (1/n)Σ_(k=1 ) ^n cos((1/( (√(n+k))))) convergente?

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{k}}\: \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}\:} {\overset{{n}} {\sum}}{cos}\left(\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}\right) \\ $$$${convergente}? \\ $$$$ \\ $$

Question Number 160544    Answers: 0   Comments: 2

Question Number 160543    Answers: 0   Comments: 0

lim_( x→ 6) (( Γ ( sin( (π/x)))−Γ ((3/x) ))/(sin( πx )))= ?

$$ \\ $$$$\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{6}} \frac{\:\Gamma\:\left(\:{sin}\left(\:\frac{\pi}{{x}}\right)\right)−\Gamma\:\left(\frac{\mathrm{3}}{{x}}\:\right)}{{sin}\left(\:\pi{x}\:\right)}=\:? \\ $$$$ \\ $$

Question Number 160539    Answers: 1   Comments: 0

Prove by recurrence that (1/(n!))≤(1/2^(n−1) ), ∀n≥1.

$${Prove}\:{by}\:{recurrence}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} },\:\forall{n}\geqslant\mathrm{1}. \\ $$

Question Number 160530    Answers: 2   Comments: 0

Question Number 160529    Answers: 2   Comments: 0

Resolve u_n −3u_(n−1) =12((3/4))^n and u_n =2u_(n−1) +5cos (n(Π/3)), u_o =1

$${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$

Question Number 160528    Answers: 0   Comments: 0

(2cosh(x)cos(y))dx+(sinh(x)sin(y))dy=0

$$\left(\mathrm{2}\boldsymbol{\mathrm{cosh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dx}}+\left(\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dy}}=\mathrm{0} \\ $$

Question Number 160526    Answers: 1   Comments: 0

Montre que Sup(A−B)=Sup(A)−Inf(B) Avec A−B={a−b ; a∈ A , b∈ B}

$${Montre}\:{que}\:{Sup}\left({A}−{B}\right)={Sup}\left({A}\right)−{Inf}\left({B}\right) \\ $$$${Avec}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in\:{A}\:,\:{b}\in\:{B}\right\} \\ $$

Question Number 160522    Answers: 1   Comments: 0

Question Number 160521    Answers: 0   Comments: 0

(y^2 +4y)(√(x+2))=(2x+1)(y+1) (((2x+1)/y))^2 +x=2y^2 +10y+3

$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}\right)\sqrt{{x}+\mathrm{2}}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{y}}\right)^{\mathrm{2}} +{x}=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{3} \\ $$

  Pg 584      Pg 585      Pg 586      Pg 587      Pg 588      Pg 589      Pg 590      Pg 591      Pg 592      Pg 593   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com