Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 589
Question Number 160045 Answers: 0 Comments: 0
Question Number 160036 Answers: 0 Comments: 0
Question Number 160035 Answers: 0 Comments: 0
Question Number 160025 Answers: 0 Comments: 1
Question Number 160023 Answers: 0 Comments: 0
Question Number 160014 Answers: 1 Comments: 2
Question Number 160013 Answers: 0 Comments: 1
$$\int\frac{\mathrm{1}}{\mathrm{4}{sin}\:{x}+\mathrm{3}{cos}\:{x}}{dx} \\ $$$${evaluate} \\ $$
Question Number 160009 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\:\centerdot\underset{\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:...\:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }} {\overset{\:\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{6}}} {\int}}\:\mathrm{e}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\right) \\ $$
Question Number 160008 Answers: 2 Comments: 2
$$\mathrm{x}_{\mathrm{1}} =\mathrm{3}\:;\:\mathrm{n}\left(\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +...+\mathrm{x}_{\boldsymbol{\mathrm{n}}} \right)=\mathrm{x}_{\boldsymbol{\mathrm{n}}} \:;\:\mathrm{n}\in\mathbb{N}\:;\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{Find}: \\ $$$$\Omega\:=\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\mathrm{x}_{\boldsymbol{\mathrm{n}}} \\ $$
Question Number 160007 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{n}\left(\left(\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}}\right)^{\boldsymbol{\mathrm{n}}} -\:\mathrm{e}\:-\:\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} -\:\mathrm{e}^{-\:\frac{\mathrm{e}}{\mathrm{2}}} \right)\right) \\ $$$$ \\ $$
Question Number 160006 Answers: 0 Comments: 2
$$\mathrm{Evaluate}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{\mathrm{n}}} {\overset{\boldsymbol{\mathrm{n}}+\mathrm{1}} {\int}}\:\mathrm{e}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}} \:\mathrm{dx}\:=\:? \\ $$$$ \\ $$
Question Number 159999 Answers: 1 Comments: 0
Question Number 159994 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{montrer}\:\mathrm{que}\:\mathrm{le}\:\mathrm{quotient}\:\mathrm{d}'\mathrm{un} \\ $$$$\mathrm{nombe}\:\mathrm{rationnel}\:\mathrm{et}\:\mathrm{dun}\:\mathrm{nombre}\: \\ $$$$\mathrm{irr}{a}\mathrm{tionnel}\:\mathrm{est}\:\mathrm{irrationnel} \\ $$
Question Number 159973 Answers: 0 Comments: 6
$${Can}\:{anyone}\:{please}\:{resolve}\:{the} \\ $$$${Q}\:\mathrm{159787}\:{in}\:{details}.. \\ $$
Question Number 159966 Answers: 0 Comments: 2
$${a}\:\:\:\:{y}=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+.....}}} \\ $$$${b}\:\:\:\:\:{y}=\sqrt{{x}\sqrt{{x}\sqrt{{x}\sqrt{{x}.....}}}} \\ $$$${find}\:\frac{{dy}}{{dx}} \\ $$
Question Number 159962 Answers: 0 Comments: 0
$${show}\:{me}:\:{these}\:{are}\:{the}\:{cauchy}\:{criterion}.\:{please} \\ $$$$\mathrm{1}.\left(\frac{{n}+\mathrm{1}}{{n}}\right) \\ $$$$\mathrm{2}.\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+...+\frac{\mathrm{1}}{{n}!}\right) \\ $$$$\mathrm{3}.\:\left(\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$\mathrm{4}.\:{n}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}} \\ $$$$\mathrm{5}.\left(\mathrm{1}{nm}\right) \\ $$$$ \\ $$
Question Number 159961 Answers: 4 Comments: 0
$$\mathrm{if}\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}\sqrt{\mathrm{5}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{{x}\left({x}^{\mathrm{6}} \:−\:\mathrm{1}\right)}{{x}^{\mathrm{8}} \:−\:\mathrm{1}} \\ $$
Question Number 159960 Answers: 1 Comments: 0
$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}}\:{dx}\:=?\: \\ $$
Question Number 159958 Answers: 1 Comments: 3
$${find}\:{the}\:{area}\:{and}\:{perimeter}\:{of} \\ $$$$\left(\frac{\boldsymbol{{x}}}{\boldsymbol{{a}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\frac{\boldsymbol{{y}}}{\boldsymbol{{b}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{1} \\ $$
Question Number 159944 Answers: 0 Comments: 4
Question Number 159943 Answers: 1 Comments: 0
Question Number 159942 Answers: 0 Comments: 0
Question Number 159941 Answers: 1 Comments: 1
Question Number 159938 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\:\int_{\mathrm{1}} ^{\:\mathrm{4}} \sqrt{\frac{{x}−\mathrm{1}}{{x}^{\mathrm{5}} }}\:{dx}. \\ $$
Question Number 159936 Answers: 0 Comments: 0
$$\mathrm{Prove}::\:\:\:\underset{\mathrm{n}\rightarrow+\infty} {\overline {\mathrm{lim}}n}\underset{\mathrm{k}=\mathrm{n}+\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{1}} }{\mathrm{k}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 159935 Answers: 0 Comments: 0
$$\mathrm{Prove}::\:\:\:\:\underset{\mathrm{x}\rightarrow+\infty} {\overline {\mathrm{lim}}xe}^{−\mathrm{x}} \int_{\mathrm{1}} ^{\mathrm{x}} \frac{\mathrm{e}^{\mathrm{t}} \mathrm{sin}\:\mathrm{t}}{\mathrm{t}}\mathrm{dt}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$
Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591 Pg 592 Pg 593
Terms of Service
Privacy Policy
Contact: info@tinkutara.com