Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 589
Question Number 158069 Answers: 1 Comments: 0
Question Number 158067 Answers: 0 Comments: 0
$$\:\:{f}\left({x}\right)=\left(\frac{\mathrm{4}}{\mathrm{9}}\right)\frac{\left(\omega{x}+\mathrm{2}\right)^{\mathrm{2}} }{\left[\left(\omega{x}+\mathrm{11}\right)^{\mathrm{2}} −\mathrm{117}\right]} \\ $$$$\:\:\:\:\:+\left(\frac{\mathrm{8}}{\mathrm{5}}\right)\frac{\mathrm{1}}{\left[\left(\omega{x}+\mathrm{11}\right)^{\mathrm{2}} −\mathrm{117}\right]} \\ $$$${find}\:{real}\:{x}\:{such}\:{that}\:{f}\left({x}\right) \\ $$$${is}\:{real}.\:\:{I}\:{dont}\:{want}\:{x}=−\mathrm{2}. \\ $$
Question Number 158066 Answers: 0 Comments: 0
Question Number 158065 Answers: 1 Comments: 0
Question Number 158064 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\mathrm{Make}\:\mathrm{tangen}\:\mathrm{line}\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\left(\mathrm{2},\mathrm{3}\right).\: \\ $$$$ \\ $$
Question Number 158060 Answers: 1 Comments: 0
Question Number 158255 Answers: 2 Comments: 2
Question Number 158054 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{composition}\:\mathrm{function} \\ $$$$\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{form}\:\mathrm{from}\:\mathrm{two}\:\mathrm{this} \\ $$$$\mathrm{single}\:\mathrm{functions}\:\mathrm{below}\:: \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{4}\: \\ $$$$\mathrm{g}\left(\mathrm{x}\right)=\:\frac{\mathrm{2x}−\mathrm{7}}{\mathrm{3x}} \\ $$$$\bullet\:\mathrm{fog}\left(\mathrm{x}\right)=....... \\ $$$$\bullet\:\mathrm{gof}\left(\mathrm{x}\right)=...... \\ $$
Question Number 158053 Answers: 2 Comments: 0
$$\int\frac{{dx}}{\mathrm{sin}^{\mathrm{4}} {x}} \\ $$
Question Number 158050 Answers: 1 Comments: 0
$$\:\mathrm{what}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\mathrm{9}!! \\ $$
Question Number 158049 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function} \\ $$$$\left.\mathrm{1}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{x}.\mathrm{sin}\:\mathrm{x} \\ $$$$\left.\mathrm{2}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{e}^{\mathrm{5x}} .\:\mathrm{log}\:_{\mathrm{2}} \:\left(\mathrm{3x}\right) \\ $$$$\left.\mathrm{3}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{3}^{\mathrm{3x}} .\left(\mathrm{2x}−\mathrm{1}\right) \\ $$$$\left.\mathrm{4}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{3x}^{\mathrm{2}} −\mathrm{2}}{\mathrm{4x}+\mathrm{1}} \\ $$
Question Number 158118 Answers: 0 Comments: 0
Question Number 158035 Answers: 1 Comments: 0
Question Number 158030 Answers: 1 Comments: 1
$$\:\:\:\:{solve}\:{equation}\: \\ $$$$\:\:\:\mathrm{5}#+\left(\sqrt{\frac{\mathrm{5}!+\mathrm{5}}{\mathrm{5}!!+\mathrm{5}!!!}+!\mathrm{5}}−\mathrm{5}\right)\$=\mathrm{2}^{{x}} \\ $$
Question Number 158017 Answers: 0 Comments: 1
Question Number 158014 Answers: 4 Comments: 0
$$ \\ $$$$ \\ $$
Question Number 158009 Answers: 2 Comments: 0
Question Number 158005 Answers: 0 Comments: 3
Question Number 158003 Answers: 0 Comments: 3
Question Number 157995 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{following}\:\mathrm{tetra}− \\ $$$$\mathrm{hedral}\:\mathrm{figure}.\:\mathrm{The}\:\mathrm{length}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{rib}\:\mathrm{is}\:\mathrm{10}\:\mathrm{cm}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{area} \\ $$$$\:\mathrm{of}\:\:\mathrm{triangle}\:\mathrm{DEF}. \\ $$$$ \\ $$$$ \\ $$
Question Number 157991 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\mathrm{Length}\:\mathrm{side}\:\mathrm{of}\:\mathrm{hexagonal}\:\mathrm{above}\:\mathrm{is}\:=\mathrm{12}\: \\ $$$$\mathrm{cm}\:.\:\mathrm{Find}\:\mathrm{it}'\mathrm{s}\:\mathrm{total}\:\mathrm{area} \\ $$$$ \\ $$
Question Number 157989 Answers: 0 Comments: 2
$$\: \\ $$$${find}\:{the}\:{value}\:{of}\:: \\ $$$$\: \\ $$$$\:\:\mathrm{Max}_{\:{x}\in\:\mathbb{R}} \:\left(\:\left(\mathrm{sin}\left({x}\right)+\sqrt{\mathrm{3}}\:{cos}\left({x}\right)+\mathrm{1}\right)^{\:\mathrm{2}} =?\right. \\ $$$$ \\ $$
Question Number 157984 Answers: 1 Comments: 0
Question Number 157982 Answers: 0 Comments: 0
$$\:\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{xy}+{y}^{\mathrm{2}} −\mathrm{3}{y}\right){dx}+\left(\mathrm{2}{xy}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{y}^{\mathrm{2}} +\mathrm{3}{x}\right){dy}=\mathrm{0} \\ $$
Question Number 157981 Answers: 1 Comments: 0
$$\mathrm{How}\:\mathrm{much}\:\mathrm{the}\:\mathrm{long}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonal} \\ $$$$\:\mathrm{space}\:,\:\mathrm{if}\:\:\mathrm{total}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{is} \\ $$$$\:\mathrm{216}\:\mathrm{cm}^{\mathrm{2}} . \\ $$
Question Number 157980 Answers: 2 Comments: 0
$$\mathrm{Calculate}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{below} \\ $$$$\left.\:\:\:\:\:\:\:\:\mathrm{a}\right).\:\:\frac{\mathrm{7}!}{\left(\mathrm{5}−\mathrm{1}\right)!}\:=...... \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\mathrm{b}\right).\:\:\frac{\mathrm{5}!×\mathrm{3}!}{\mathrm{4}!}\:=...... \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}\right).\:\:\mathrm{6}!\:\mathrm{4}!\:=...\:\:\:\:\:\:\:\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{d}\right).\:\:\frac{\mathrm{7}!}{\mathrm{3}!}×\frac{\mathrm{2}!}{\mathrm{5}!}\:=...... \\ $$
Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591 Pg 592 Pg 593
Terms of Service
Privacy Policy
Contact: info@tinkutara.com