Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 587
Question Number 160821 Answers: 1 Comments: 1
Question Number 160816 Answers: 0 Comments: 1
Question Number 160815 Answers: 1 Comments: 1
$$\:\:\:\:\mathrm{sec}\:\left(\mathrm{3x}\right)−\mathrm{6cos}\:\left(\mathrm{3x}\right)=\mathrm{4sin}\:\left(\mathrm{3x}\right) \\ $$$$\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$
Question Number 160796 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{n}}\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }\mathrm{dx}=? \\ $$
Question Number 160798 Answers: 0 Comments: 0
Question Number 160793 Answers: 2 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}^{\mathrm{cos}\:\mathrm{x}} \:−\:\mathrm{2}}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$
Question Number 160792 Answers: 2 Comments: 0
$$\:\:\:\int\:\frac{\mathrm{sec}\:\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{2sec}\:\mathrm{x}}}\:\sqrt{\frac{\mathrm{cosec}\:\mathrm{x}−\mathrm{cot}\:\mathrm{x}}{\mathrm{cosec}\:\mathrm{x}+\mathrm{cot}\:\mathrm{x}}}\:\mathrm{dx}\:=? \\ $$
Question Number 160777 Answers: 3 Comments: 3
$$\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{x}^{\mathrm{2}} \:+\:\left(\mathrm{m}\:+\:\mathrm{2}\right)\centerdot\mathrm{x}\:+\:\mathrm{4}\:=\:\mathrm{0} \\ $$$$\mathrm{equation}\:\mathrm{root}\:\:\mathrm{x}_{\mathrm{1}} \:;\:\mathrm{x}_{\mathrm{2}} \:;\:\mathrm{x}_{\mathrm{3}} \\ $$$$\mathrm{and}\:\:\mathrm{x}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{m}}=? \\ $$
Question Number 160768 Answers: 0 Comments: 1
$$\:\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}−\mathrm{18}\:=\:\mathrm{0}\: \\ $$$$\:\mathrm{x}\in\mathbb{R}\:,\:\mathrm{x}=? \\ $$
Question Number 160767 Answers: 1 Comments: 0
$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=?\: \\ $$
Question Number 160764 Answers: 0 Comments: 1
$$\mathrm{If}\:\:\:\:\mathrm{log}\left(\frac{{x}^{\mathrm{3}} −{y}^{\mathrm{3}} }{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} }\right),\:\mathrm{then}\:\frac{{dy}}{{dx}}=? \\ $$
Question Number 160762 Answers: 0 Comments: 5
$$\mathrm{sin}\:\mathrm{10}+\mathrm{sin}\:\mathrm{20}+\mathrm{sin}\:\mathrm{30}+\mathrm{sin}\:\mathrm{40}+\centerdot\centerdot\centerdot\centerdot+\mathrm{sin}\:\mathrm{360}=? \\ $$
Question Number 160746 Answers: 1 Comments: 0
Question Number 160744 Answers: 1 Comments: 1
$$\:\:\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{12}\right)^{\mathrm{3}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}−\mathrm{18}\right)^{\mathrm{2}} =\:\mathrm{9}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{x}=?\: \\ $$
Question Number 160739 Answers: 0 Comments: 3
$$\:{nature}\:{de}\:{cette}\:{integrale}\:{quequ}'{en}\:{soit}\:{le}\:{reel}\:\alpha \\ $$$$\int_{\mathrm{1}} ^{+{oo}} {t}^{\alpha} {e}^{−{t}} {dt} \\ $$
Question Number 160747 Answers: 1 Comments: 1
Question Number 160734 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:#\:\mathrm{Advanced}\:\:\:\mathrm{Calculus}\:# \\ $$$$\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}^{\:} \:\left(\:\frac{\mathrm{1}}{\mathrm{1}−\:{x}}\:\:\right)}{{x}}\:\right)^{\:\mathrm{3}} {dx}\:\overset{?} {=}\:\mathrm{3}\:\left(\:\zeta\:\left(\mathrm{2}\:\right)\:+\:\zeta\:\left(\mathrm{3}\:\right)\right) \\ $$$$\:\:\:\:\:\:−−−−\:\:{solution}−−−− \\ $$$$\:\:\:\:\:\:\:\:\Phi\:\overset{\mathrm{I}.\mathrm{B}.\mathrm{P}} {=}\:\left[\:\frac{\:\mathrm{1}}{\mathrm{2}{x}^{\:\mathrm{2}} }\:{ln}^{\:\mathrm{3}} \left(\:\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{3}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \:\left(\mathrm{1}−\:{x}\:\right)}{{x}^{\:\mathrm{2}} \:\left(\mathrm{1}\:−\:{x}\:\right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{lim}_{\:\xi\:\rightarrow\mathrm{1}^{−\:} } \:\frac{{ln}^{\:\mathrm{3}} \left(\:\mathrm{1}−\:\xi\:\right)}{\xi^{\:\mathrm{2}} }\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{3}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}−\:{x}\:\right)}{{x}}{dx}\:=\:\mathrm{2}\:\zeta\:\left(\mathrm{3}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:+\:\frac{\mathrm{3}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}−{x}\right)}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:=\:\mathrm{2}\zeta\:\left(\mathrm{2}\:\right)\right]\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{3}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−\:{x}\right)}{\mathrm{1}−{x}}\:{dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\:{lim}_{\:\xi\:\rightarrow\mathrm{1}^{\:−} } \left\{\frac{{ln}^{\:\mathrm{3}} \left(\:\mathrm{1}−\xi\:\right)}{\xi^{\:\mathrm{2}} }\:\:−{ln}^{\:\mathrm{3}} \left(\mathrm{1}−\:\xi\:\right)\:\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{3}}{\mathrm{2}}\:\left(\mathrm{2}\zeta\:\left(\mathrm{3}\:\right)\right)\:\:+\frac{\mathrm{3}}{\mathrm{2}}\:\left(\:\mathrm{2}\zeta\:\left(\mathrm{2}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{3}\left(\:\:\:\zeta\:\left(\mathrm{3}\:\right)\:+\:\mathrm{3}\zeta\:\left(\mathrm{2}\:\right)\:\:\right)\:\:\:\:\:\:\:\blacksquare\:\:\:{m}.{n}\:\:\: \\ $$$$ \\ $$
Question Number 160733 Answers: 0 Comments: 0
Question Number 160755 Answers: 0 Comments: 0
Question Number 160753 Answers: 1 Comments: 1
Question Number 160752 Answers: 1 Comments: 0
$${solve} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−{y}={x}^{\mathrm{2}} {sin}\mathrm{3}{x} \\ $$
Question Number 160719 Answers: 1 Comments: 2
Question Number 160807 Answers: 0 Comments: 0
$$−\mathrm{1}\leqslant{a}_{\mathrm{0}} \leqslant{b}_{\mathrm{0}} \leqslant{c}_{\mathrm{0}} \leqslant\mathrm{1} \\ $$$$\forall{n}\in\mathbb{N}\: \\ $$$${a}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {min}\left({x},{b}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${b}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {mil}\left({x},{a}_{{n}} ,{c}_{{n}} \right){dx} \\ $$$${c}_{{n}+\mathrm{1}} =\int_{−\mathrm{1}} ^{\mathrm{1}} {max}\left({x},{b}_{{n}} ,{a}_{{n}} \right){dx} \\ $$$${mil}\left({a},{b},{c}\right)\:{est}\:{le}\:{terme}\:{median}\:{de}\:\left({a},{b},{c}\right) \\ $$$${nature}\:{de}\:\left({a}_{{n}} \right),\left({b}_{{n}} \right),\left({c}_{{n}} \right) \\ $$$$ \\ $$
Question Number 160806 Answers: 1 Comments: 0
Question Number 160712 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{3n}^{\mathrm{2}} }{\mathrm{4n}^{\mathrm{2}} }\right)^{\mathrm{4}} =\:\frac{\mathrm{2}}{\mathrm{n}}\:\mathrm{y}-\mathrm{1}\:\:;\:\:\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{3n}^{\mathrm{2}} }{\mathrm{4n}^{\mathrm{2}} }\right)^{\mathrm{4}} =\:\frac{\mathrm{2}}{\mathrm{n}}\:\mathrm{z}-\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{3n}^{\mathrm{2}} }{\mathrm{4n}^{\mathrm{2}} }\right)^{\mathrm{4}} =\:\frac{\mathrm{2}}{\mathrm{n}}\:\mathrm{x}-\mathrm{1} \\ $$$$\mathrm{n}\:\in\:\left(\mathrm{0}\:;\:\infty\right)\:\:\boldsymbol{\mathrm{fixed}} \\ $$
Question Number 160711 Answers: 2 Comments: 0
$$\mathrm{Be}\:\:\boldsymbol{\mathrm{p}}\:\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\:,\:\mathrm{arbitrary}. \\ $$$$\mathrm{Solve}\:\mathrm{on}\:\mathrm{positive}\:\mathrm{integers}\:\:\left(\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}};\boldsymbol{\mathrm{z}}\right) \\ $$$$\begin{cases}{\mathrm{xy}\:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{3p}\:+\:\mathrm{4}}\\{\mathrm{x}\:+\:\mathrm{yz}^{\mathrm{2}} \:=\:\mathrm{p}\:+\:\mathrm{4}}\end{cases} \\ $$
Pg 582 Pg 583 Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591
Terms of Service
Privacy Policy
Contact: info@tinkutara.com