Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 587
Question Number 155133 Answers: 2 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$
Question Number 155132 Answers: 0 Comments: 0
Question Number 155130 Answers: 1 Comments: 0
Question Number 155126 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−\:\beta\:\left(\mathrm{2}{x}+{b}\right)^{\frac{\mathrm{1}}{\boldsymbol{{a}}}} } \:{dx} \\ $$
Question Number 155122 Answers: 0 Comments: 2
Question Number 155120 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{lim}_{\:{x}\:\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:−\:{cot}^{\:\mathrm{2}} \left({x}\right)\right)=? \\ $$$$ \\ $$
Question Number 155153 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{in}\:\mathbb{R} \\ $$$$\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{x}\:+\:\mathrm{1}\right)}\:=\:\mathrm{1}\:+\:\sqrt{\mathrm{x}}\:-\:\mathrm{x} \\ $$
Question Number 155109 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{many}\:\mathrm{terms}\:\mathrm{contain}\:``\:\mathrm{ab}^{\mathrm{2}} \mathrm{c}^{\mathrm{3}} \:''\:\mathrm{in}\:\left(\mathrm{a}+\mathrm{2b}+\mathrm{3c}+\mathrm{4d}^{\mathrm{2}} +\mathrm{5e}^{\mathrm{3}} \right)^{\mathrm{10}} \:? \\ $$
Question Number 155106 Answers: 1 Comments: 3
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}+\mathrm{y}}\:-\:\sqrt{\mathrm{x}-\mathrm{y}}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} }\:=\:\mathrm{5}}\\{\mathrm{2x}\:+\:\mathrm{3}\sqrt{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} }\:=\:\mathrm{19}}\end{cases} \\ $$
Question Number 155101 Answers: 1 Comments: 3
$${soit}:\:{y}\:{y}'+{xy}^{\mathrm{2}} +{x}=\mathrm{0}\:,{avec}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}''\left(\mathrm{0}\right)=? \\ $$
Question Number 155100 Answers: 1 Comments: 2
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{with}: \\ $$$$\mathrm{1}.\mathrm{The}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{semiperimetr}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{area}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{with}\:\mathrm{perimetr}. \\ $$
Question Number 155083 Answers: 1 Comments: 0
Question Number 155079 Answers: 0 Comments: 1
Question Number 155259 Answers: 1 Comments: 2
$${If}:\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{6}\:\:{then}\:\:{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=? \\ $$
Question Number 155075 Answers: 1 Comments: 4
Question Number 155069 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{3} \\ $$$$\mathrm{and}\:\:\mathrm{0}\leqslant\boldsymbol{\lambda}\leqslant\mathrm{1}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}^{\mathrm{2}} +\lambda}\:+\:\frac{\mathrm{y}}{\mathrm{z}^{\mathrm{2}} +\lambda}\:+\:\frac{\mathrm{z}}{\mathrm{x}^{\mathrm{2}} +\lambda}\:\geqslant\:\frac{\mathrm{3}}{\lambda+\mathrm{1}} \\ $$
Question Number 155068 Answers: 0 Comments: 0
Question Number 155257 Answers: 1 Comments: 5
Question Number 155206 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d};\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{t}\:\:\mathrm{and}\:\:\mathrm{a}\neq\mathrm{b}\neq\mathrm{c}\neq\mathrm{d} \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{td}\:; \\ $$$$\mathrm{b}+\mathrm{c}+\mathrm{d}=\mathrm{xa}\:;\:\mathrm{c}+\mathrm{d}+\mathrm{a}=\mathrm{yb}\:;\:\mathrm{d}+\mathrm{a}+\mathrm{b}=\mathrm{zc} \\ $$
Question Number 155207 Answers: 1 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{e}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 155058 Answers: 0 Comments: 0
Question Number 155056 Answers: 1 Comments: 0
Question Number 155039 Answers: 2 Comments: 0
$$\frac{\mathrm{2}}{\mathrm{5}}\:+\:\frac{\mathrm{6}}{\mathrm{5}}\:=\:?\:\:{Hihi} \\ $$
Question Number 155036 Answers: 1 Comments: 0
$$\:\mathrm{If}\:\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} =\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:\mathrm{and}\:\boldsymbol{\mathrm{a}}=\mathrm{2}\boldsymbol{\mathrm{b}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\:\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} \:? \\ $$
Question Number 155035 Answers: 1 Comments: 0
Question Number 155034 Answers: 3 Comments: 4
Pg 582 Pg 583 Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591
Terms of Service
Privacy Policy
Contact: info@tinkutara.com