Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 587
Question Number 153899 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{there}\:\mathrm{exists}\:\:\mathrm{2016} \\ $$$$\mathrm{distinct}\:\mathrm{prime}\:\mathrm{numbers}\:\:\mathrm{p}_{\mathrm{1}} ,\mathrm{p}_{\mathrm{2}} ,...,\mathrm{p}_{\mathrm{2016}} \\ $$$$\mathrm{and}\:\mathrm{positive}\:\mathrm{integer}\:\:\boldsymbol{\mathrm{n}}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\mathrm{2016}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{p}_{\boldsymbol{\mathrm{i}}} ^{\mathrm{2}} \:+\:\mathrm{1}}\:=\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} } \\ $$
Question Number 153898 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{functions}\:\:\mathrm{f}:\mathrm{Q}\rightarrow\mathrm{Q}\:\:\mathrm{satisfying} \\ $$$$\mathrm{these}\:\mathrm{followong}\:\mathrm{conditions}\:\mathrm{for}\:\mathrm{all}\:\boldsymbol{\mathrm{x}}\in\mathrm{Q} \\ $$$$\mathrm{1}.\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{1}\right)\:=\:\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{1} \\ $$$$\mathrm{2}.\:\mathrm{f}\left(\mathrm{x}^{\mathrm{3}} \right)\:=\:\mathrm{f}^{\:\mathrm{3}} \left(\mathrm{x}\right) \\ $$
Question Number 153896 Answers: 1 Comments: 0
Question Number 153895 Answers: 0 Comments: 0
Question Number 153897 Answers: 0 Comments: 1
$$\mathrm{Denote}\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}} \:\:\mathrm{is}\:\mathrm{the}\:\mathrm{unique}\:\mathrm{positive}\:\mathrm{root} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equation}: \\ $$$$\mathrm{x}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{x}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \:+\:...\:\mathrm{x}\:=\:\mathrm{n}\:+\:\mathrm{2} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\left(\mathrm{x}_{\boldsymbol{\mathrm{n}}} \right)\:\mathrm{converges} \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}.\:\mathrm{Find}\:\mathrm{that} \\ $$$$\mathrm{limit}. \\ $$
Question Number 153893 Answers: 0 Comments: 0
$$\int_{\:\mathrm{0}} ^{\:\:\infty} \mathrm{a}\:\underset{\mathrm{p}\:\rightarrow\:\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{p}^{\mathrm{2}} \:\:−\:\:\:\mathrm{x}^{\mathrm{2n}} }{\mathrm{p}^{\mathrm{2}} }\right)\mathrm{dx},\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:<\:\:\mathrm{2n}\:\:<\:\:\mathrm{n}\:\:+\:\:\mathrm{1} \\ $$
Question Number 153877 Answers: 0 Comments: 1
Question Number 155421 Answers: 3 Comments: 0
Question Number 153875 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{Prove}\:\:\mathrm{that}.. \\ $$$$\:\:\: \\ $$$$\:\:\:\:\boldsymbol{\phi}\::\:=\int_{\:\mathrm{1}} ^{\:+\infty} \frac{\:{ln}\:\left({x}\:\right)}{\left(\:{x}^{\:\pi} \:−\mathrm{1}\:\right)\left(\:{ln}^{\:\mathrm{2}} \left({x}\right)\:+\mathrm{1}\:\right)^{\mathrm{2}} }{dx}=\:\frac{\pi^{\:\mathrm{2}} −\:\mathrm{8}}{\mathrm{16}}\:\:\:\:\:\:\:\:\:\blacksquare\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 153873 Answers: 0 Comments: 1
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}}{\left(\mathrm{1}\:+{x}^{\:\mathrm{2}} \right)\:\left(\:{e}^{\:\mathrm{2}\pi{x}} −\:\mathrm{1}\right)}\:{dx}\:=\frac{\mathrm{2}\gamma−\:\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$
Question Number 153870 Answers: 1 Comments: 3
$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\frac{\mathrm{5}}{{f}\left(\theta\right)+\mathrm{3}}\:\mathrm{where}\:{f}\left(\theta\right)=\mathrm{8cos}\:\theta−\mathrm{15}\:\mathrm{sin}\:\theta \\ $$
Question Number 153864 Answers: 0 Comments: 1
Question Number 153866 Answers: 1 Comments: 0
$$\mathrm{3}+\sqrt{\mathrm{3}+\sqrt{\mathrm{6}+\sqrt{\mathrm{9}+\sqrt{\mathrm{12}+\ldots+\sqrt{\mathrm{99}}}}}}=? \\ $$
Question Number 153862 Answers: 0 Comments: 0
Question Number 153860 Answers: 1 Comments: 0
Question Number 153858 Answers: 2 Comments: 1
Question Number 153857 Answers: 1 Comments: 1
Question Number 153847 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{S}}\:=\:\mathrm{x}\:+\:\mathrm{2x}^{\mathrm{2}} \:+\:...\:+\:\mathrm{nx}^{\boldsymbol{\mathrm{n}}} \\ $$$$ \\ $$
Question Number 153840 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{log}\:_{{e}} \left({x}\right)+\mathrm{log}\:_{{x}} \left({e}\right)+\mathrm{log}\:_{\left(\frac{{e}}{{x}}\right)} \left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:{x}=? \\ $$
Question Number 153839 Answers: 1 Comments: 1
Question Number 153829 Answers: 0 Comments: 0
$$\mathrm{L}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{6}}{\pi^{\mathrm{2}} }\left(\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{log}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{1}-\mathrm{x}\right)\right. \\ $$$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{L}\left(\mathrm{x}\right)\centerdot\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$
Question Number 153842 Answers: 0 Comments: 0
Question Number 153817 Answers: 0 Comments: 3
Question Number 153808 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}<\mathrm{1}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\underset{\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\left(\frac{\mathrm{1}\:-\:\mathrm{xyz}}{\mathrm{1}\:+\:\mathrm{xyz}}\right)^{\mathrm{3}} \mathrm{dxdydz}\:\geqslant\:\left(\underset{\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\frac{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{3}} }{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx}\right)^{\mathrm{3}} \\ $$
Question Number 153803 Answers: 1 Comments: 1
$${solve}\:{for}\:{x} \\ $$$${cos}^{\mathrm{2}} {x}\:−\:{cos}^{\mathrm{2}} \mathrm{2}{x}\:=\:{cos}^{\mathrm{2}} \mathrm{4}{x}\:−\:{cos}^{\mathrm{2}} \mathrm{3}{x} \\ $$
Question Number 153800 Answers: 2 Comments: 0
Pg 582 Pg 583 Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591
Terms of Service
Privacy Policy
Contact: info@tinkutara.com