Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 587
Question Number 158228 Answers: 1 Comments: 0
$$\int\frac{\mathrm{5}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{3}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${Solve}\:{by}\:{first}\:{finding}\:{the}\:{partial} \\ $$$${fraction} \\ $$
Question Number 158209 Answers: 1 Comments: 0
Question Number 158207 Answers: 1 Comments: 0
Question Number 158205 Answers: 0 Comments: 0
$$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({e}^{{x}} −\mathrm{1}\right)\mathrm{sin}\:{x}+\mathrm{tan}\:^{\mathrm{3}} {x}}{\mathrm{arctan}\:{x}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{4}{x}\right)+\mathrm{4arcsin}^{\mathrm{4}} \:{x}}\: \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}+\mathrm{ln}\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x}\right)+\mathrm{2arcsin}\:^{\mathrm{3}} \:{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{sin}\:^{\mathrm{2}} {x}} \\ $$
Question Number 158204 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sin}\:\sqrt{{x}+\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}\:}\right)\:=? \\ $$
Question Number 158203 Answers: 0 Comments: 0
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{n}}.{e}^{\frac{\mathrm{2}{k}+\mathrm{1}}{{k}}} \:=? \\ $$
Question Number 158190 Answers: 0 Comments: 1
$$\int\frac{\mathrm{5}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{3}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{Solve}\:{by}\: \\ $$$${first}\:{giving}\:{the}\:{partial}\:{functions}\: \\ $$
Question Number 158176 Answers: 1 Comments: 0
$$\int\left\{\frac{{x}^{\mathrm{2}} −{x}−\mathrm{21}}{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4}}\right\}{dx}\: \\ $$
Question Number 158175 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow+\infty\:} {{lim}}\frac{{sinx}+{x}}{\mathrm{3}+\mathrm{2}{sinx}}=? \\ $$
Question Number 158173 Answers: 0 Comments: 0
$$\mathrm{simplify}\:\mathrm{the}\:\mathrm{expression}\:\left(\mathrm{1}+\mathrm{sin}\:\boldsymbol{\phi}\right)/\left(\mathrm{5}+\mathrm{3tan}\:\boldsymbol{\phi}−\mathrm{4cos}\:\boldsymbol{\phi}\right)\:\mathrm{using}\:\mathrm{small}\:\mathrm{angles}\:\mathrm{approximation}\:\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{term}\:\mathrm{containing}\:\phi^{\mathrm{2}} \\ $$
Question Number 158166 Answers: 0 Comments: 1
$$\:{If}\:{f}\left(\frac{{x}}{\mathrm{3}}\right)=\frac{{f}\left({x}\right)}{\mathrm{2}}\:{and}\:{f}\left(\mathrm{1}−{x}\right)=\mathrm{1}−{f}\left({x}\right). \\ $$$${find}\:{f}\left(\frac{\mathrm{173}}{\mathrm{1993}}\right). \\ $$
Question Number 158157 Answers: 0 Comments: 0
Question Number 158156 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{solve}\:: \\ $$$$\left(\:{x}^{\:\mathrm{2}} +{x}\:−\mathrm{6}\right)^{\:\mathrm{3}} +\:\left(\mathrm{7}{x}^{\:\mathrm{2}} −\mathrm{9}{x}\:−\mathrm{2}\right)^{\:\mathrm{3}} −\mathrm{512}\left({x}^{\mathrm{2}} −{x}−\mathrm{1}\right)^{\:\mathrm{3}} =\mathrm{0} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:{x}\:=\:? \\ $$$$ \\ $$
Question Number 158143 Answers: 1 Comments: 6
Question Number 158142 Answers: 0 Comments: 0
$${f}\left({x}\right)={x}−\left[{x}\right]\:{where}\:\left[{x}\right]\:{is}\:{the}\:{greatest} \\ $$$${integer}\:{function}\:{and}\:−\mathrm{3}\leqslant{x}\leqslant\mathrm{3} \\ $$$$\left.{a}\right)\:{sketch}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{state}\:{the}\:{domain}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{c}\right)\:{study}\:{the}\:{continuity}\:{of}\:{f}\left({x}\right)\:{on}\:{its}\:{domain} \\ $$$$\left.{d}\right)\:{state}\:{the}\:{range}\:{of}\:{f}\left({x}\right) \\ $$
Question Number 158187 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}}\:-\:\mathrm{y}^{\mathrm{5}} \:=\:\mathrm{3}}\\{\sqrt[{\mathrm{5}}]{\sqrt{\mathrm{x}}\:-\:\mathrm{3}}\:-\:\sqrt[{\mathrm{5}}]{\mathrm{y}^{\mathrm{5}} \:+\:\mathrm{6}}\:=\:-\:\mathrm{1}}\end{cases}\: \\ $$$$ \\ $$
Question Number 158186 Answers: 1 Comments: 0
Question Number 158185 Answers: 0 Comments: 8
Question Number 158159 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\int\:\frac{{dx}}{\mathrm{3}−\mathrm{tan}\:{x}}\:=? \\ $$
Question Number 158124 Answers: 1 Comments: 0
$$\mathrm{let}\:\boldsymbol{\omega}\:\mathrm{be}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\left(\mathrm{x}\:-\:\mathrm{1}\right)^{\mathrm{4}} \:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{find}\:\:\boldsymbol{\Omega}\:=\:\boldsymbol{\omega}^{\mathrm{300}} \:+\:\boldsymbol{\omega}^{\mathrm{301}} \\ $$
Question Number 158114 Answers: 2 Comments: 2
$$\:\begin{cases}{{x}^{\mathrm{2}} −\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} =\mathrm{35}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\:\mathrm{13}}\end{cases} \\ $$$$\:\Rightarrow{x}=?\:\wedge\:{y}=?\: \\ $$
Question Number 158191 Answers: 1 Comments: 1
$${Can}\:{we}\:{reach}\:{to}\:\frac{{m}}{\left({m}−\mathrm{1}\right){s}}\:+\:\frac{{m}+\mathrm{1}}{{ms}^{\mathrm{2}} }\:{from}\: \\ $$$$ \\ $$$$\:\:\:\:\frac{{ms}+{m}\left({m}+\mathrm{1}\right)}{{s}\left({m}−{s}\right)}\:?? \\ $$
Question Number 158104 Answers: 1 Comments: 0
$$ \\ $$The comparison between Rahman and Aditya's books is 2: 3. If the number of their books is 20, then the number of Aditya's books is….
Question Number 158102 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{Given}\:\mathrm{the}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{D}.\mathrm{ABC}\:\mathrm{Find}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{CD}. \\ $$
Question Number 158101 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{image}\:\mathrm{of}\:\mathrm{points}\: \\ $$$$\mathrm{K}\:\left(\mathrm{5},\mathrm{2}\right)\:\mathrm{and}\:\mathrm{L}\:\left(\mathrm{1}\:\mathrm{5}\right)\:\mathrm{after}\: \\ $$$$\mathrm{being}\:\mathrm{reflected}\:\mathrm{about}\:\mathrm{the}\:\mathrm{x} \\ $$$$\mathrm{axis}. \\ $$
Question Number 158097 Answers: 2 Comments: 0
Pg 582 Pg 583 Pg 584 Pg 585 Pg 586 Pg 587 Pg 588 Pg 589 Pg 590 Pg 591
Terms of Service
Privacy Policy
Contact: info@tinkutara.com