Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 577

Question Number 161362    Answers: 0   Comments: 1

log _(√(x/3)) (3x−54)^(log _3 (x)) = 18−3log _(x/3) (x^2 ) x=?

$$\:\mathrm{log}\:_{\sqrt{\frac{{x}}{\mathrm{3}}}} \left(\mathrm{3}{x}−\mathrm{54}\right)^{\mathrm{log}\:_{\mathrm{3}} \left({x}\right)} \:=\:\mathrm{18}−\mathrm{3log}\:_{\frac{{x}}{\mathrm{3}}} \left({x}^{\mathrm{2}} \right) \\ $$$$\:{x}=? \\ $$

Question Number 161361    Answers: 0   Comments: 1

lim_(x→0) (((√(x+1)) +((1+2x))^(1/h) −2)/x) = (3/5) h^3 −(2/9)(h+7)=?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}\:+\sqrt[{{h}}]{\mathrm{1}+\mathrm{2}{x}}−\mathrm{2}}{{x}}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\: \\ $$$$\:\:{h}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{9}}\left({h}+\mathrm{7}\right)=? \\ $$

Question Number 161356    Answers: 1   Comments: 2

a + b + c = 0 Find the value of (((b−c)/a) + ((c−a)/b) + ((a−b)/c))((a/(b−c)) + (b/(c−a)) + (c/(a−b))) .

$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0} \\ $$$$ \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\left(\frac{{b}−{c}}{{a}}\:+\:\frac{{c}−{a}}{{b}}\:+\:\frac{{a}−{b}}{{c}}\right)\left(\frac{{a}}{{b}−{c}}\:+\:\frac{{b}}{{c}−{a}}\:+\:\frac{{c}}{{a}−{b}}\right)\:. \\ $$

Question Number 161353    Answers: 0   Comments: 0

Prove that: Σ_(n=0) ^∞ (((-1)^n )/(2n + 1)) ∫_( 0) ^( 1) ∫_( 0) ^( 1) ((dxdy)/((x^2 + y^2 )^n )) = (2/3)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{2n}\:+\:\mathrm{1}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{dxdy}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)^{\boldsymbol{\mathrm{n}}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Question Number 161367    Answers: 1   Comments: 1

Question Number 161346    Answers: 0   Comments: 0

Question Number 161342    Answers: 2   Comments: 0

2log _x (3) log _(3x) (3)=log _(9(√x)) (3) x=?

$$\:\:\mathrm{2log}\:_{\mathrm{x}} \left(\mathrm{3}\right)\:\mathrm{log}\:_{\mathrm{3x}} \left(\mathrm{3}\right)=\mathrm{log}\:_{\mathrm{9}\sqrt{\mathrm{x}}} \left(\mathrm{3}\right) \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 161338    Answers: 1   Comments: 1

Question Number 161337    Answers: 0   Comments: 1

(1) lim_(x→0) ((2cos (p+x)−cos (p+2x)−cos p)/x^2 ) ? (2) lim_(x→0) ((tan (2x+q)−2tan (x+q)+tan q)/x^2 ) ?

$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\mathrm{p}+\mathrm{x}\right)−\mathrm{cos}\:\left(\mathrm{p}+\mathrm{2x}\right)−\mathrm{cos}\:\mathrm{p}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\mathrm{q}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\mathrm{q}\right)+\mathrm{tan}\:\mathrm{q}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$

Question Number 161335    Answers: 0   Comments: 1

Question Number 161331    Answers: 0   Comments: 0

Question Number 161329    Answers: 0   Comments: 0

∫_1 ^( 2) ((tan^(−1) (x−1)log(x))/x)dx

$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$

Question Number 161326    Answers: 0   Comments: 0

Question Number 161323    Answers: 1   Comments: 3

prove ((( −n )),(( k)) ) =^? (−1)^( k) ((( n +k −1)),(( k)) ) example : ((( −5)),(( 4)) ) = ((( 8)),(( 4)) )

$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\begin{pmatrix}{\:\:−{n}\:}\\{\:\:\:\:\:{k}}\end{pmatrix}\:\overset{?} {=}\:\left(−\mathrm{1}\right)^{\:{k}} \:\begin{pmatrix}{\:{n}\:+{k}\:−\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$\:\:\:{example}\::\:\:\begin{pmatrix}{\:−\mathrm{5}}\\{\:\:\:\mathrm{4}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\mathrm{8}}\\{\:\:\mathrm{4}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 161322    Answers: 1   Comments: 4

Question Number 161316    Answers: 1   Comments: 0

Three quarters of a number added to two and a half of that number gives 13. find the number

$$\mathrm{Three}\:\mathrm{quarters}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number}\:\mathrm{added}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{and}\:\mathrm{a}\:\mathrm{half}\:\mathrm{of}\:\mathrm{that}\:\mathrm{number}\:\mathrm{gives}\: \\ $$$$\mathrm{13}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{number} \\ $$$$ \\ $$

Question Number 161311    Answers: 2   Comments: 0

Differentiate y=sin xy

$${Differentiate}\:{y}=\mathrm{sin}\:{xy} \\ $$

Question Number 161296    Answers: 1   Comments: 0

Question Number 161295    Answers: 0   Comments: 2

prove that:x^8 +x^6 −x^3 −x+1>0,x∈R

$${prove}\:{that}:{x}^{\mathrm{8}} +{x}^{\mathrm{6}} −{x}^{\mathrm{3}} −{x}+\mathrm{1}>\mathrm{0},{x}\in{R} \\ $$

Question Number 161294    Answers: 1   Comments: 0

∫_(−2) ^2 (x^3 cos((x/2))+(1/2))(√(4−x^2 ))dx

$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 161285    Answers: 5   Comments: 0

(1) ∫ (dx/(1−2cos x)) (2) ∫ ((sin 2x)/(sin x−sin^2 2x)) dx (3) ∫ (dx/(cos 2x−sin x))

$$\left(\mathrm{1}\right)\:\int\:\frac{{dx}}{\mathrm{1}−\mathrm{2cos}\:{x}} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:{dx} \\ $$$$\left(\mathrm{3}\right)\:\int\:\frac{{dx}}{\mathrm{cos}\:\mathrm{2}{x}−\mathrm{sin}\:{x}} \\ $$

Question Number 161284    Answers: 0   Comments: 0

Question Number 161319    Answers: 1   Comments: 0

lim_(x→(π/2)) ((cos x)/( ((sin x+cos x))^(1/3) −sin x))=?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}−\mathrm{sin}\:{x}}=? \\ $$

Question Number 161282    Answers: 1   Comments: 0

Question Number 161281    Answers: 0   Comments: 0

Question Number 161280    Answers: 1   Comments: 0

if x;y;z>0 and (1/(1+x)) + (1/(1+y)) + (1/(1+z)) = 1 then prove that: x + y + z ≥ (3/4) xyz

$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}}\:=\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{xyz} \\ $$

  Pg 572      Pg 573      Pg 574      Pg 575      Pg 576      Pg 577      Pg 578      Pg 579      Pg 580      Pg 581   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com