Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 577
Question Number 161391 Answers: 0 Comments: 4
$$\:\:{f}^{\:\mathrm{3}} \left({x}\right)+{x}^{\mathrm{2}} \:{f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1} \\ $$$$\:\forall{x}\in\mathbb{R}\: \\ $$
Question Number 161387 Answers: 0 Comments: 0
$$\:{sin}\sqrt{\mathrm{1}+\pi^{\mathrm{2}} {n}^{\mathrm{2}} }\:\sim\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}\pi{n}}\:\:? \\ $$
Question Number 161386 Answers: 0 Comments: 0
Question Number 161378 Answers: 0 Comments: 0
$${determine},\:{pour}\:{tout}\:\alpha\in\mathbb{R},\:\:{la}\:{nature} \\ $$$$\:{de}\:{la}\:{serie}\:{de}\:{terme}\:{general} \\ $$$${U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left({k}^{\mathrm{2}} +\left({n}−{k}\right)^{\mathrm{2}} \right)^{\alpha} } \\ $$$${besoin}\:{d}'{aide}\:{svp} \\ $$$${please}\:{help}\:{me} \\ $$
Question Number 161377 Answers: 3 Comments: 2
$${please}\:{calculate}\:{A}\:{and}\:\:{B}. \\ $$$$ \\ $$$${A}\:=\:\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{9}}\right)\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{16}}\right)...\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{084}\:\mathrm{441}}\right)\:\:\left({and}\:\mathrm{2021}^{\mathrm{2}\:} =\:\mathrm{4084441}\:\right) \\ $$$${B}\:=\:\left(\mathrm{1}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} \:−\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{4}^{\mathrm{2}} \right)\:+\:\left(\:\mathrm{5}^{\mathrm{2}} \:−\:\mathrm{6}^{\mathrm{2}} \:−\mathrm{7}^{\mathrm{2}} \:+\mathrm{8}^{\mathrm{2}} \right)\:+\left(\mathrm{9}^{\mathrm{2}} \:−\mathrm{10}^{\mathrm{2}} \:−\mathrm{11}^{\mathrm{2}} \:+\mathrm{12}^{\mathrm{2}} \right)+...\:+\left(\mathrm{2021}^{\mathrm{2}} \:−\mathrm{2022}^{\mathrm{2}} \:−\mathrm{2023}^{\mathrm{2}} \:+\mathrm{2024}^{\mathrm{2}\:} \right) \\ $$
Question Number 161381 Answers: 1 Comments: 0
$$\int\:\frac{{dy}}{\:\sqrt{{ae}^{{y}} +\mathrm{1}}} \\ $$
Question Number 161371 Answers: 0 Comments: 0
$$\:\mathrm{1}.{The}\:{Trapejoidal}\:{Rule} \\ $$$$\int_{{x}_{{o}} } ^{{x}_{{o}} +{nh}} {ydx}=\frac{{h}}{\mathrm{2}}\left[\left({y}_{{o}} +{y}_{{n}} \right)+\mathrm{2}\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} +{y}_{\mathrm{3}} ....\right]\right. \\ $$
Question Number 161369 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{D}{etermine}\:{the}\:{value}\:{of}\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:{proposition}\:.\:\left(\:\:\mathrm{T}{rue}\:\:{or}\:\:\mathrm{F}{alse}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\exists\:{x}\:\in\:\mathbb{R}\:;\:\:\begin{vmatrix}{\:\mathrm{1}+\mathrm{2}{x}}&{\:\mathrm{2}{x}}&{\mathrm{2}{x}}\\{\:\:\mathrm{2}{x}}&{\:\mathrm{1}+\mathrm{2}{x}}&{\:\mathrm{2}{x}\:}\\{\:\:\mathrm{2}{x}}&{\:\mathrm{2}{x}}&{\mathrm{1}\:+\mathrm{2}{x}}\end{vmatrix}=\:{x}^{\:\mathrm{3}} +\:\mathrm{8}{x}−\mathrm{2}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$$$\:\:\: \\ $$
Question Number 161366 Answers: 2 Comments: 0
$$\left[{similar}\:{question}\:{reposted}\right] \\ $$$${if}\:{a}+\frac{\mathrm{3}}{{b}}={b}+\frac{\mathrm{3}}{{c}}={c}+\frac{\mathrm{3}}{{a}}\:{with}\:{a}\neq{b}\neq{c} \\ $$$${and}\:{a},{b},{c}\:\in\:\mathbb{R}.\:{find}\:\left({abc}\right)^{\mathrm{2}} =? \\ $$
Question Number 161362 Answers: 0 Comments: 1
$$\:\mathrm{log}\:_{\sqrt{\frac{{x}}{\mathrm{3}}}} \left(\mathrm{3}{x}−\mathrm{54}\right)^{\mathrm{log}\:_{\mathrm{3}} \left({x}\right)} \:=\:\mathrm{18}−\mathrm{3log}\:_{\frac{{x}}{\mathrm{3}}} \left({x}^{\mathrm{2}} \right) \\ $$$$\:{x}=? \\ $$
Question Number 161361 Answers: 0 Comments: 1
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}\:+\sqrt[{{h}}]{\mathrm{1}+\mathrm{2}{x}}−\mathrm{2}}{{x}}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\: \\ $$$$\:\:{h}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{9}}\left({h}+\mathrm{7}\right)=? \\ $$
Question Number 161356 Answers: 1 Comments: 2
$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0} \\ $$$$ \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\left(\frac{{b}−{c}}{{a}}\:+\:\frac{{c}−{a}}{{b}}\:+\:\frac{{a}−{b}}{{c}}\right)\left(\frac{{a}}{{b}−{c}}\:+\:\frac{{b}}{{c}−{a}}\:+\:\frac{{c}}{{a}−{b}}\right)\:. \\ $$
Question Number 161353 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{2n}\:+\:\mathrm{1}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{dxdy}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)^{\boldsymbol{\mathrm{n}}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Question Number 161367 Answers: 1 Comments: 1
Question Number 161346 Answers: 0 Comments: 0
Question Number 161342 Answers: 2 Comments: 0
$$\:\:\mathrm{2log}\:_{\mathrm{x}} \left(\mathrm{3}\right)\:\mathrm{log}\:_{\mathrm{3x}} \left(\mathrm{3}\right)=\mathrm{log}\:_{\mathrm{9}\sqrt{\mathrm{x}}} \left(\mathrm{3}\right) \\ $$$$\:\mathrm{x}=? \\ $$
Question Number 161338 Answers: 1 Comments: 1
Question Number 161337 Answers: 0 Comments: 1
$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\mathrm{p}+\mathrm{x}\right)−\mathrm{cos}\:\left(\mathrm{p}+\mathrm{2x}\right)−\mathrm{cos}\:\mathrm{p}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\mathrm{q}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\mathrm{q}\right)+\mathrm{tan}\:\mathrm{q}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$
Question Number 161335 Answers: 0 Comments: 1
Question Number 161331 Answers: 0 Comments: 0
Question Number 161329 Answers: 0 Comments: 0
$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$
Question Number 161326 Answers: 0 Comments: 0
Question Number 161323 Answers: 1 Comments: 3
$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\begin{pmatrix}{\:\:−{n}\:}\\{\:\:\:\:\:{k}}\end{pmatrix}\:\overset{?} {=}\:\left(−\mathrm{1}\right)^{\:{k}} \:\begin{pmatrix}{\:{n}\:+{k}\:−\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$\:\:\:{example}\::\:\:\begin{pmatrix}{\:−\mathrm{5}}\\{\:\:\:\mathrm{4}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\mathrm{8}}\\{\:\:\mathrm{4}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 161322 Answers: 1 Comments: 4
Question Number 161316 Answers: 1 Comments: 0
$$\mathrm{Three}\:\mathrm{quarters}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number}\:\mathrm{added}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{and}\:\mathrm{a}\:\mathrm{half}\:\mathrm{of}\:\mathrm{that}\:\mathrm{number}\:\mathrm{gives}\: \\ $$$$\mathrm{13}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{number} \\ $$$$ \\ $$
Question Number 161311 Answers: 2 Comments: 0
$${Differentiate}\:{y}=\mathrm{sin}\:{xy} \\ $$
Pg 572 Pg 573 Pg 574 Pg 575 Pg 576 Pg 577 Pg 578 Pg 579 Pg 580 Pg 581
Terms of Service
Privacy Policy
Contact: info@tinkutara.com