Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 577
Question Number 161362 Answers: 0 Comments: 1
$$\:\mathrm{log}\:_{\sqrt{\frac{{x}}{\mathrm{3}}}} \left(\mathrm{3}{x}−\mathrm{54}\right)^{\mathrm{log}\:_{\mathrm{3}} \left({x}\right)} \:=\:\mathrm{18}−\mathrm{3log}\:_{\frac{{x}}{\mathrm{3}}} \left({x}^{\mathrm{2}} \right) \\ $$$$\:{x}=? \\ $$
Question Number 161361 Answers: 0 Comments: 1
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}\:+\sqrt[{{h}}]{\mathrm{1}+\mathrm{2}{x}}−\mathrm{2}}{{x}}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\: \\ $$$$\:\:{h}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{9}}\left({h}+\mathrm{7}\right)=? \\ $$
Question Number 161356 Answers: 1 Comments: 2
$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0} \\ $$$$ \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\left(\frac{{b}−{c}}{{a}}\:+\:\frac{{c}−{a}}{{b}}\:+\:\frac{{a}−{b}}{{c}}\right)\left(\frac{{a}}{{b}−{c}}\:+\:\frac{{b}}{{c}−{a}}\:+\:\frac{{c}}{{a}−{b}}\right)\:. \\ $$
Question Number 161353 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{2n}\:+\:\mathrm{1}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{dxdy}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)^{\boldsymbol{\mathrm{n}}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Question Number 161367 Answers: 1 Comments: 1
Question Number 161346 Answers: 0 Comments: 0
Question Number 161342 Answers: 2 Comments: 0
$$\:\:\mathrm{2log}\:_{\mathrm{x}} \left(\mathrm{3}\right)\:\mathrm{log}\:_{\mathrm{3x}} \left(\mathrm{3}\right)=\mathrm{log}\:_{\mathrm{9}\sqrt{\mathrm{x}}} \left(\mathrm{3}\right) \\ $$$$\:\mathrm{x}=? \\ $$
Question Number 161338 Answers: 1 Comments: 1
Question Number 161337 Answers: 0 Comments: 1
$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\mathrm{p}+\mathrm{x}\right)−\mathrm{cos}\:\left(\mathrm{p}+\mathrm{2x}\right)−\mathrm{cos}\:\mathrm{p}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\mathrm{q}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\mathrm{q}\right)+\mathrm{tan}\:\mathrm{q}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$
Question Number 161335 Answers: 0 Comments: 1
Question Number 161331 Answers: 0 Comments: 0
Question Number 161329 Answers: 0 Comments: 0
$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$
Question Number 161326 Answers: 0 Comments: 0
Question Number 161323 Answers: 1 Comments: 3
$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\begin{pmatrix}{\:\:−{n}\:}\\{\:\:\:\:\:{k}}\end{pmatrix}\:\overset{?} {=}\:\left(−\mathrm{1}\right)^{\:{k}} \:\begin{pmatrix}{\:{n}\:+{k}\:−\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$\:\:\:{example}\::\:\:\begin{pmatrix}{\:−\mathrm{5}}\\{\:\:\:\mathrm{4}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\mathrm{8}}\\{\:\:\mathrm{4}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 161322 Answers: 1 Comments: 4
Question Number 161316 Answers: 1 Comments: 0
$$\mathrm{Three}\:\mathrm{quarters}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number}\:\mathrm{added}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{and}\:\mathrm{a}\:\mathrm{half}\:\mathrm{of}\:\mathrm{that}\:\mathrm{number}\:\mathrm{gives}\: \\ $$$$\mathrm{13}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{number} \\ $$$$ \\ $$
Question Number 161311 Answers: 2 Comments: 0
$${Differentiate}\:{y}=\mathrm{sin}\:{xy} \\ $$
Question Number 161296 Answers: 1 Comments: 0
Question Number 161295 Answers: 0 Comments: 2
$${prove}\:{that}:{x}^{\mathrm{8}} +{x}^{\mathrm{6}} −{x}^{\mathrm{3}} −{x}+\mathrm{1}>\mathrm{0},{x}\in{R} \\ $$
Question Number 161294 Answers: 1 Comments: 0
$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 161285 Answers: 5 Comments: 0
$$\left(\mathrm{1}\right)\:\int\:\frac{{dx}}{\mathrm{1}−\mathrm{2cos}\:{x}} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:{dx} \\ $$$$\left(\mathrm{3}\right)\:\int\:\frac{{dx}}{\mathrm{cos}\:\mathrm{2}{x}−\mathrm{sin}\:{x}} \\ $$
Question Number 161284 Answers: 0 Comments: 0
Question Number 161319 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}−\mathrm{sin}\:{x}}=? \\ $$
Question Number 161282 Answers: 1 Comments: 0
Question Number 161281 Answers: 0 Comments: 0
Question Number 161280 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}}\:=\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{xyz} \\ $$
Pg 572 Pg 573 Pg 574 Pg 575 Pg 576 Pg 577 Pg 578 Pg 579 Pg 580 Pg 581
Terms of Service
Privacy Policy
Contact: info@tinkutara.com