Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 577
Question Number 161000 Answers: 0 Comments: 1
$$\:\:\sqrt{\mathrm{1}−\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}}}\:+\:\mid\mathrm{x}−\mathrm{3}\mid\:\geqslant\:\mathrm{0}\: \\ $$
Question Number 160998 Answers: 0 Comments: 0
Question Number 160995 Answers: 0 Comments: 1
$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{sin}\:\mathrm{2x}−\mathrm{2tan}\:\mathrm{x}\right)^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{3}} }{\mathrm{tan}\:^{\mathrm{7}} \mathrm{6x}\:+\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}}=? \\ $$
Question Number 160993 Answers: 4 Comments: 0
Question Number 160989 Answers: 0 Comments: 0
Question Number 160988 Answers: 0 Comments: 0
Question Number 160987 Answers: 1 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\: \\ $$$$\:\:\:\:\:\:\mathrm{log}\:_{\mathrm{log}\:_{\mathrm{6}} \left(\mathrm{x}−\mathrm{1}\right)} \left(\mathrm{64}\right)\:=\:\mathrm{6}\: \\ $$
Question Number 160982 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(−{ln}\:\left({x}\right)\right)}{\mathrm{1}+{x}}\:{dx}\:\overset{?} {=}\frac{−\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$
Question Number 160981 Answers: 0 Comments: 1
Question Number 160980 Answers: 2 Comments: 0
$$\:\mathrm{How}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{50}\:\mathrm{people} \\ $$$$\:\mathrm{be}\:\mathrm{divided}\:\mathrm{into}\:\mathrm{3}\:\mathrm{groups},\:\mathrm{so} \\ $$$$\:\mathrm{that}\:\mathrm{each}\:\mathrm{group}\:\mathrm{contains}\:\mathrm{members} \\ $$$$\:\mathrm{equal}\:\mathrm{to}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}? \\ $$
Question Number 160979 Answers: 1 Comments: 0
$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}}=???\:\:\: \\ $$$$\boldsymbol{\mathrm{n}}\geqslant\mathrm{1} \\ $$
Question Number 160976 Answers: 2 Comments: 0
Question Number 160970 Answers: 1 Comments: 0
$${there}\:{are}\:{even}\:{number}\:{divided}\:{all}\:{odd} \\ $$$${number}\:{what}\:{is}\:{the}\:{number}\:? \\ $$
Question Number 160969 Answers: 1 Comments: 0
$$\int_{−\mathrm{2}} ^{\:\mathrm{2}} {x}^{\mathrm{3}} {cos}\left(\frac{{x}}{\mathrm{2}}\right)\:\sqrt{\mathrm{4}−{x}^{\mathrm{2}} }\:{dx} \\ $$
Question Number 160968 Answers: 1 Comments: 0
Question Number 160967 Answers: 0 Comments: 0
Question Number 161015 Answers: 2 Comments: 1
Question Number 161014 Answers: 0 Comments: 0
Question Number 160953 Answers: 1 Comments: 0
$$\int_{{o}} ^{+{oo}} \:\frac{{tlnt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\:\:\: \\ $$$${etudier}\:{la}\:{convergence} \\ $$
Question Number 160950 Answers: 1 Comments: 0
Question Number 160949 Answers: 0 Comments: 0
Question Number 160948 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{1}\centerdot\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}\centerdot\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{6}}+...+\frac{\mathrm{1}}{\mathrm{39}\centerdot\mathrm{40}}=? \\ $$
Question Number 160939 Answers: 2 Comments: 1
$${log}\underset{{ab}} {{x}}=?\:\:\:\:\:\:{if}\:\:{log}\underset{{a}} {{x}}=\mathrm{30}\:\:{andlog}\underset{{b}} {{x}}=\mathrm{70} \\ $$
Question Number 160938 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\left(\frac{\pi}{\mathrm{cos}\:\mathrm{x}}\:−\mathrm{2x}\:\mathrm{tan}\:\mathrm{x}\:\right)=? \\ $$
Question Number 160937 Answers: 1 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\:\mathrm{sin}\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\:\right)=? \\ $$
Question Number 160933 Answers: 1 Comments: 0
$$\:{In}\:{the}\:{given}\:{equation}\:{below}\:,\:{applying} \\ $$$${the}\:{formula}\:{for}\:{the}\:{derivative}\:{of} \\ $$$$\:{inverse}\:{trigonometric}\:{functions}\:, \\ $$$$\:{what}\:{is}\:{the}\:''{u}\:''\:{from}\:{the}\:{given}\:{function}. \\ $$$$\:{y}\:=\:\mathrm{cosec}^{−\mathrm{1}} \left[\:\mathrm{sin}\:\left(\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right)\right] \\ $$
Pg 572 Pg 573 Pg 574 Pg 575 Pg 576 Pg 577 Pg 578 Pg 579 Pg 580 Pg 581
Terms of Service
Privacy Policy
Contact: info@tinkutara.com