Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 577

Question Number 161335    Answers: 0   Comments: 1

Question Number 161331    Answers: 0   Comments: 0

Question Number 161329    Answers: 0   Comments: 0

∫_1 ^( 2) ((tan^(−1) (x−1)log(x))/x)dx

$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$

Question Number 161326    Answers: 0   Comments: 0

Question Number 161323    Answers: 1   Comments: 3

prove ((( −n )),(( k)) ) =^? (−1)^( k) ((( n +k −1)),(( k)) ) example : ((( −5)),(( 4)) ) = ((( 8)),(( 4)) )

$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\begin{pmatrix}{\:\:−{n}\:}\\{\:\:\:\:\:{k}}\end{pmatrix}\:\overset{?} {=}\:\left(−\mathrm{1}\right)^{\:{k}} \:\begin{pmatrix}{\:{n}\:+{k}\:−\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:{k}}\end{pmatrix} \\ $$$$\:\:\:{example}\::\:\:\begin{pmatrix}{\:−\mathrm{5}}\\{\:\:\:\mathrm{4}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\mathrm{8}}\\{\:\:\mathrm{4}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 161322    Answers: 1   Comments: 4

Question Number 161316    Answers: 1   Comments: 0

Three quarters of a number added to two and a half of that number gives 13. find the number

$$\mathrm{Three}\:\mathrm{quarters}\:\mathrm{of}\:\mathrm{a}\:\mathrm{number}\:\mathrm{added}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{and}\:\mathrm{a}\:\mathrm{half}\:\mathrm{of}\:\mathrm{that}\:\mathrm{number}\:\mathrm{gives}\: \\ $$$$\mathrm{13}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{number} \\ $$$$ \\ $$

Question Number 161311    Answers: 2   Comments: 0

Differentiate y=sin xy

$${Differentiate}\:{y}=\mathrm{sin}\:{xy} \\ $$

Question Number 161296    Answers: 1   Comments: 0

Question Number 161295    Answers: 0   Comments: 2

prove that:x^8 +x^6 −x^3 −x+1>0,x∈R

$${prove}\:{that}:{x}^{\mathrm{8}} +{x}^{\mathrm{6}} −{x}^{\mathrm{3}} −{x}+\mathrm{1}>\mathrm{0},{x}\in{R} \\ $$

Question Number 161294    Answers: 1   Comments: 0

∫_(−2) ^2 (x^3 cos((x/2))+(1/2))(√(4−x^2 ))dx

$$\int_{−\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{3}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)\sqrt{\mathrm{4}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 161285    Answers: 5   Comments: 0

(1) ∫ (dx/(1−2cos x)) (2) ∫ ((sin 2x)/(sin x−sin^2 2x)) dx (3) ∫ (dx/(cos 2x−sin x))

$$\left(\mathrm{1}\right)\:\int\:\frac{{dx}}{\mathrm{1}−\mathrm{2cos}\:{x}} \\ $$$$\left(\mathrm{2}\right)\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{sin}\:{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:{dx} \\ $$$$\left(\mathrm{3}\right)\:\int\:\frac{{dx}}{\mathrm{cos}\:\mathrm{2}{x}−\mathrm{sin}\:{x}} \\ $$

Question Number 161284    Answers: 0   Comments: 0

Question Number 161319    Answers: 1   Comments: 0

lim_(x→(π/2)) ((cos x)/( ((sin x+cos x))^(1/3) −sin x))=?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}−\mathrm{sin}\:{x}}=? \\ $$

Question Number 161282    Answers: 1   Comments: 0

Question Number 161281    Answers: 0   Comments: 0

Question Number 161280    Answers: 1   Comments: 0

if x;y;z>0 and (1/(1+x)) + (1/(1+y)) + (1/(1+z)) = 1 then prove that: x + y + z ≥ (3/4) xyz

$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{z}}\:=\:\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{xyz} \\ $$

Question Number 161272    Answers: 0   Comments: 0

Solve the differential systeme (Σ) below: (Σ) { ((x^. (t)=x(t)+2y(t)+t)),((y^. (t)=−4x(t)−3y(t))) :}

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{systeme}\:\left(\Sigma\right)\:\mathrm{below}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\Sigma\right)\begin{cases}{\overset{.} {{x}}\left({t}\right)={x}\left({t}\right)+\mathrm{2}{y}\left({t}\right)+{t}}\\{\overset{.} {{y}}\left({t}\right)=−\mathrm{4}{x}\left({t}\right)−\mathrm{3}{y}\left({t}\right)}\end{cases}\: \\ $$

Question Number 161265    Answers: 1   Comments: 2

Question Number 161257    Answers: 2   Comments: 1

Question Number 161256    Answers: 1   Comments: 0

Given f(x)=f(x+2), ∀x∈R If ∫_0 ^2 f(x)dx= p then ∫_0 ^(2020) f(x+2a)dx=? for a∈Z^+

$$\:{Given}\:{f}\left({x}\right)={f}\left({x}+\mathrm{2}\right),\:\forall{x}\in\mathbb{R} \\ $$$$\:{If}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}{f}\left({x}\right){dx}=\:{p}\:{then}\:\underset{\mathrm{0}} {\overset{\mathrm{2020}} {\int}}{f}\left({x}+\mathrm{2}{a}\right){dx}=? \\ $$$$\:{for}\:{a}\in\mathbb{Z}^{+} \\ $$

Question Number 161254    Answers: 0   Comments: 1

((4sin (((2π)/7))+sec ((π/(14))))/(cot ((π/7))))=?

$$\:\frac{\mathrm{4sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)+\mathrm{sec}\:\left(\frac{\pi}{\mathrm{14}}\right)}{\mathrm{cot}\:\left(\frac{\pi}{\mathrm{7}}\right)}=? \\ $$

Question Number 161251    Answers: 0   Comments: 0

Question Number 161248    Answers: 1   Comments: 0

lim_(x→0) (((1+sin^3 x)^4 −(1+tan^3 x)^4 )/x^5 ) =?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{sin}\:^{\mathrm{3}} {x}\right)^{\mathrm{4}} −\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{3}} {x}\right)^{\mathrm{4}} }{{x}^{\mathrm{5}} }\:=?\: \\ $$

Question Number 161242    Answers: 1   Comments: 0

x ; y ; z < 0 (x^3 /( (√(yz)))) = -3 ; (y^3 /( (√(xz)))) = -6 ; (z^3 /( (√(xy)))) = -8 find x∙y∙z = ?

$$\mathrm{x}\:;\:\mathrm{y}\:;\:\mathrm{z}\:<\:\mathrm{0} \\ $$$$\frac{\mathrm{x}^{\mathrm{3}} }{\:\sqrt{\mathrm{yz}}}\:=\:-\mathrm{3}\:\:;\:\:\frac{\mathrm{y}^{\mathrm{3}} }{\:\sqrt{\mathrm{xz}}}\:=\:-\mathrm{6}\:\:;\:\:\frac{\mathrm{z}^{\mathrm{3}} }{\:\sqrt{\mathrm{xy}}}\:=\:-\mathrm{8} \\ $$$$\mathrm{find}\:\:\mathrm{x}\centerdot\mathrm{y}\centerdot\mathrm{z}\:=\:? \\ $$

Question Number 161241    Answers: 2   Comments: 0

  Pg 572      Pg 573      Pg 574      Pg 575      Pg 576      Pg 577      Pg 578      Pg 579      Pg 580      Pg 581   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com