Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 570

Question Number 152834    Answers: 0   Comments: 0

Question Number 152829    Answers: 2   Comments: 0

Question Number 152828    Answers: 1   Comments: 0

∫_( 1) ^( ∞) (((√x) ln x)/(x^2 +x+1)) dx = ?

$$\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\sqrt{\mathrm{x}}\:\mathrm{ln}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$

Question Number 152827    Answers: 1   Comments: 0

Question Number 152826    Answers: 1   Comments: 0

An electric current passes through two voltmeters in series containing copper sulphate (CuSO₄) and silver nitrate (AgNO₃) respectively. What is the mass of silver deposited in a given time, if the mass of copper deposited in that time is 1g. (Cu = 63 , Ag = 108 valency of Cu is 2 and valency of Ag is 1).

An electric current passes through two voltmeters in series containing copper sulphate (CuSO₄) and silver nitrate (AgNO₃) respectively. What is the mass of silver deposited in a given time, if the mass of copper deposited in that time is 1g. (Cu = 63 , Ag = 108 valency of Cu is 2 and valency of Ag is 1).

Question Number 152817    Answers: 4   Comments: 0

Find the coefficient of 1.x^(20 ) in (1−x+x^2 )^(20) 2.x^4 in (1+x+x^2 +x^3 )_ ^(11) please,help me

$$ \\ $$$${Find}\:{the}\:{coefficient}\:{of} \\ $$$$\mathrm{1}.{x}^{\mathrm{20}\:} {in}\:\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)^{\mathrm{20}} \\ $$$$ \\ $$$$\mathrm{2}.{x}^{\mathrm{4}} \:{in}\:\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} \right)_{} ^{\mathrm{11}} \\ $$$${please},{help}\:{me} \\ $$

Question Number 152805    Answers: 2   Comments: 0

Question Number 152801    Answers: 0   Comments: 3

resouds ∣1−x∣y′+xy=x

$${resouds} \\ $$$$\mid\mathrm{1}−{x}\mid{y}'+{xy}={x} \\ $$

Question Number 152799    Answers: 1   Comments: 1

Given that f○g = (x^2 /(2x^2 − x + 4)) and g(x) = (x/(x − 2)), find f(x).

$$\:\:\mathrm{Given}\:\mathrm{that}\:{f}\circ{g}\:=\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{2}} \:−\:{x}\:+\:\mathrm{4}}\:\:\mathrm{and} \\ $$$$\:\:{g}\left({x}\right)\:=\:\frac{{x}}{{x}\:−\:\mathrm{2}},\:\mathrm{find}\:{f}\left({x}\right). \\ $$

Question Number 152795    Answers: 1   Comments: 0

𝛗=∫_0 ^( ∞) ((sin(x ))/x)(((a^( 2) +cos^( 2) (x))/(b^( 2) + cos^( 2) (x ))))dx=?

$$ \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\:\right)}{{x}}\left(\frac{{a}^{\:\mathrm{2}} +{cos}^{\:\mathrm{2}} \left({x}\right)}{{b}^{\:\mathrm{2}} +\:{cos}^{\:\mathrm{2}} \left({x}\:\right)}\right){dx}=? \\ $$$$ \\ $$

Question Number 152779    Answers: 0   Comments: 4

Question Number 152778    Answers: 0   Comments: 0

Solve .......... Ω := ∫_0 ^( 1) x. sin( ln (x ))dx =^? ((−1)/( 5)) solution.... Ω :=^(i.b.p) [ (x^( 2) /2) . sin(ln(x))]_0 ^( 1) −(1/2)∫_0 ^( 1) x.cos( ln (x ))dx := ((−1)/2) ∫_0 ^( 1) x. cos (ln (x ))dx :=^(i.b.p) ((−1)/2) {[ (x^( 2) /2) cos (ln(x ))]_0 ^1 +(1/2) ∫x. sin(ln(x ))dx} := ((−1)/4) −(1/4) Ω (5/4) Ω = ((−1)/4) ⇒ Ω := ((−1)/( 5)) .........■ m.n .................................

$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Solve}\:.......... \\ $$$$\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\:{sin}\left(\:{ln}\:\left({x}\:\right)\right){dx}\:\overset{?} {=}\:\frac{−\mathrm{1}}{\:\:\:\mathrm{5}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{solution}.... \\ $$$$\:\:\:\:\:\Omega\::\overset{{i}.{b}.{p}} {=}\left[\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{2}}\:.\:{sin}\left({ln}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}.{cos}\left(\:{ln}\:\left({x}\:\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\frac{−\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\:{cos}\:\left({ln}\:\left({x}\:\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\::\overset{{i}.{b}.{p}} {=}\:\frac{−\mathrm{1}}{\mathrm{2}}\:\left\{\left[\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{2}}\:{cos}\:\left({ln}\left({x}\:\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\:\int{x}.\:{sin}\left({ln}\left({x}\:\right)\right){dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::=\:\frac{−\mathrm{1}}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\Omega \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{4}}\:\Omega\:=\:\frac{−\mathrm{1}}{\mathrm{4}}\:\:\Rightarrow\:\:\:\Omega\::=\:\frac{−\mathrm{1}}{\:\mathrm{5}}\:\:.........\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:.................................\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 152772    Answers: 1   Comments: 2

if ((((x−2))^(1/3) +2))^(1/3) + ((2−((x−2))^(1/3) ))^(1/3) =2 then find the value of (√(198x^4 −868x^3 −229x^2 +200x))

$$\boldsymbol{{if}}\:\:\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{2}}+\mathrm{2}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{2}}}=\mathrm{2} \\ $$$$\:\boldsymbol{\mathrm{then}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\sqrt{\mathrm{198}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{868}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{229}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{200}\boldsymbol{\mathrm{x}}} \\ $$

Question Number 152771    Answers: 0   Comments: 2

If f(z) = z sin(z) + ∣z∣^2 , verify if f(z) satisfy cauchy rieman condition

$$\mathrm{If}\:\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:\:\:=\:\:\:\:\mathrm{z}\:\mathrm{sin}\left(\mathrm{z}\right)\:\:\:+\:\:\:\mid\mathrm{z}\mid^{\mathrm{2}} ,\:\:\:\:\:\:\:\mathrm{verify}\:\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:\:\:\mathrm{satisfy}\:\mathrm{cauchy}\:\mathrm{rieman} \\ $$$$\mathrm{condition} \\ $$

Question Number 152770    Answers: 0   Comments: 1

How to prove that a<b<c ⇒ a+b > c which a,b,c are sides of a triangle ?

$${How}\:\:{to}\:\:{prove}\:\:{that} \\ $$$$\:\:{a}<{b}<{c}\:\:\Rightarrow\:\:{a}+{b}\:>\:{c} \\ $$$${which}\:\:{a},{b},{c}\:\:{are}\:\:{sides}\:\:{of}\:\:{a}\:\:{triangle}\:? \\ $$

Question Number 152769    Answers: 1   Comments: 1

Question Number 152768    Answers: 0   Comments: 0

lim_(x→∞) (((5x+1)/(−5x+2)))^(1+2x) =?

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5x}+\mathrm{1}}{−\mathrm{5x}+\mathrm{2}}\right)^{\mathrm{1}+\mathrm{2x}} =? \\ $$

Question Number 152764    Answers: 3   Comments: 2

Question Number 152761    Answers: 0   Comments: 0

prove that: S := Σ_(n=1) ^∞ ((( 1)/(sinh (2^( n) .x)))) =^? (( 2)/(e^( 2x) −1)) m.n...

$$ \\ $$$$\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\mathrm{S}\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\:\mathrm{1}}{{sinh}\:\left(\mathrm{2}^{\:{n}} .{x}\right)}\right)\:\overset{?} {=}\frac{\:\mathrm{2}}{{e}^{\:\mathrm{2}{x}} −\mathrm{1}} \\ $$$$\:{m}.{n}... \\ $$

Question Number 152757    Answers: 1   Comments: 0

Find all complex number z such that (3z+1)(4z+1)(6z+1)(12z+1)=2

$${Find}\:{all}\:{complex}\:{number}\:{z}\:{such} \\ $$$${that}\:\left(\mathrm{3}{z}+\mathrm{1}\right)\left(\mathrm{4}{z}+\mathrm{1}\right)\left(\mathrm{6}{z}+\mathrm{1}\right)\left(\mathrm{12}{z}+\mathrm{1}\right)=\mathrm{2} \\ $$

Question Number 152793    Answers: 0   Comments: 2

∫!dx i found this question somewhere and i dont know even know how to approach it.

$$\:\int!\boldsymbol{{dx}} \\ $$$$ \\ $$$$\:\boldsymbol{{i}}\:\boldsymbol{{found}}\:\:\boldsymbol{{this}}\:\boldsymbol{{question}}\:\boldsymbol{{somewhere}} \\ $$$$\:\boldsymbol{{and}}\:\boldsymbol{{i}}\:\boldsymbol{{dont}}\:\boldsymbol{{know}}\:\boldsymbol{{even}}\:\boldsymbol{{know}}\:\boldsymbol{{how}}\:\boldsymbol{{to}} \\ $$$$\boldsymbol{{approach}}\:\boldsymbol{{it}}. \\ $$

Question Number 152753    Answers: 2   Comments: 12

Determine all triplets (a;b;c) of positive integers which satisfy: (1/a) + (1/b) + (1/c) = (1/2)

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triplets}\:\left(\mathrm{a};\mathrm{b};\mathrm{c}\right)\:\mathrm{of}\:\mathrm{positive} \\ $$$$\mathrm{integers}\:\mathrm{which}\:\mathrm{satisfy}: \\ $$$$\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 152752    Answers: 0   Comments: 2

Given ((((x−2))^(1/3) +2))^(1/3) +((2−((x+2))^(1/3) ))^(1/3) =2 then (√(198x^4 −868x^3 −229x^2 +200x)) =?

$$\:{Given}\:\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}+\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{2}}}\:=\mathrm{2} \\ $$$${then}\:\sqrt{\mathrm{198}{x}^{\mathrm{4}} −\mathrm{868}{x}^{\mathrm{3}} −\mathrm{229}{x}^{\mathrm{2}} +\mathrm{200}{x}}\:=? \\ $$

Question Number 152751    Answers: 0   Comments: 0

∫_0 ^( ∞) (((cos(2cos(x)+1)+1)^(3/2) )/((ln((√(x^4 +1))−x))^4 )) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left(\mathrm{cos}\left(\mathrm{2cos}\left({x}\right)+\mathrm{1}\right)+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\left(\mathrm{ln}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}−{x}\right)\right)^{\mathrm{4}} }\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 152748    Answers: 1   Comments: 0

Question Number 152730    Answers: 1   Comments: 0

∫_0 ^(π/3) ((tanx)/( (√(2cosx−1))))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{{tanx}}{\:\sqrt{\mathrm{2}{cosx}−\mathrm{1}}}{dx} \\ $$

  Pg 565      Pg 566      Pg 567      Pg 568      Pg 569      Pg 570      Pg 571      Pg 572      Pg 573      Pg 574   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com