Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 570
Question Number 155776 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{x}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{2}\:+\:\left(\mathrm{1}+\mathrm{cot}\boldsymbol{\mathrm{x}}\right)\left(\mathrm{tan}^{\mathrm{3}} \boldsymbol{\mathrm{x}}+\mathrm{cot}^{\mathrm{3}} \boldsymbol{\mathrm{x}}\right)}{\left(\mathrm{1}+\mathrm{tan}\boldsymbol{\mathrm{x}}\right)\left(\mathrm{1}+\mathrm{cot}\boldsymbol{\mathrm{x}}\right)}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Question Number 155710 Answers: 3 Comments: 1
$$\mathrm{li}\underset{{x}−{oo}} {\mathrm{m}}\:\:\:\frac{\mathrm{1}}{{n}\sqrt{{n}}}\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{E}\left(\sqrt{\left.{k}\right)}\right. \\ $$$$ \\ $$
Question Number 155701 Answers: 0 Comments: 3
Question Number 155692 Answers: 1 Comments: 5
Question Number 155686 Answers: 2 Comments: 0
$$\:\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{dx}}{\mathrm{1}+\mathrm{tan}\:{x}}\:=? \\ $$
Question Number 155677 Answers: 1 Comments: 1
Question Number 155674 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\mathrm{monster}\:\mathrm{integral}} \\ $$$$\: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\left(\mathrm{2}{x}\right)+\:\mathrm{cos}\left(\mathrm{3}{x}\right)\right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 155673 Answers: 0 Comments: 0
Question Number 155667 Answers: 0 Comments: 2
Question Number 155657 Answers: 2 Comments: 1
Question Number 155653 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{1}\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{18}\:\Sigma\:\mathrm{ab}\:+\:\mathrm{45}\:\Sigma\:\mathrm{a}^{\mathrm{2}} \mathrm{b}\:\leqslant\:\mathrm{11} \\ $$
Question Number 155650 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt{\frac{\mathrm{x}-\mathrm{a}}{\mathrm{x}-\mathrm{b}}}\:+\:\frac{\mathrm{a}}{\mathrm{x}}\:=\:\sqrt{\frac{\mathrm{x}-\mathrm{b}}{\mathrm{x}-\mathrm{a}}}\:+\:\frac{\mathrm{b}}{\mathrm{x}} \\ $$$$\mathrm{a};\mathrm{b}\in\mathbb{R}\:\:\mathrm{and}\:\:\mathrm{a}\neq\mathrm{b} \\ $$
Question Number 155643 Answers: 0 Comments: 1
Question Number 155642 Answers: 0 Comments: 3
Question Number 155639 Answers: 1 Comments: 4
Question Number 155638 Answers: 1 Comments: 2
Question Number 155631 Answers: 2 Comments: 2
$$\left({x}+\mathrm{3}\left({x}−\mathrm{2}\right)={x}+\mathrm{10}\right. \\ $$
Question Number 155630 Answers: 1 Comments: 0
Question Number 155628 Answers: 1 Comments: 0
Question Number 155625 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{{tanx}}{{x}}\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} =\:? \\ $$
Question Number 155621 Answers: 1 Comments: 0
Question Number 155620 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\underset{\boldsymbol{\mathrm{x}}-\mathrm{1}} {\overset{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} -\boldsymbol{\mathrm{e}}} {\int}}\mathrm{cos}\left(\mathrm{t}^{\mathrm{5}} \right)\mathrm{dt}}{\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:-\:\mathrm{3}}\:=\:? \\ $$
Question Number 155619 Answers: 1 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{49}} }{\mathrm{1}\:+\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{3}} \:...\:\mathrm{x}^{\mathrm{100}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 155618 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y}\in\mathbb{R}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{16}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \:+\:\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\geqslant\:\mathrm{4x}\:+\:\mathrm{36} \\ $$
Question Number 155604 Answers: 1 Comments: 0
Question Number 155594 Answers: 1 Comments: 0
Pg 565 Pg 566 Pg 567 Pg 568 Pg 569 Pg 570 Pg 571 Pg 572 Pg 573 Pg 574
Terms of Service
Privacy Policy
Contact: info@tinkutara.com