Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 569
Question Number 159917 Answers: 0 Comments: 1
Question Number 159915 Answers: 0 Comments: 1
$$\:\:\int_{\mathrm{1}} ^{\mathrm{16}} \:\frac{\sqrt{{x}}}{\mathrm{1}+\sqrt[{\mathrm{4}}]{{x}^{\mathrm{3}} }}\:{dx}\:=? \\ $$
Question Number 159928 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$
Question Number 159911 Answers: 1 Comments: 0
Question Number 159906 Answers: 1 Comments: 0
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{n}} {\underbrace{\mathrm{tan}\:\mathrm{tan}\:\mathrm{tan}\:...\mathrm{tan}\:\mathrm{x}}}−\underset{\mathrm{n}} {\underbrace{\mathrm{sin}\:\mathrm{sin}\:\mathrm{sin}\:...\mathrm{sin}\:\mathrm{x}}}}{\mathrm{x}^{\mathrm{2}} }=? \\ $$
Question Number 159891 Answers: 1 Comments: 0
$$\:\:\:\:{S}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2002}\:} {\sum}}\sqrt{\frac{{k}^{\mathrm{2}} +\mathrm{1}}{{k}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }}\:=? \\ $$
Question Number 159881 Answers: 0 Comments: 0
$${Resolve}\: \\ $$$$\mathrm{1}.\:\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \\ $$$$\mathrm{2}.\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right),\:{u}_{{o}} =\mathrm{1}\: \\ $$$$\mathrm{3}.\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} −{u}_{{n}−\mathrm{2}} +\mathrm{2sin}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right) \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =\mathrm{2} \\ $$
Question Number 159874 Answers: 0 Comments: 3
$$\:\:\:\:{Given}\:{the}\:{curve}\:{y}={x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} −\mathrm{3}{x} \\ $$$$\:{determine}\:{for}\:{which}\:{value}\: \\ $$$$\:{of}\:\alpha\:{the}\:{tangent}\:{to}\:{the}\:{curve} \\ $$$$\:{from}\:{point}\:{P}\left(\alpha,\mathrm{0}\right)\:{is}\:{maximum}. \\ $$
Question Number 159873 Answers: 1 Comments: 0
$${j}'{ai}\:{b}\boldsymbol{{esoin}}\:\boldsymbol{{de}}\:\boldsymbol{{la}}\:\boldsymbol{{version}}\:\boldsymbol{{pc}}\:\boldsymbol{{de}}\:\boldsymbol{{cette}}\:\boldsymbol{{application}} \\ $$$$\boldsymbol{{et}}\:\boldsymbol{{je}}\:\boldsymbol{{veux}}\:\boldsymbol{{savoir}}\:\boldsymbol{{ci}}\:\boldsymbol{{cest}}\:\boldsymbol{{possible}}\:\boldsymbol{{de}}\:\boldsymbol{{transformer}}\:\boldsymbol{{les}}\:\boldsymbol{{documents}}\:.\boldsymbol{{med}}\:\boldsymbol{{en}}\:.\boldsymbol{{pdf}} \\ $$$$ \\ $$
Question Number 159870 Answers: 1 Comments: 0
$$\:\:\int\:\frac{\mathrm{1}−\mathrm{cot}\:^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx}\:=? \\ $$
Question Number 159868 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$\int_{−\infty} ^{+\infty} \delta\left({t}\right){dt}=\mathrm{1} \\ $$$$\delta\left({t}\right)\:{is}\:{dirac}\:{delta}\:{function}\:\left({impluse}\:{function}\right) \\ $$
Question Number 159982 Answers: 1 Comments: 0
$$\left(\mathrm{1}+{bf}\left({x}\right)\right){f}''\left({x}\right)=\frac{{p}}{\lambda{a}} \\ $$$${solve}\:{this}\:{equation}:\:{find}\:\:{f}\left({x}\right) \\ $$
Question Number 159864 Answers: 2 Comments: 0
Question Number 159863 Answers: 1 Comments: 0
$$\mathrm{Dertermine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{2010x}\:-\:\mathrm{xy}\:+\:\mathrm{2012y}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$
Question Number 159860 Answers: 1 Comments: 1
Question Number 159857 Answers: 0 Comments: 0
Question Number 211805 Answers: 0 Comments: 0
Question Number 159854 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {x}.{ln}\left({sin}\left({x}\right)\right){dx}=\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 159852 Answers: 2 Comments: 0
Question Number 159845 Answers: 2 Comments: 1
$$\mathrm{if}\:{q}\:=\:\mathrm{1}−{sin}\theta;\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\left({sec}\theta\:−\:{tan}\theta\right)^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{{q}} \\ $$
Question Number 159844 Answers: 0 Comments: 0
Question Number 159842 Answers: 2 Comments: 4
$$\mathrm{if}\:{p}−\mathrm{5}\:=\:\mathrm{2}\sqrt{\mathrm{6}}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${p}\sqrt{{p}}−\frac{\mathrm{1}}{{p}\sqrt{{p}}}\:=\:\mathrm{22}\sqrt{\mathrm{2}} \\ $$
Question Number 159839 Answers: 1 Comments: 0
$${q}=\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$
Question Number 159837 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2021}{x}^{\mathrm{2}} −\mathrm{6}{x}}\:+\sqrt[{\mathrm{3}}]{\mathrm{1021}{x}^{\mathrm{3}} −\mathrm{5}{x}}\:=? \\ $$
Question Number 159829 Answers: 0 Comments: 2
$$\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{1}\:\: \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}} \\ $$
Question Number 159828 Answers: 0 Comments: 6
Pg 564 Pg 565 Pg 566 Pg 567 Pg 568 Pg 569 Pg 570 Pg 571 Pg 572 Pg 573
Terms of Service
Privacy Policy
Contact: info@tinkutara.com