Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 569

Question Number 159917    Answers: 0   Comments: 1

Question Number 159915    Answers: 0   Comments: 1

∫_1 ^(16) ((√x)/(1+(x^3 )^(1/4) )) dx =?

$$\:\:\int_{\mathrm{1}} ^{\mathrm{16}} \:\frac{\sqrt{{x}}}{\mathrm{1}+\sqrt[{\mathrm{4}}]{{x}^{\mathrm{3}} }}\:{dx}\:=? \\ $$

Question Number 159928    Answers: 1   Comments: 0

$$ \\ $$$$ \\ $$

Question Number 159911    Answers: 1   Comments: 0

Question Number 159906    Answers: 1   Comments: 0

lim_(x→0) ((tan tan tan ...tan x_(n) −sin sin sin ...sin x_(n) )/x^2 )=?

$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{n}} {\underbrace{\mathrm{tan}\:\mathrm{tan}\:\mathrm{tan}\:...\mathrm{tan}\:\mathrm{x}}}−\underset{\mathrm{n}} {\underbrace{\mathrm{sin}\:\mathrm{sin}\:\mathrm{sin}\:...\mathrm{sin}\:\mathrm{x}}}}{\mathrm{x}^{\mathrm{2}} }=? \\ $$

Question Number 159891    Answers: 1   Comments: 0

S=Σ_(k=1) ^(2002 ) (√(((k^2 +1)/k^2 )+(1/((k+1)^2 )))) =?

$$\:\:\:\:{S}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{2002}\:} {\sum}}\sqrt{\frac{{k}^{\mathrm{2}} +\mathrm{1}}{{k}^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }}\:=? \\ $$

Question Number 159881    Answers: 0   Comments: 0

Resolve 1. u_n −3u_(n−1) =12((3/4))^n 2. u_n =2u_(n−1) +5cos (((nΠ)/3)), u_o =1 3. u_n =u_(n−1) −u_(n−2) +2sin (((nΠ)/3)) with u_o =1, u_1 =2

$${Resolve}\: \\ $$$$\mathrm{1}.\:\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \\ $$$$\mathrm{2}.\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right),\:{u}_{{o}} =\mathrm{1}\: \\ $$$$\mathrm{3}.\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} −{u}_{{n}−\mathrm{2}} +\mathrm{2sin}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right) \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =\mathrm{2} \\ $$

Question Number 159874    Answers: 0   Comments: 3

Given the curve y=x^4 +3x^3 −6x^2 −3x determine for which value of α the tangent to the curve from point P(α,0) is maximum.

$$\:\:\:\:{Given}\:{the}\:{curve}\:{y}={x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} −\mathrm{3}{x} \\ $$$$\:{determine}\:{for}\:{which}\:{value}\: \\ $$$$\:{of}\:\alpha\:{the}\:{tangent}\:{to}\:{the}\:{curve} \\ $$$$\:{from}\:{point}\:{P}\left(\alpha,\mathrm{0}\right)\:{is}\:{maximum}. \\ $$

Question Number 159873    Answers: 1   Comments: 0

j′ai besoin de la version pc de cette application et je veux savoir ci cest possible de transformer les documents .med en .pdf

$${j}'{ai}\:{b}\boldsymbol{{esoin}}\:\boldsymbol{{de}}\:\boldsymbol{{la}}\:\boldsymbol{{version}}\:\boldsymbol{{pc}}\:\boldsymbol{{de}}\:\boldsymbol{{cette}}\:\boldsymbol{{application}} \\ $$$$\boldsymbol{{et}}\:\boldsymbol{{je}}\:\boldsymbol{{veux}}\:\boldsymbol{{savoir}}\:\boldsymbol{{ci}}\:\boldsymbol{{cest}}\:\boldsymbol{{possible}}\:\boldsymbol{{de}}\:\boldsymbol{{transformer}}\:\boldsymbol{{les}}\:\boldsymbol{{documents}}\:.\boldsymbol{{med}}\:\boldsymbol{{en}}\:.\boldsymbol{{pdf}} \\ $$$$ \\ $$

Question Number 159870    Answers: 1   Comments: 0

∫ ((1−cot^2 x)/(1+sin x)) dx =?

$$\:\:\int\:\frac{\mathrm{1}−\mathrm{cot}\:^{\mathrm{2}} {x}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx}\:=? \\ $$

Question Number 159868    Answers: 1   Comments: 0

prove that ∫_(−∞) ^(+∞) δ(t)dt=1 δ(t) is dirac delta function (impluse function)

$${prove}\:{that} \\ $$$$\int_{−\infty} ^{+\infty} \delta\left({t}\right){dt}=\mathrm{1} \\ $$$$\delta\left({t}\right)\:{is}\:{dirac}\:{delta}\:{function}\:\left({impluse}\:{function}\right) \\ $$

Question Number 159982    Answers: 1   Comments: 0

(1+bf(x))f′′(x)=(p/(λa)) solve this equation: find f(x)

$$\left(\mathrm{1}+{bf}\left({x}\right)\right){f}''\left({x}\right)=\frac{{p}}{\lambda{a}} \\ $$$${solve}\:{this}\:{equation}:\:{find}\:\:{f}\left({x}\right) \\ $$

Question Number 159864    Answers: 2   Comments: 0

Question Number 159863    Answers: 1   Comments: 0

Dertermine all pairs (x;y) of integers such that 2010x - xy + 2012y + 1 = 0

$$\mathrm{Dertermine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\boldsymbol{\mathrm{x}};\boldsymbol{\mathrm{y}}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{2010x}\:-\:\mathrm{xy}\:+\:\mathrm{2012y}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$

Question Number 159860    Answers: 1   Comments: 1

Question Number 159857    Answers: 0   Comments: 0

Question Number 211805    Answers: 0   Comments: 0

Question Number 159854    Answers: 1   Comments: 0

Ω := ∫_0 ^( (π/4)) x.ln(sin(x))dx= ?

$$ \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {x}.{ln}\left({sin}\left({x}\right)\right){dx}=\:? \\ $$$$ \\ $$$$ \\ $$

Question Number 159852    Answers: 2   Comments: 0

Question Number 159845    Answers: 2   Comments: 1

if q = 1−sinθ; then prove that (secθ − tanθ)^2 = (1/q)

$$\mathrm{if}\:{q}\:=\:\mathrm{1}−{sin}\theta;\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\left({sec}\theta\:−\:{tan}\theta\right)^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{{q}} \\ $$

Question Number 159844    Answers: 0   Comments: 0

Question Number 159842    Answers: 2   Comments: 4

if p−5 = 2(√6) then prove that p(√p)−(1/(p(√p))) = 22(√2)

$$\mathrm{if}\:{p}−\mathrm{5}\:=\:\mathrm{2}\sqrt{\mathrm{6}}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${p}\sqrt{{p}}−\frac{\mathrm{1}}{{p}\sqrt{{p}}}\:=\:\mathrm{22}\sqrt{\mathrm{2}} \\ $$

Question Number 159839    Answers: 1   Comments: 0

q=2(√(2(√2)))

$${q}=\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$

Question Number 159837    Answers: 1   Comments: 0

lim_(x→−∞) (√(2021x^2 −6x)) +((1021x^3 −5x))^(1/3) =?

$$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\sqrt{\mathrm{2021}{x}^{\mathrm{2}} −\mathrm{6}{x}}\:+\sqrt[{\mathrm{3}}]{\mathrm{1021}{x}^{\mathrm{3}} −\mathrm{5}{x}}\:=? \\ $$

Question Number 159829    Answers: 0   Comments: 2

((y/b))^(2/3) +((x/a))^(2/3) =1 find the length of the line

$$\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} =\mathrm{1}\:\: \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{line}} \\ $$

Question Number 159828    Answers: 0   Comments: 6

  Pg 564      Pg 565      Pg 566      Pg 567      Pg 568      Pg 569      Pg 570      Pg 571      Pg 572      Pg 573   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com