Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 568

Question Number 155928    Answers: 1   Comments: 0

Question Number 155927    Answers: 0   Comments: 1

Question Number 155919    Answers: 1   Comments: 0

Question Number 155918    Answers: 0   Comments: 1

Can you evaluate this sum? Σ_(n=1) ^∞ 2^(−n) tan (2^(−n) )

$$\mathrm{Can}\:\mathrm{you}\:\mathrm{evaluate}\:\mathrm{this}\:\mathrm{sum}? \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{2}^{−\mathrm{n}} \mathrm{tan}\:\left(\mathrm{2}^{−\mathrm{n}} \right) \\ $$

Question Number 155914    Answers: 0   Comments: 0

Draw the Newman projection formula for the chair conformation of cyclohexanol

$${D}\mathrm{raw}\:\mathrm{the}\:\mathrm{Newman}\:\mathrm{projection}\:\mathrm{formula} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{chair}\:\mathrm{conformation}\:\:\mathrm{of}\:\mathrm{cyclohexanol} \\ $$

Question Number 155913    Answers: 0   Comments: 0

Question Number 155912    Answers: 0   Comments: 0

Determine the triangle with dimensions a;b;c∈N , a+b+c=even and A=P∈N. With maximum area. We denoted A=area and P=perimetr.

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{dimensions} \\ $$$$\mathrm{a};\mathrm{b};\mathrm{c}\in\mathbb{N}\:,\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{even}\:\:\mathrm{and}\:\:\mathrm{A}=\mathrm{P}\in\mathbb{N}. \\ $$$$\mathrm{With}\:\mathrm{maximum}\:\mathrm{area}.\:\mathrm{We}\:\mathrm{denoted} \\ $$$$\mathrm{A}=\mathrm{area}\:\:\mathrm{and}\:\:\:\mathrm{P}=\mathrm{perimetr}. \\ $$

Question Number 155908    Answers: 0   Comments: 0

Solve for x 3^(x+1) +100=7^(x−1) 3^x +3^x^2 =2^x +4^x^2

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$$\mathrm{3}^{{x}+\mathrm{1}} +\mathrm{100}=\mathrm{7}^{{x}−\mathrm{1}} \\ $$$$\mathrm{3}^{{x}} +\mathrm{3}^{{x}^{\mathrm{2}} } =\mathrm{2}^{{x}} +\mathrm{4}^{{x}^{\mathrm{2}} } \\ $$

Question Number 155910    Answers: 0   Comments: 0

Question Number 159719    Answers: 1   Comments: 0

F(x)= 3cos x + 4sin x , F^((101)) ((π/2))=?

$$\:\:\:\:\:{F}\left({x}\right)=\:\mathrm{3cos}\:{x}\:+\:\mathrm{4sin}\:{x}\:,\:{F}^{\left(\mathrm{101}\right)} \left(\frac{\pi}{\mathrm{2}}\right)=? \\ $$

Question Number 159717    Answers: 0   Comments: 0

Question Number 155897    Answers: 1   Comments: 0

∫ x(arctan x)^2 dx=?

$$\:\int\:\mathrm{x}\left(\mathrm{arctan}\:\mathrm{x}\right)^{\mathrm{2}} \:\mathrm{dx}=? \\ $$

Question Number 155893    Answers: 0   Comments: 0

Two Spheres are charged by +3μC and −3μC respectively.The charges are equally distributed in the serface of the sphere .The distance between two spheres is 100cm . Now if we Connect these two spheres with a conducting wire , a)What will be the potential difference between two ends of that wire? b)Find the amount of current flow in the wire if the resistance of that wire is 100μΩ .

$$\: \\ $$$$\:\:\mathrm{Two}\:\mathrm{Spheres}\:\mathrm{are}\:\mathrm{charged}\:\mathrm{by}\:+\mathrm{3}\mu\mathrm{C}\:\mathrm{and} \\ $$$$−\mathrm{3}\mu\mathrm{C}\:\mathrm{respectively}.\mathrm{The}\:\mathrm{charges}\:\mathrm{are}\: \\ $$$$\:\:\mathrm{equally}\:\mathrm{distributed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{serface}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\:\:\mathrm{sphere}\:.\mathrm{The}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{two}\: \\ $$$$\:\:\mathrm{spheres}\:\mathrm{is}\:\mathrm{100cm}\:.\:\mathrm{Now}\:\mathrm{if}\:\mathrm{we}\:\mathrm{Connect} \\ $$$$\:\:\mathrm{these}\:\mathrm{two}\:\mathrm{spheres}\:\mathrm{with}\:\mathrm{a}\:\mathrm{conducting}\: \\ $$$$\:\:\mathrm{wire}\:, \\ $$$$\left.\:\:\mathrm{a}\right)\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{potential}\:\mathrm{difference} \\ $$$$\:\mathrm{between}\:\mathrm{two}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{that}\:\mathrm{wire}? \\ $$$$\left.\:\mathrm{b}\right)\mathrm{Find}\:\mathrm{the}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{current}\:\mathrm{flow}\:\mathrm{in} \\ $$$$\:\mathrm{the}\:\mathrm{wire}\:\mathrm{if}\:\mathrm{the}\:\mathrm{resistance}\:\mathrm{of}\:\mathrm{that}\:\mathrm{wire}\: \\ $$$$\:\mathrm{is}\:\mathrm{100}\mu\Omega\:. \\ $$$$\: \\ $$

Question Number 155883    Answers: 0   Comments: 1

∫ ((tan^2 x)/(1−tan^2 x)) dx=?

$$\int\:\frac{\mathrm{tan}\:^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} {x}}\:{dx}=? \\ $$

Question Number 155878    Answers: 2   Comments: 0

the equation of : (a +sin(x))(a+cos(x))=a has solution in R hence : a ∈ ?

$$ \\ $$$$\:\:{the}\:{equation}\:{of}\:: \\ $$$$\:\:\:\:\left({a}\:+{sin}\left({x}\right)\right)\left({a}+{cos}\left({x}\right)\right)={a} \\ $$$$\:\:\:\:{has}\:\:{solution}\:{in}\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\:\:{hence}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{a}\:\in\:? \\ $$$$\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 155866    Answers: 1   Comments: 0

Question Number 155863    Answers: 0   Comments: 2

monster integral ∫_0 ^( (π/4)) ln^2 (sin(2x)+ cos(3x)) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\mathrm{monster}\:\mathrm{integral}} \\ $$$$\: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{sin}\left(\mathrm{2}{x}\right)+\:\mathrm{cos}\left(\mathrm{3}{x}\right)\right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 155857    Answers: 1   Comments: 0

1). Find (dy/dx) , if : a). y=(8x−1)(x^2 +4x+7) b). y=(3x^4 −10x+8)(2x^2 +5) 2). Find an equation of the tangen line to the graph of y=(5/(1+x^2 )) at each point a). P(0,5) b). Q(1,(5/2)) 3). Find the coordinat of all point on the graph of : y=x^3 +2x^2 −4x+5 at which the tangen line is: a). horizontal. b). paralel to the line y=2y+8x−5=0 4). Find point P on the graph of y=x^3 such that the tangen line at P has x−intercept 4 5). Find the points at which the graph f(x) and f^′ (x) is intersect , given that a). f(x)=x^3 −x^2 +x+1 b). f(x)=x^2 +2x+1

$$\left.\mathrm{1}\right).\:\:\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:,\:\mathrm{if}\:: \\ $$$$\left.\mathrm{a}\right).\:\:\:\mathrm{y}=\left(\mathrm{8x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{7}\right) \\ $$$$\left.\mathrm{b}\right).\:\:\:\mathrm{y}=\left(\mathrm{3x}^{\mathrm{4}} −\mathrm{10x}+\mathrm{8}\right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{5}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right).\:\:\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangen}\:\mathrm{line} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{y}=\frac{\mathrm{5}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{at}\:\mathrm{each}\:\mathrm{point} \\ $$$$\left.\:\left.\:\:\:\:\:\:\:\:\mathrm{a}\right).\:\mathrm{P}\left(\mathrm{0},\mathrm{5}\right)\:\:\:\:\:\:\:\mathrm{b}\right).\:\mathrm{Q}\left(\mathrm{1},\frac{\mathrm{5}}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{3}\right).\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinat}\:\mathrm{of}\:\mathrm{all}\:\mathrm{point}\:\mathrm{on} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\::\:\mathrm{y}=\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{5}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{tangen}\:\mathrm{line}\:\mathrm{is}: \\ $$$$\left.\:\:\:\:\:\:\:\:\mathrm{a}\right).\:\:\mathrm{horizontal}. \\ $$$$\left.\:\:\:\:\:\:\:\:\mathrm{b}\right).\:\mathrm{paralel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}=\mathrm{2y}+\mathrm{8x}−\mathrm{5}=\mathrm{0} \\ $$$$\left.\mathrm{4}\right).\:\:\mathrm{Find}\:\mathrm{point}\:\mathrm{P}\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{y}=\mathrm{x}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{tangen}\:\mathrm{line}\:\mathrm{at}\:\mathrm{P}\:\mathrm{has} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}−\mathrm{intercept}\:\mathrm{4} \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{points}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\:\mathrm{graph} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{'} \left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{intersect}\:,\:\mathrm{given}\:\mathrm{that} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\mathrm{a}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\mathrm{b}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 155856    Answers: 2   Comments: 0

How many natural number from 1 to 900 which are not divisible 2,3 and 5

$$\mathrm{How}\:\mathrm{many}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{from} \\ $$$$\mathrm{1}\:\mathrm{to}\:\mathrm{900}\:\mathrm{which}\:\mathrm{are}\:\mathrm{not}\:\mathrm{divisible} \\ $$$$\mathrm{2},\mathrm{3}\:\mathrm{and}\:\mathrm{5} \\ $$

Question Number 155849    Answers: 0   Comments: 0

Ω=∫_0 ^( ∞) log(sinh(x)).log(tanh(x))dx=((7ζ(3))/8) +(π^( 2) /8)ln^ (2)

$$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {log}\left({sinh}\left({x}\right)\right).{log}\left({tanh}\left({x}\right)\right){dx}=\frac{\mathrm{7}\zeta\left(\mathrm{3}\right)}{\mathrm{8}}\:+\frac{\pi^{\:\mathrm{2}} }{\mathrm{8}}{ln}^{\:} \left(\mathrm{2}\right) \\ $$

Question Number 155898    Answers: 2   Comments: 0

Show that tan^(− 1) ((1/3)) + sin^(− 1) ((1/3)) = (π/4)

$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\mathrm{tan}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:+\:\:\:\mathrm{sin}^{−\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:\:\:=\:\:\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 155899    Answers: 1   Comments: 0

Find the nth root of 1. Find these values when n = 6.

$$\mathrm{Find}\:\mathrm{the}\:\:\:\mathrm{nth}\:\:\:\mathrm{root}\:\mathrm{of}\:\:\:\mathrm{1}.\:\:\mathrm{Find}\:\mathrm{these}\:\mathrm{values}\:\mathrm{when}\:\:\:\mathrm{n}\:\:=\:\:\mathrm{6}. \\ $$

Question Number 155842    Answers: 1   Comments: 1

Prof that: Σ_(n=1) ^(10) n.n!=11!−1

$$\mathrm{Prof}\:\mathrm{that}: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\:\mathrm{n}.\mathrm{n}!=\mathrm{11}!−\mathrm{1} \\ $$

Question Number 155979    Answers: 0   Comments: 0

prove that: ∫_0 ^( 1) ∫_0 ^( 1) (((√x) +(√y))/((1−xy)((xy))^(1/4) )) dxdy=4 (4 −π)

$$ \\ $$$${prove}\:{that}: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\sqrt{{x}}\:+\sqrt{{y}}}{\left(\mathrm{1}−{xy}\right)\sqrt[{\mathrm{4}}]{{xy}}}\:{dxdy}=\mathrm{4}\:\left(\mathrm{4}\:−\pi\right) \\ $$$$ \\ $$

Question Number 155978    Answers: 0   Comments: 2

Question Number 155829    Answers: 1   Comments: 2

Find this excercise about limits trigonometri 1). lim_(θ→0) ((2cos θ−2)/(3θ)) 2). lim_(x→0) ((1−cos x)/x^(2/3) ) 3). lim_(t→0) ((4t^2 +3t sin t)/t^2 ) 4). lim_(x→0) ((x^2 +1)/(x+cos x)) 5). lim_(x→0) ((sin^2 ((x/2)))/(sin x))

$$\mathrm{Find}\:\mathrm{this}\:\mathrm{excercise}\:\mathrm{about}\:\mathrm{limits} \\ $$$$\mathrm{trigonometri} \\ $$$$\left.\mathrm{1}\right).\:\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\theta−\mathrm{2}}{\mathrm{3}\theta} \\ $$$$\left.\mathrm{2}\right).\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\frac{\mathrm{2}}{\mathrm{3}}} } \\ $$$$\left.\mathrm{3}\right).\:\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{4t}^{\mathrm{2}} +\mathrm{3t}\:\mathrm{sin}\:\mathrm{t}}{\mathrm{t}^{\mathrm{2}} } \\ $$$$\left.\mathrm{4}\right).\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}+\mathrm{cos}\:\mathrm{x}} \\ $$$$\left.\mathrm{5}\right).\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\:\frac{\mathrm{sin}\:^{\mathrm{2}} \:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{sin}\:\:\mathrm{x}} \\ $$$$ \\ $$

  Pg 563      Pg 564      Pg 565      Pg 566      Pg 567      Pg 568      Pg 569      Pg 570      Pg 571      Pg 572   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com