1). Find (dy/dx) , if :
a). y=(8x−1)(x^2 +4x+7)
b). y=(3x^4 −10x+8)(2x^2 +5)
2). Find an equation of the tangen line
to the graph of y=(5/(1+x^2 )) at each point
a). P(0,5) b). Q(1,(5/2))
3). Find the coordinat of all point on
the graph of : y=x^3 +2x^2 −4x+5 at which the
tangen line is:
a). horizontal.
b). paralel to the line
y=2y+8x−5=0
4). Find point P on the graph of y=x^3
such that the tangen line at P has
x−intercept 4
5). Find the points at which the graph
f(x) and f^′ (x) is intersect , given that
a). f(x)=x^3 −x^2 +x+1
b). f(x)=x^2 +2x+1
|