Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 567

Question Number 161066    Answers: 2   Comments: 0

x_1 ,x_2 be the roots of the equation x^2 +x+m=0 & x_1 ^5 +x_2 ^5 = 2021. Find the sum of the possible values of m.

$$\:{x}_{\mathrm{1}} \:,{x}_{\mathrm{2}} \:{be}\:{the}\:{roots}\:{of}\:{the}\:{equation}\: \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{2}} +{x}+{m}=\mathrm{0}\:\&\:{x}_{\mathrm{1}} ^{\mathrm{5}} +{x}_{\mathrm{2}} ^{\mathrm{5}} \:=\:\mathrm{2021}. \\ $$$$\:{Find}\:{the}\:{sum}\:{of}\:{the}\:{possible}\:{values} \\ $$$$\:\:{of}\:{m}. \\ $$

Question Number 161065    Answers: 1   Comments: 0

{ ((((x+abc))^(1/4) +((x−abc))^(1/8) = a)),((((x+abc))^(1/4) −((x−abc))^(1/8) = b)),((((x+abc))^(1/4) −((x−abc))^(1/4) = c)) :} find (√(x+abc)) +(√(x−abc))

$$\:\begin{cases}{\sqrt[{\mathrm{4}}]{{x}+{abc}}\:+\sqrt[{\mathrm{8}}]{{x}−{abc}}\:=\:{a}}\\{\sqrt[{\mathrm{4}}]{{x}+{abc}}\:−\sqrt[{\mathrm{8}}]{{x}−{abc}}\:=\:{b}}\\{\sqrt[{\mathrm{4}}]{{x}+{abc}}\:−\sqrt[{\mathrm{4}}]{{x}−{abc}}\:=\:{c}}\end{cases} \\ $$$$\:{find}\:\sqrt{{x}+{abc}}\:+\sqrt{{x}−{abc}} \\ $$

Question Number 161061    Answers: 1   Comments: 0

Question Number 161060    Answers: 1   Comments: 2

Given sin(5x−38)=cos(2x+16), 0°≤x≤90°, find the value of x

$$\mathrm{Given}\:\mathrm{sin}\left(\mathrm{5x}−\mathrm{38}\right)=\mathrm{cos}\left(\mathrm{2x}+\mathrm{16}\right),\:\mathrm{0}°\leqslant\mathrm{x}\leqslant\mathrm{90}°, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 161059    Answers: 0   Comments: 0

Find: 𝛀 =∫_( 0) ^( 1) ∫_( 0) ^( 1) (x^2 +2xy+x)ln(1 + (1/(x+y)))dxdy

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}}\right)\mathrm{dxdy} \\ $$

Question Number 161058    Answers: 1   Comments: 0

Solve the differential equation: x(y-1)dx + (x+1)dy = 0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$$\mathrm{x}\left(\mathrm{y}-\mathrm{1}\right)\mathrm{dx}\:+\:\left(\mathrm{x}+\mathrm{1}\right)\mathrm{dy}\:=\:\mathrm{0} \\ $$$$ \\ $$

Question Number 161039    Answers: 0   Comments: 0

let the differential equation: (1 + x) y^(′′) (x) + (1 - x) y^′ (x) = ((1-x)/(1+x)) y(x) y(0) = 1 , y^′ (0) = 0 then prove that: ∫_( 0) ^( ∞) (y^(′′) (x) + y^′ (x) + y(x)) e^(-x) dx = (3/2)

$$\mathrm{let}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$$\left(\mathrm{1}\:+\:\mathrm{x}\right)\:\mathrm{y}^{''} \left(\mathrm{x}\right)\:+\:\left(\mathrm{1}\:-\:\mathrm{x}\right)\:\mathrm{y}^{'} \left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}-\mathrm{x}}{\mathrm{1}+\mathrm{x}}\:\mathrm{y}\left(\mathrm{x}\right) \\ $$$$\mathrm{y}\left(\mathrm{0}\right)\:=\:\mathrm{1}\:,\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\left(\mathrm{y}^{''} \left(\mathrm{x}\right)\:+\:\mathrm{y}^{'} \left(\mathrm{x}\right)\:+\:\mathrm{y}\left(\mathrm{x}\right)\right)\:\mathrm{e}^{-\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Question Number 161026    Answers: 0   Comments: 0

Question Number 161025    Answers: 1   Comments: 0

Two commodities A and B cost $70 and $80 per kg respectively. If 34.5kg of A is mixed with 26kg of B and the mixture is sold at $85 per kg, calculate the percentage profit. please help me out, I′m somehow confused

$${Two}\:{commodities}\:{A}\:{and}\:{B}\:{cost} \\ $$$$\$\mathrm{70}\:{and}\:\$\mathrm{80}\:{per}\:{kg}\:{respectively}. \\ $$$${If}\:\mathrm{34}.\mathrm{5}{kg}\:{of}\:{A}\:{is}\:{mixed}\:{with}\:\mathrm{26}{kg} \\ $$$${of}\:{B}\:{and}\:{the}\:{mixture}\:{is}\:{sold}\:{at} \\ $$$$\$\mathrm{85}\:{per}\:{kg},\:{calculate}\:{the}\:{percentage} \\ $$$${profit}. \\ $$$${please}\:{help}\:{me}\:{out},\:{I}'{m}\:{somehow} \\ $$$${confused} \\ $$

Question Number 161023    Answers: 1   Comments: 2

Question Number 161020    Answers: 1   Comments: 0

etudier la convergence ∫_0 ^(+oo) (1/( (√(x(1+x^2 )))))dx

$${etudier}\:{la}\:{convergence} \\ $$$$\int_{\mathrm{0}} ^{+{oo}} \frac{\mathrm{1}}{\:\sqrt{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}}{dx} \\ $$

Question Number 161035    Answers: 2   Comments: 0

Solve for x ε R (√((√3)−x)) = x(√((√3)+x))

$${Solve}\:{for}\:{x}\:\epsilon\:\mathbb{R}\: \\ $$$$\:\sqrt{\sqrt{\mathrm{3}}−{x}}\:=\:{x}\sqrt{\sqrt{\mathrm{3}}+{x}}\: \\ $$

Question Number 161033    Answers: 1   Comments: 0

Question Number 161032    Answers: 1   Comments: 0

Question Number 161011    Answers: 0   Comments: 0

Question Number 161010    Answers: 0   Comments: 0

Question Number 161005    Answers: 1   Comments: 0

A=(1/(1×2))+(1/(3×4))+(1/(5×6))+....+(1/(37×38))+(1/(39×40)) B=(1/(21×40))+(1/(22×39))+(1/(23×38))+....+(1/(39×22))+(1/(40×21)) (A/B)=?

$$\boldsymbol{{A}}=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}+....+\frac{\mathrm{1}}{\mathrm{37}×\mathrm{38}}+\frac{\mathrm{1}}{\mathrm{39}×\mathrm{40}} \\ $$$$\boldsymbol{{B}}=\frac{\mathrm{1}}{\mathrm{21}×\mathrm{40}}+\frac{\mathrm{1}}{\mathrm{22}×\mathrm{39}}+\frac{\mathrm{1}}{\mathrm{23}×\mathrm{38}}+....+\frac{\mathrm{1}}{\mathrm{39}×\mathrm{22}}+\frac{\mathrm{1}}{\mathrm{40}×\mathrm{21}} \\ $$$$\frac{\boldsymbol{{A}}}{\boldsymbol{{B}}}=? \\ $$

Question Number 161003    Answers: 0   Comments: 0

Question Number 161002    Answers: 1   Comments: 0

If lim_(x→0) ((ax)/( ((1+2x))^(1/3) (√(1+bx)) −1)) = (1/2) then a×b =?

$$\:\:\:\mathrm{If}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ax}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{2x}}\:\sqrt{\mathrm{1}+\mathrm{bx}}\:−\mathrm{1}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\mathrm{then}\:\mathrm{a}×\mathrm{b}\:=? \\ $$

Question Number 161000    Answers: 0   Comments: 1

(√(1−((x+1)/x))) + ∣x−3∣ ≥ 0

$$\:\:\sqrt{\mathrm{1}−\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}}}\:+\:\mid\mathrm{x}−\mathrm{3}\mid\:\geqslant\:\mathrm{0}\: \\ $$

Question Number 160998    Answers: 0   Comments: 0

Question Number 160995    Answers: 0   Comments: 1

lim_(x→0) (((sin 2x−2tan x)^2 +(1−cos 2x)^3 )/(tan^7 6x +sin^6 x))=?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{sin}\:\mathrm{2x}−\mathrm{2tan}\:\mathrm{x}\right)^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2x}\right)^{\mathrm{3}} }{\mathrm{tan}\:^{\mathrm{7}} \mathrm{6x}\:+\mathrm{sin}\:^{\mathrm{6}} \mathrm{x}}=? \\ $$

Question Number 160993    Answers: 4   Comments: 0

Question Number 160989    Answers: 0   Comments: 0

Question Number 160988    Answers: 0   Comments: 0

Question Number 160987    Answers: 1   Comments: 0

Solve for x log _(log _6 (x−1)) (64) = 6

$$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\: \\ $$$$\:\:\:\:\:\:\mathrm{log}\:_{\mathrm{log}\:_{\mathrm{6}} \left(\mathrm{x}−\mathrm{1}\right)} \left(\mathrm{64}\right)\:=\:\mathrm{6}\: \\ $$

  Pg 562      Pg 563      Pg 564      Pg 565      Pg 566      Pg 567      Pg 568      Pg 569      Pg 570      Pg 571   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com