Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 567
Question Number 161629 Answers: 0 Comments: 0
Question Number 161626 Answers: 3 Comments: 1
Question Number 161668 Answers: 1 Comments: 0
Question Number 161623 Answers: 2 Comments: 0
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}+\mathrm{1}} }{\boldsymbol{{n}}\left(\boldsymbol{{n}}+\mathrm{2}\right)}=? \\ $$
Question Number 161622 Answers: 1 Comments: 0
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}+\mathrm{1}} }{\boldsymbol{{n}}\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)}=? \\ $$
Question Number 161617 Answers: 2 Comments: 0
Question Number 161612 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\sqrt[{{x}}]{\mathrm{cos}\:\sqrt{{x}}}\:=? \\ $$
Question Number 161609 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{xln}}\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{4}} \right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$$$ \\ $$
Question Number 161590 Answers: 2 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−\sqrt{{x}}}\:+\:\frac{\mathrm{1}}{\mathrm{1}−\sqrt{\mathrm{1}−\boldsymbol{{x}}}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)_{\boldsymbol{{min}}} =\:? \\ $$
Question Number 161586 Answers: 2 Comments: 2
$$\:\:\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\frac{\mathrm{2}−\mathrm{2cos}\:\sqrt{{x}−\mathrm{2}}}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }\:=? \\ $$
Question Number 161583 Answers: 3 Comments: 1
$$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{sin}\:\frac{\pi}{{x}}}{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}}\:=? \\ $$$$\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} −\mathrm{8}+\mathrm{sin}\:\pi{x}}{\mathrm{2}−{x}}=? \\ $$$$\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{cos}\:\left(\frac{\pi}{{x}+\mathrm{1}}\right)}=? \\ $$
Question Number 161578 Answers: 1 Comments: 1
Question Number 161579 Answers: 1 Comments: 1
$$ \\ $$A gardener wishes to make a rectangular hen run of area 128m² against a wall which is to serve as one of the boundaries. Find the length of the wire netting required for the other three sides
Question Number 161575 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{9}} \frac{\sqrt{{x}}}{\mathrm{1}−{x}}{dx}=? \\ $$$$ \\ $$
Question Number 161764 Answers: 2 Comments: 5
Question Number 161567 Answers: 2 Comments: 0
$$\mathrm{let}\:\:\mathrm{f}\left(\mathrm{x}\right)\:\:\mathrm{be} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}}{\mathrm{ln}\left(\mathrm{1}\:-\:\mathrm{x}\right)} \\ $$$$\mathrm{prove}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{sequence}\:\left\{\mathrm{a}_{\boldsymbol{\mathrm{k}}} \right\}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{D}\left[\mathrm{f}\left(\mathrm{x}\right)\right]\:=\:\left[\underset{\mathrm{0}} {\overset{\:\infty} {\sum}}\:\mathrm{a}_{\boldsymbol{\mathrm{k}}} \:\mathrm{x}^{\boldsymbol{\mathrm{k}}} \right]\:\left[\mathrm{f}\left(\mathrm{x}\right)\right]^{\mathrm{2}} \\ $$
Question Number 161566 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\Sigma\:\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{25xyz}\:+\:\mathrm{z}^{\mathrm{3}} }}\:\geqslant\:\mathrm{1} \\ $$
Question Number 161564 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\begin{cases}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{2z}\:=\:\mathrm{6}}\\{\frac{\mathrm{3}}{\mathrm{y}}\centerdot\left(\frac{\mathrm{2}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\right)\:=\:\mathrm{4}\centerdot\left(\frac{\mathrm{2}}{\mathrm{x}\:+\:\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{2y}}\right)^{\mathrm{2}} }\\{\mathrm{x}\:+\:\mathrm{2}^{\boldsymbol{\mathrm{y}}} \:+\:\mathrm{log}_{\mathrm{2}} \boldsymbol{\mathrm{z}}\:=\:\mathrm{4}}\end{cases} \\ $$
Question Number 161563 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\:...}}}\:=\:\mathrm{x}\centerdot\sqrt{\mathrm{x}\centerdot\sqrt{\mathrm{x}\centerdot\sqrt{\mathrm{x}\centerdot\:...}}} \\ $$$$\mathrm{where}\:,\:\mathrm{x}>\mathrm{0} \\ $$
Question Number 161560 Answers: 1 Comments: 0
$${li}\underset{{x}\rightarrow+\infty} {{m}}\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {ln}\left({x}\right)=...? \\ $$
Question Number 161559 Answers: 1 Comments: 0
$${please}\:{show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:+\:{cosx}\:+\:{cos}\mathrm{2}{x}\:+\:{cos}\mathrm{3}{x}\:+\:...\:+\:{cosnx}\:=\:\frac{{sin}\left[\left({n}+\mathrm{1}\right)\frac{{x}}{\mathrm{2}}\right]}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}} \\ $$
Question Number 161558 Answers: 1 Comments: 0
$${What}'{s}\:{the}\:{value}\:{of}\:{a}\:{for}\:{which} \\ $$$${x}^{\mathrm{2}} +{x}={a}\:\&\:{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}={a}\:{have}\:{one} \\ $$$${root}\:{common}? \\ $$
Question Number 161553 Answers: 0 Comments: 0
$$\underset{\mathrm{t}\rightarrow+\infty} {\mathrm{lim}t}\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\:\sqrt{\mathrm{k}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}=? \\ $$
Question Number 161537 Answers: 2 Comments: 0
$$\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{1}+\mathrm{tan}\:^{\mathrm{4}} \left({x}\right)}{\mathrm{cot}\:^{\mathrm{2}} \left({x}\right)}\:{dx}\:=? \\ $$
Question Number 161533 Answers: 1 Comments: 1
Question Number 161529 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}\left(\left(\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{n}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{n}} +\mathrm{1}\right)}\mathrm{dx}\right)^{\mathrm{n}} −\frac{\mathrm{1}}{\mathrm{2}}\right)=? \\ $$
Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568 Pg 569 Pg 570 Pg 571
Terms of Service
Privacy Policy
Contact: info@tinkutara.com