Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 566
Question Number 160263 Answers: 1 Comments: 1
$$\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{sin}\left({r}\alpha\right)}{{r}!} \\ $$
Question Number 160259 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\frac{\mathrm{1}\centerdot\mathrm{4}\centerdot...\centerdot\left(\mathrm{3n}-\mathrm{2}\right)}{\mathrm{7}\centerdot\mathrm{9}\centerdot...\centerdot\left(\mathrm{2n}+\mathrm{5}\right)}\:=\:? \\ $$
Question Number 160256 Answers: 0 Comments: 2
$$\underset{\mathrm{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}^{\mathrm{x}} −\mathrm{sin}\:\mathrm{2}^{\mathrm{x}} }{\mathrm{2}^{\mathrm{x}^{\mathrm{x}} } −\mathrm{2}^{\mathrm{2}^{\mathrm{x}} } }=? \\ $$
Question Number 160254 Answers: 1 Comments: 0
Question Number 160253 Answers: 0 Comments: 0
Question Number 160252 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\:\right){ln}\left({x}\right)}{{x}}{dx}=? \\ $$$$ \\ $$
Question Number 160296 Answers: 1 Comments: 1
Question Number 160246 Answers: 1 Comments: 0
Question Number 160244 Answers: 1 Comments: 0
$$\:\:\:\:\:{L}\underset{{x}\rightarrow\mathrm{0}} {{i}m}\:\left(\frac{\mathrm{tan}^{−\mathrm{1}} \left({x}\right)−\mathrm{tan}\:\left({x}\right)}{\mathrm{sin}^{−\mathrm{1}} \left({x}\right)−\mathrm{sin}\:\left({x}\right)}\right)=? \\ $$
Question Number 160241 Answers: 1 Comments: 1
Question Number 160233 Answers: 0 Comments: 0
Question Number 160235 Answers: 2 Comments: 0
$${solve}\:\mathrm{3}^{{x}} +\mathrm{3}{x}=\mathrm{10} \\ $$
Question Number 160223 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}}{\left(\:{e}^{\:{x}} \:+{e}^{\:−{x}} \right)^{\:\mathrm{3}} }\:{dx}\:=? \\ $$
Question Number 160219 Answers: 0 Comments: 0
$$\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{{n}} {\sum}}\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{{m}} {\prod}}\left(\boldsymbol{{i}}^{\mathrm{2}} −\boldsymbol{{k}}\right)\boldsymbol{{k}}^{\mathrm{4}} \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{{solving}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{programming}}\:\:\boldsymbol{\mathrm{C}}++ \\ $$
Question Number 160215 Answers: 0 Comments: 0
Question Number 160221 Answers: 1 Comments: 4
Question Number 160204 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{3}} }=? \\ $$
Question Number 160205 Answers: 3 Comments: 0
Question Number 160194 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{6}} }\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 160218 Answers: 1 Comments: 0
$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \left(\mathrm{arctan}\:\mathrm{t}\right)^{\mathrm{2}} \mathrm{dt}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}=? \\ $$
Question Number 160191 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\int_{\mathrm{0}} ^{\:\pi} \:{y}\:{sin}\left({xy}\right)\:{dy}\:{dx} \\ $$
Question Number 160190 Answers: 3 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{a}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{4}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\:+\:\mathrm{1} \\ $$$$\mathrm{find}\:\:\:\frac{\mathrm{3}}{\mathrm{a}}\:+\:\frac{\mathrm{3}}{\mathrm{a}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{3}} }\:=\:? \\ $$
Question Number 160188 Answers: 0 Comments: 1
Question Number 160179 Answers: 1 Comments: 2
$$\:\mathrm{5}^{\mathrm{2}\left({x}−\mathrm{2}\right)} \left(\mathrm{5}^{\mathrm{2}\left({x}−\mathrm{1}\right)} \right)^{\left({x}+\mathrm{1}\right)} \:>\:\mathrm{125}^{{x}−\mathrm{1}} \\ $$
Question Number 160171 Answers: 0 Comments: 0
Question Number 160170 Answers: 0 Comments: 0
Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568 Pg 569 Pg 570
Terms of Service
Privacy Policy
Contact: info@tinkutara.com