Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 566
Question Number 161566 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\Sigma\:\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{25xyz}\:+\:\mathrm{z}^{\mathrm{3}} }}\:\geqslant\:\mathrm{1} \\ $$
Question Number 161564 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\begin{cases}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{2z}\:=\:\mathrm{6}}\\{\frac{\mathrm{3}}{\mathrm{y}}\centerdot\left(\frac{\mathrm{2}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\right)\:=\:\mathrm{4}\centerdot\left(\frac{\mathrm{2}}{\mathrm{x}\:+\:\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{2y}}\right)^{\mathrm{2}} }\\{\mathrm{x}\:+\:\mathrm{2}^{\boldsymbol{\mathrm{y}}} \:+\:\mathrm{log}_{\mathrm{2}} \boldsymbol{\mathrm{z}}\:=\:\mathrm{4}}\end{cases} \\ $$
Question Number 161563 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\sqrt{\mathrm{x}+\:...}}}\:=\:\mathrm{x}\centerdot\sqrt{\mathrm{x}\centerdot\sqrt{\mathrm{x}\centerdot\sqrt{\mathrm{x}\centerdot\:...}}} \\ $$$$\mathrm{where}\:,\:\mathrm{x}>\mathrm{0} \\ $$
Question Number 161560 Answers: 1 Comments: 0
$${li}\underset{{x}\rightarrow+\infty} {{m}}\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {ln}\left({x}\right)=...? \\ $$
Question Number 161559 Answers: 1 Comments: 0
$${please}\:{show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:+\:{cosx}\:+\:{cos}\mathrm{2}{x}\:+\:{cos}\mathrm{3}{x}\:+\:...\:+\:{cosnx}\:=\:\frac{{sin}\left[\left({n}+\mathrm{1}\right)\frac{{x}}{\mathrm{2}}\right]}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}} \\ $$
Question Number 161558 Answers: 1 Comments: 0
$${What}'{s}\:{the}\:{value}\:{of}\:{a}\:{for}\:{which} \\ $$$${x}^{\mathrm{2}} +{x}={a}\:\&\:{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}={a}\:{have}\:{one} \\ $$$${root}\:{common}? \\ $$
Question Number 161553 Answers: 0 Comments: 0
$$\underset{\mathrm{t}\rightarrow+\infty} {\mathrm{lim}t}\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{k}} }{\:\sqrt{\mathrm{k}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }}=? \\ $$
Question Number 161537 Answers: 2 Comments: 0
$$\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:\frac{\mathrm{1}+\mathrm{tan}\:^{\mathrm{4}} \left({x}\right)}{\mathrm{cot}\:^{\mathrm{2}} \left({x}\right)}\:{dx}\:=? \\ $$
Question Number 161533 Answers: 1 Comments: 1
Question Number 161529 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}\left(\left(\int_{\mathrm{1}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{n}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{n}} +\mathrm{1}\right)}\mathrm{dx}\right)^{\mathrm{n}} −\frac{\mathrm{1}}{\mathrm{2}}\right)=? \\ $$
Question Number 161528 Answers: 1 Comments: 0
$$\mathrm{PROVE}\:\mathrm{that}\:\mathrm{the}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{types} \\ $$$$\mathrm{4k}+\mathrm{2}\:\&\:\mathrm{4k}+\mathrm{3}\:\mathrm{are}\:\mathrm{NOT}\:\mathrm{perfect}\:\Box\mathrm{s}. \\ $$
Question Number 161527 Answers: 0 Comments: 0
Question Number 161521 Answers: 0 Comments: 3
$$\boldsymbol{\mathrm{x}}^{\mathrm{8}} +\boldsymbol{\mathrm{ax}}^{\mathrm{4}} +\mathrm{1}=\mathrm{0} \\ $$$$\boldsymbol{{a}}=?\: \\ $$$$\boldsymbol{{is}}\:\:\boldsymbol{{x}}_{\mathrm{1}} +\boldsymbol{{x}}_{\mathrm{2}} +\boldsymbol{{x}}_{\mathrm{3}} +\boldsymbol{{x}}_{\mathrm{4}} =? \\ $$
Question Number 161516 Answers: 0 Comments: 2
$${f}'\left({a}\right)\:\:{is}\:\:{derivative}\:\:{of}\:\:{function}\:\:{f}\left({a}\right)\:. \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{f}\left({a}−\mathrm{2}{h}^{\mathrm{2}} \right)−{f}\left({a}+{h}^{\mathrm{3}} \right)}{{h}^{\mathrm{2}} }\:\:=\:\:? \\ $$
Question Number 161513 Answers: 0 Comments: 0
$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}} \\ $$$$−\mathrm{1}−\mathrm{1}/\mathrm{3}^{\mathrm{2}} −\mathrm{1}/\mathrm{5}^{\mathrm{2}} −\mathrm{1}/\mathrm{7}^{\mathrm{2}} −... \\ $$
Question Number 161507 Answers: 2 Comments: 0
Question Number 161505 Answers: 1 Comments: 3
$$\sqrt[{\mathrm{3}}]{{a}\:+\:\frac{{a}+\mathrm{8}}{\mathrm{3}}\:\sqrt{\frac{{a}−\mathrm{1}}{\mathrm{3}}}}\:+\:\sqrt[{\mathrm{3}}]{{a}\:−\:\frac{{a}+\mathrm{8}}{\mathrm{3}}\:\sqrt{\frac{{a}−\mathrm{1}}{\mathrm{3}}}}\:\:=\:\:? \\ $$
Question Number 161504 Answers: 1 Comments: 0
$${Montrer}\:\grave {{a}}\:{partir}\:{du}\:{crit}\grave {{e}re}\:{de}\: \\ $$$${Cauchy}\:{que}\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:{est}\:{une} \\ $$$${de}\:{Cauchy}. \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${Show}\:{by}\:{using}\:{Cauchy}'{s}\:{sequence} \\ $$$${definition}\:{that}\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:{is}\:{a}\: \\ $$$${sequence}\:{of}\:{Cauchy}. \\ $$
Question Number 161500 Answers: 1 Comments: 0
$$\mathrm{x}^{\mathrm{6}} \:-\:\mathrm{6x}^{\mathrm{5}} \:+\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{3}} \:+\:\mathrm{cx}^{\mathrm{2}} \:+\:\mathrm{dx}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{find}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=? \\ $$
Question Number 161485 Answers: 0 Comments: 0
$$\:\mathrm{Find}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function}\:\mathrm{y}=\frac{\mathrm{cos}\:\mathrm{4x}+\mathrm{4sin}\:\mathrm{4x}+\mathrm{1}}{\mathrm{cos}\:\mathrm{4x}+\mathrm{2}} \\ $$
Question Number 161484 Answers: 2 Comments: 0
$$\:\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}=\mathrm{9}}\\{\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{b}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{b}}}\right)=\mathrm{18}}\end{cases} \\ $$$$\:\:\:\mathrm{8a}+\mathrm{4b}=? \\ $$
Question Number 161482 Answers: 3 Comments: 1
Question Number 161476 Answers: 0 Comments: 2
$$\:{Between}\:\frac{\mathrm{3}}{\mathrm{6}}\:\:{and}\:−\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\:{How}\:{do}\:{i}\:{list}\:{two}\:{rational}\: \\ $$$$\:{numbers}\:{please}? \\ $$
Question Number 161538 Answers: 2 Comments: 0
$$ \\ $$$${lim}_{\:{x}\:\rightarrow\:−\mathrm{2}\:\:} \left(\frac{\mathrm{2}+\:\mathrm{3}{x}\:+\:\mathrm{3}{x}^{\:\mathrm{2}} \:+\:{x}^{\:\mathrm{3}} }{\:{sin}\:\left(\:\frac{\pi{x}}{\mathrm{2}}\:\right)}\:\right)=? \\ $$$$\:\:\:\:−−−− \\ $$
Question Number 161491 Answers: 0 Comments: 0
Question Number 161464 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{in}\:\Delta\mathrm{ABC}, \\ $$$$\left(\mathrm{sin}\:\mathrm{A}+\mathrm{sin}\:\mathrm{B}\right):\left(\mathrm{sin}\:\mathrm{B}+\mathrm{sin}\:\mathrm{C}\right):\left(\mathrm{sin}\:\mathrm{C}+\mathrm{sin}\:\mathrm{A}\right)=\:\mathrm{6}:\:\mathrm{4}:\:\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{A}. \\ $$
Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568 Pg 569 Pg 570
Terms of Service
Privacy Policy
Contact: info@tinkutara.com