Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 566
Question Number 161159 Answers: 2 Comments: 0
Question Number 161150 Answers: 0 Comments: 1
Question Number 161156 Answers: 1 Comments: 0
$${Calculate} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\mathrm{ln}\:\left(\mathrm{1}+{e}^{−{x}} \right)\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{x}}{\mathrm{2}+\mathrm{sin}\:\frac{\mathrm{1}}{{x}}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{a}^{{x}} +{b}^{{x}} }{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$
Question Number 161146 Answers: 0 Comments: 0
Question Number 161147 Answers: 0 Comments: 0
Question Number 161139 Answers: 0 Comments: 0
Question Number 161136 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\prec\:\mathrm{X}\:,\:\tau\:\succ\:{is}\:{a}\:{topological}\:{space} \\ $$$$\:\:\:\:\:\:{and}\:\:\:\mathrm{A}\:\subseteq\:\mathrm{X}\:, \\ $$$$\:\:\:\:\:\:\:\overset{−} {\mathrm{A}}\overset{?} {=}\underset{\mathrm{F}\supset\mathrm{A}} {\cap}\mathrm{F}\:\:\:\:\:\left(\:\mathrm{F}\:{is}\:{closed}\:{set}\:\right) \\ $$$$ \\ $$
Question Number 161133 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{n}}\right)}=? \\ $$
Question Number 161123 Answers: 0 Comments: 0
$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\:\frac{\mathrm{H}_{\boldsymbol{\mathrm{n}}} }{\boldsymbol{\mathrm{n}}\left(\mathrm{H}_{\mathrm{2}\boldsymbol{\mathrm{n}}-\mathrm{1}} \:-\:\mathrm{2}\:\mathrm{H}_{\boldsymbol{\mathrm{n}}-\mathrm{1}} \right)} \\ $$
Question Number 161130 Answers: 1 Comments: 0
$$\:{Given}\:{P}\left({x}\right)\:{is}\:{polynomial}\:{such}\:{that} \\ $$$$\:{P}\left(\mathrm{3}{x}\right)=\:{P}\:'\left({x}\right).{P}\:''\left({x}\right)\:.\:{Find}\:{the}\:{tangent} \\ $$$$\:{of}\:{curve}\:{y}\:=\:{P}\left({x}\right)\:{parallel}\:{to}\:{the}\:{line} \\ $$$$\:{y}=\:\mathrm{4}{x}−\mathrm{2}.\: \\ $$
Question Number 161126 Answers: 1 Comments: 2
Question Number 161111 Answers: 1 Comments: 1
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} +\mathrm{2cos}\:{x}−\mathrm{2}}{{x}^{\mathrm{4}} }\:=\:\frac{\mathrm{1}}{{a}} \\ $$$$\:\:\:\:{a}=? \\ $$
Question Number 161105 Answers: 1 Comments: 1
Question Number 161102 Answers: 1 Comments: 1
Question Number 161101 Answers: 1 Comments: 0
$${solve}: \\ $$$$\:\:\:\int\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{7}{x}−\mathrm{3}}{dx} \\ $$
Question Number 161100 Answers: 0 Comments: 0
$$\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \right)=\:\mathrm{2}+\int_{\:\mathrm{0}} ^{\:\mathrm{x}^{\mathrm{2}} } \mathrm{f}\left(\mathrm{y}\right)\:\left(\mathrm{1}−\mathrm{tan}\:\mathrm{y}\right)\mathrm{dy}\:,\:\forall\mathrm{x}\in\mathbb{R} \\ $$$$\:\mathrm{f}\left(−\pi\right)=? \\ $$
Question Number 161096 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{different}\:\mathrm{in}\:\mathrm{pairs}\:\mathrm{and}\:\:\mathrm{n};\mathrm{k}\in\mathbb{N}^{\ast} \\ $$$$\frac{\mathrm{log}\:\mathrm{x}^{\boldsymbol{\mathrm{n}}} }{\mathrm{b}^{\boldsymbol{\mathrm{k}}} \:-\:\mathrm{c}^{\boldsymbol{\mathrm{k}}} }\:=\:\frac{\mathrm{log}\:\mathrm{y}^{\boldsymbol{\mathrm{n}}} }{\mathrm{c}^{\boldsymbol{\mathrm{k}}} \:-\:\mathrm{a}^{\boldsymbol{\mathrm{k}}} }\:=\:\frac{\mathrm{log}\:\mathrm{z}^{\boldsymbol{\mathrm{n}}} }{\mathrm{a}^{\boldsymbol{\mathrm{k}}} \:-\:\mathrm{b}^{\boldsymbol{\mathrm{k}}} } \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\sqrt{\boldsymbol{\mathrm{xyz}}} \\ $$
Question Number 161091 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt{\mathrm{1}\:-\:\mathrm{x}}\:=\:\mathrm{2x}^{\mathrm{2}} \:-\:\mathrm{1}\:-\:\mathrm{2x}\:\sqrt{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{2}} } \\ $$$$ \\ $$
Question Number 161114 Answers: 0 Comments: 0
$$\:\:{Let}\:{f}\left({x}\right)=\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{2}{x}\right)\:{for}\:−\frac{\pi}{\mathrm{4}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$$$\:{then}\:{Df}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{8}}\right)=\frac{{a}}{{b}\sqrt{{b}}}\:{so}\:\begin{cases}{{a}=?}\\{{b}=?}\end{cases} \\ $$
Question Number 161089 Answers: 3 Comments: 0
$$ \\ $$$$\:\:{prove}\:{that} \\ $$$$\:\:\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:\left(\:\mathrm{1}+\:{sin}\:\left(\mathrm{2}\:\alpha\:\right)\right)\:{d}\alpha\: \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{2G}\:−\:\pi\:\mathrm{ln}\:\left(\sqrt{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{G}:\:\:{catalan}\:{constant} \\ $$
Question Number 161084 Answers: 0 Comments: 0
Question Number 161079 Answers: 1 Comments: 3
Question Number 161076 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\:\left(\mathrm{1}+\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Question Number 161075 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:{simplify} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{n}}{\left(\:{n}^{\:\mathrm{2}} −\frac{\:\mathrm{1}}{\mathrm{4}}\:\right)^{\:\mathrm{3}} }\:=\:? \\ $$$$ \\ $$
Question Number 161071 Answers: 2 Comments: 0
$${For}\:\:{a},{b},{c}\:>\:\mathrm{0}\:. \\ $$$${Find}\:\:\left({x},{y},{z}\right)\:\:{that}\:\:{satisfy}\:\:{this}\:\:{equation}\:\:{system}\: \\ $$$$\:\:\:{ax}\:+\:{by}\:=\:\left({x}−{y}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:{by}\:+\:{cz}\:=\:\left({y}−{z}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:{cz}\:+\:{ax}\:=\:\left({z}−{x}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Question Number 161068 Answers: 2 Comments: 0
$$\:\:\:\:\:\int\:\frac{\mathrm{2}{x}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\sqrt{{x}^{\mathrm{4}} −\mathrm{1}}}\:{dx}\:=? \\ $$
Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568 Pg 569 Pg 570
Terms of Service
Privacy Policy
Contact: info@tinkutara.com