Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 565

Question Number 156214    Answers: 0   Comments: 0

Question Number 156213    Answers: 0   Comments: 0

Ω =∫_0 ^1 log^2 (((Γ(x+1))/x)) dx = ?

$$\Omega\:=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{log}^{\mathrm{2}} \:\left(\frac{\Gamma\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{x}}\right)\:\mathrm{dx}\:=\:? \\ $$

Question Number 156206    Answers: 1   Comments: 0

Ω :=∫_0 ^( 1) (√x) (√(1−(√x) )) (√(1−(√(1−(√x) )))) dx=?

$$ \\ $$$$\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{{x}}\:\sqrt{\mathrm{1}−\sqrt{{x}}\:}\:\sqrt{\mathrm{1}−\sqrt{\mathrm{1}−\sqrt{{x}}\:}}\:{dx}=? \\ $$

Question Number 156205    Answers: 0   Comments: 0

Question Number 156194    Answers: 0   Comments: 1

∫_0 ^( 1) (√(x(√(x^2 (√(x^3 .....(√x^n ))))))) dx n ∈ N

$$\: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\sqrt{{x}\sqrt{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{3}} .....\sqrt{{x}^{{n}} }}}}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:{n}\:\in\:\mathbb{N} \\ $$$$\: \\ $$

Question Number 156180    Answers: 0   Comments: 0

Question Number 156334    Answers: 0   Comments: 1

Question Number 156178    Answers: 1   Comments: 0

Question Number 156177    Answers: 1   Comments: 0

∫_(−∞) ^∞ ((sin (x))/(x^2 +x+1))dx=?

$$\int_{−\infty} ^{\infty} \frac{\mathrm{sin}\:\left({x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}=? \\ $$

Question Number 156176    Answers: 1   Comments: 0

Question Number 156172    Answers: 3   Comments: 6

Question Number 156170    Answers: 2   Comments: 0

Question Number 156164    Answers: 1   Comments: 0

Question Number 156182    Answers: 1   Comments: 0

Question Number 156152    Answers: 0   Comments: 1

{ ((a+b+c=1)),((a^2 +b^2 +c^2 =2)),((a^3 +b^3 +c^3 =3)) :} a^6 +b^6 +c^6 =?

$$\begin{cases}{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}=\mathrm{1}}\\{\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} +\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\mathrm{2}}\\{\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{b}}^{\mathrm{3}} +\boldsymbol{\mathrm{c}}^{\mathrm{3}} =\mathrm{3}}\end{cases} \\ $$$$\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\boldsymbol{\mathrm{b}}^{\mathrm{6}} +\boldsymbol{\mathrm{c}}^{\mathrm{6}} =? \\ $$

Question Number 156138    Answers: 0   Comments: 1

la valeur de l′integrale ∫^1 _o x(√(√(√x)))

$${la}\:{valeur}\:{de}\:{l}'{integrale} \\ $$$$\underset{{o}} {\int}^{\mathrm{1}} {x}\sqrt{\sqrt{\sqrt{{x}}}} \\ $$$$ \\ $$

Question Number 156137    Answers: 1   Comments: 0

Question Number 156136    Answers: 1   Comments: 0

soit E(x) la partie entiere ,p<q alors la valeur de ∫^q _p E(x)dx =?

$${soit}\:{E}\left({x}\right)\:{la}\:{partie}\:{entiere}\:,{p}<{q} \\ $$$${alors}\:{la}\:{valeur}\:{de}\: \\ $$$$\underset{{p}} {\int}^{{q}} {E}\left({x}\right){dx}\:=? \\ $$

Question Number 156133    Answers: 1   Comments: 1

Question Number 156128    Answers: 1   Comments: 0

f:X→Y f(E\F)=f(E)\f(F)⇒f is 1 to 1 I think it is not true since let x1 x2 x3∈E ,x3 x4∈F, and f(x1)=f( x2) it will be not true. but my friend say by ∼q⇒∼p f is not 1 to 1 ⇒f(E\F)≠f(E)\f(F),and take x1 x2∈X, f(x1)=f(x2)=y0 E={x1 ,x2} F={x2} and can proof it is true but I do not know which is true how to proof it?

$$\:{f}:{X}\rightarrow{Y} \\ $$$${f}\left({E}\backslash{F}\right)={f}\left({E}\right)\backslash{f}\left({F}\right)\Rightarrow{f}\:{is}\:\mathrm{1}\:{to}\:\mathrm{1} \\ $$$$ \\ $$$${I}\:{think}\:{it}\:{is}\:{not}\:{true}\: \\ $$$${since}\:{let}\:{x}\mathrm{1}\:{x}\mathrm{2}\:{x}\mathrm{3}\in{E}\:,{x}\mathrm{3}\:{x}\mathrm{4}\in{F}, \\ $$$${and}\:{f}\left({x}\mathrm{1}\right)={f}\left(\:{x}\mathrm{2}\right)\:{it}\:{will}\:{be}\:{not}\:{true}. \\ $$$$ \\ $$$${but}\:{my}\:{friend}\:{say}\:{by}\:\sim{q}\Rightarrow\sim{p} \\ $$$$\:{f}\:{is}\:{not}\:\mathrm{1}\:{to}\:\mathrm{1} \\ $$$$\Rightarrow{f}\left({E}\backslash{F}\right)\neq{f}\left({E}\right)\backslash{f}\left({F}\right),{and}\:{take} \\ $$$${x}\mathrm{1}\:{x}\mathrm{2}\in{X},\:{f}\left({x}\mathrm{1}\right)={f}\left({x}\mathrm{2}\right)={y}\mathrm{0} \\ $$$${E}=\left\{{x}\mathrm{1}\:,{x}\mathrm{2}\right\}\:{F}=\left\{{x}\mathrm{2}\right\} \\ $$$${and}\:\:{can}\:{proof}\:{it}\:{is}\:{true} \\ $$$${but}\:{I}\:{do}\:{not}\:{know}\:{which}\:{is}\:{true} \\ $$$${how}\:{to}\:{proof}\:{it}? \\ $$

Question Number 156126    Answers: 1   Comments: 1

cos(π/5)=...? with solution pls

$$\:\:\:\mathrm{cos}\frac{\pi}{\mathrm{5}}=...?\:\:\mathrm{with}\:\mathrm{solution}\:\mathrm{pls} \\ $$

Question Number 156201    Answers: 0   Comments: 1

A=[((x^n ((x^n^2 ((x^n^3 ∙∙∙∙(x^n^n )^(1/n) ))^(1/n) ))^(1/n) ))^(1/n) ]^(1/n)

$$\:\:{A}=\left[\sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}} \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{2}} } \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{3}} } \centerdot\centerdot\centerdot\centerdot\sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}^{\mathrm{n}} } }}}}\right]^{\frac{\mathrm{1}}{\mathrm{n}}} \\ $$

Question Number 156123    Answers: 0   Comments: 0

Question Number 156119    Answers: 1   Comments: 2

solve : ((1+2x)/(1+(√(1+2x))))+((1−2x)/(1−(√(1−2x))))=1

$$\mathrm{solve}\:: \\ $$$$\:\frac{\mathrm{1}+\mathrm{2x}}{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{2x}}}+\frac{\mathrm{1}−\mathrm{2x}}{\mathrm{1}−\sqrt{\mathrm{1}−\mathrm{2x}}}=\mathrm{1} \\ $$$$ \\ $$

Question Number 156109    Answers: 2   Comments: 0

log _5 ((√(x−9)))−log _5 (3x^2 −12)−log _5 ((√(2x−1))) ≤ 0

$$\:\:\mathrm{log}\:_{\mathrm{5}} \left(\sqrt{\mathrm{x}−\mathrm{9}}\right)−\mathrm{log}\:_{\mathrm{5}} \left(\mathrm{3x}^{\mathrm{2}} −\mathrm{12}\right)−\mathrm{log}\:_{\mathrm{5}} \left(\sqrt{\mathrm{2x}−\mathrm{1}}\right)\:\leqslant\:\mathrm{0} \\ $$

Question Number 156108    Answers: 0   Comments: 0

lim_(x→(π/8)) ((1+cot 6x)/(1−sin 4x)) =?

$$\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{8}}} {\mathrm{lim}}\:\frac{\mathrm{1}+\mathrm{cot}\:\mathrm{6x}}{\mathrm{1}−\mathrm{sin}\:\mathrm{4x}}\:=? \\ $$

  Pg 560      Pg 561      Pg 562      Pg 563      Pg 564      Pg 565      Pg 566      Pg 567      Pg 568      Pg 569   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com