Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 565
Question Number 161818 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\Phi\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\sqrt{\frac{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{2}} }{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{4}}\:\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\:-\:\mathrm{4}\:\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\right) \\ $$$$\mathrm{where}:\:\Gamma-\mathrm{Gamma}\:\mathrm{function} \\ $$
Question Number 161817 Answers: 1 Comments: 0
Question Number 161815 Answers: 1 Comments: 0
Question Number 161811 Answers: 3 Comments: 0
Question Number 161800 Answers: 1 Comments: 2
$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!}=\mathrm{108} \\ $$$${n}=? \\ $$
Question Number 161801 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{n}} ^{\mathrm{n}\left(\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{n}}\right)^{\mathrm{n}} } \left(\mathrm{1}−\frac{\mathrm{4}}{\mathrm{x}}\right)^{\mathrm{x}} \mathrm{dx}=? \\ $$
Question Number 161802 Answers: 1 Comments: 0
Question Number 161786 Answers: 2 Comments: 0
$${log}\underset{\mathrm{4}{x}} {{x}}+{log}\underset{\frac{{x}}{\mathrm{2}}} {{x}}=\mathrm{2} \\ $$$${solve}\:\:\:{for}\:\:\:{x}=? \\ $$
Question Number 161783 Answers: 1 Comments: 5
Question Number 161773 Answers: 3 Comments: 1
Question Number 161770 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }+\mathrm{2}{x}\right)^{\mathrm{2021}} −\left(\sqrt{\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }−\mathrm{2}{x}\right)^{\mathrm{2021}} }{{x}} \\ $$
Question Number 161760 Answers: 1 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }}\:=? \\ $$
Question Number 161755 Answers: 2 Comments: 0
$${prove}\:{that}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:=\:{ln}\mathrm{2} \\ $$
Question Number 161750 Answers: 0 Comments: 2
$${differenciate}\:{x}\mathrm{sin}\:{x}\mathrm{cos}\:{x} \\ $$
Question Number 161748 Answers: 0 Comments: 4
$$\rfloor \\ $$
Question Number 161747 Answers: 2 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{2}{x}\right)−\mathrm{cos}\:\left({x}\right)}{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{4}{x}\right)−\mathrm{cos}\:\left(\mathrm{2}{x}\right)}\:=? \\ $$
Question Number 161745 Answers: 1 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{3}\:\sqrt{\mathrm{e}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left[\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}!}\:\right]\mathrm{k2}^{-\boldsymbol{\mathrm{k}}} \\ $$
Question Number 161744 Answers: 1 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\:+\:\frac{\mathrm{y}\:-\:\mathrm{5}}{\mathrm{5}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{x}}{\mathrm{y}\:+\:\mathrm{5}}\:+\:\frac{\mathrm{5}\:+\:\mathrm{y}}{\mathrm{5}\:+\:\mathrm{x}} \\ $$
Question Number 161742 Answers: 2 Comments: 1
Question Number 161733 Answers: 1 Comments: 0
Question Number 161723 Answers: 4 Comments: 0
$${Calculate} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}.\mathrm{2}^{{x}} }{\mathrm{1}+{x}.\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right]^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{{x}} −{a}^{{a}} }{{x}−{a}} \\ $$
Question Number 161706 Answers: 1 Comments: 0
$$\: \\ $$$$\mathrm{J}\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{1}−{x}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} +\:{x}^{\:\mathrm{3}} \:\right){ln}\left({x}\right)}\:{dx}=? \\ $$$$ \\ $$
Question Number 161704 Answers: 2 Comments: 1
$$\mathrm{let}\:\:\mathrm{n}\in\mathbb{N}\:\:\mathrm{fixed}\:,\:\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\left[\mathrm{x}\right]\left\{\mathrm{x}\right\}=\mathrm{nx} \\ $$
Question Number 161698 Answers: 2 Comments: 6
$$\:\:\mathrm{sin}\:\left({x}+{y}\right)=\mathrm{sin}\:{x}+\mathrm{sin}\:{y} \\ $$
Question Number 161697 Answers: 1 Comments: 0
Question Number 161687 Answers: 1 Comments: 0
$${nature}\:{of}\:{the}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\mathrm{2}} \sqrt{\mathrm{1}−{t}}}{dt} \\ $$
Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568 Pg 569
Terms of Service
Privacy Policy
Contact: info@tinkutara.com