Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 564

Question Number 153488    Answers: 0   Comments: 2

my notifications dont work. am i the only one with this problem? how can i contact tinku tara and do they still update the app?

$$\:\mathrm{my}\:\mathrm{notifications}\:\mathrm{dont}\:\mathrm{work}. \\ $$$$\:\mathrm{am}\:\mathrm{i}\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{with}\:\mathrm{this}\:\mathrm{problem}?\: \\ $$$$\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{contact}\:\mathrm{tinku}\:\mathrm{tara}\:\mathrm{and}\: \\ $$$$\:\mathrm{do}\:\mathrm{they}\:\mathrm{still}\:\mathrm{update}\:\mathrm{the}\:\mathrm{app}?\: \\ $$

Question Number 153486    Answers: 1   Comments: 0

Question Number 153483    Answers: 2   Comments: 6

Question Number 153479    Answers: 1   Comments: 0

Find area of region that satisfy ∣x−2∣ + ∣y+3∣ < 3

$${Find}\:\:{area}\:\:{of}\:\:{region}\:\:{that}\:\:{satisfy}\:\: \\ $$$$\:\:\:\mid{x}−\mathrm{2}\mid\:+\:\mid{y}+\mathrm{3}\mid\:<\:\mathrm{3} \\ $$

Question Number 153478    Answers: 0   Comments: 0

2016−2x = ∣x−a∣+∣x−b∣+∣x−c∣ has only one solution . a<b<c a,b,c ∈ Z Find the lowest value of c.

$$\mathrm{2016}−\mathrm{2}{x}\:=\:\mid{x}−{a}\mid+\mid{x}−{b}\mid+\mid{x}−{c}\mid\:\:\:{has}\:\:{only}\:\:{one}\:\:{solution}\:. \\ $$$${a}<{b}<{c}\:\: \\ $$$${a},{b},{c}\:\in\:\mathbb{Z} \\ $$$${Find}\:\:{the}\:\:{lowest}\:\:{value}\:\:{of}\:\:{c}. \\ $$

Question Number 153505    Answers: 1   Comments: 1

Question Number 153472    Answers: 0   Comments: 0

Question Number 176888    Answers: 1   Comments: 3

Question Number 153458    Answers: 0   Comments: 1

Given a set consisting of 22 integer A={±a_1 ,±a_2 ,...,±a_(11) }. Show that exist subset of S with properties (1) for every i=1,2,3,...,11 have least one between a_i or −a_i element of S (2)the sum all possible numbers in S divisible by 2015

$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$

Question Number 153457    Answers: 2   Comments: 0

Question Number 153450    Answers: 1   Comments: 0

{ (((x+1)^2 =x+y+2)),(((y+1)^2 =y+z+2)),(((z+1)^2 =z+x+2)) :}

$$\begin{cases}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} ={x}+{y}+\mathrm{2}}\\{\left({y}+\mathrm{1}\right)^{\mathrm{2}} ={y}+{z}+\mathrm{2}}\\{\left({z}+\mathrm{1}\right)^{\mathrm{2}} ={z}+{x}+\mathrm{2}}\end{cases} \\ $$

Question Number 153449    Answers: 0   Comments: 0

lim_(x→0) ((((1+tan^(−1) (3x)))^(1/3) −((1−sin^(−1) (3x)))^(1/3) )/( (√(1−sin^(−1) (2x)))−(√(1+tan^(−1) (2x))))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}}{\:\sqrt{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}−\sqrt{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}}\:=? \\ $$

Question Number 153447    Answers: 2   Comments: 1

Question Number 153446    Answers: 1   Comments: 1

L^(−1) {(s/(s^2 - 12s + 40))} = ?

$$\mathrm{L}^{−\mathrm{1}} \left\{\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}} \:-\:\mathrm{12s}\:+\:\mathrm{40}}\right\}\:=\:? \\ $$

Question Number 153438    Answers: 0   Comments: 2

Question Number 153435    Answers: 0   Comments: 0

Question Number 153432    Answers: 2   Comments: 1

Question Number 153430    Answers: 1   Comments: 2

Question Number 153426    Answers: 1   Comments: 0

Question Number 153420    Answers: 1   Comments: 0

how many x ∈R satisfy x^(99) −99x+1=0

$${how}\:{many}\:{x}\:\in\mathbb{R}\:{satisfy}\:{x}^{\mathrm{99}} −\mathrm{99}{x}+\mathrm{1}=\mathrm{0} \\ $$

Question Number 153412    Answers: 1   Comments: 0

If a;b;c;d∈(0;∞) prove that: (a^3 /(bc)) + (b^3 /(cd)) + (c^3 /da) + (d^3 /(ab)) ≥ a + b + c + d

$$\mathrm{If}\:\:\:\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d}\in\left(\mathrm{0};\infty\right)\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{bc}}\:+\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{cd}}\:+\:\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{da}}\:+\:\frac{\mathrm{d}^{\mathrm{3}} }{\mathrm{ab}}\:\geqslant\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:+\:\mathrm{d} \\ $$

Question Number 153409    Answers: 1   Comments: 0

Show that S=4πr^2

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{S}=\mathrm{4}\pi\mathrm{r}^{\mathrm{2}} \\ $$

Question Number 153407    Answers: 2   Comments: 0

Question Number 153422    Answers: 1   Comments: 0

lim_(x→a) (x^3 /2^x ) =

$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}^{{x}} }\:= \\ $$

Question Number 153405    Answers: 0   Comments: 0

Question Number 153404    Answers: 1   Comments: 0

lim_(x→∞) ((8^x +3^x ))^(1/3) −(√(4^x −2^x )) =?

$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{8}^{{x}} +\mathrm{3}^{{x}} }\:−\sqrt{\mathrm{4}^{{x}} −\mathrm{2}^{{x}} }\:=? \\ $$

  Pg 559      Pg 560      Pg 561      Pg 562      Pg 563      Pg 564      Pg 565      Pg 566      Pg 567      Pg 568   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com