Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 564

Question Number 156333    Answers: 1   Comments: 0

Question Number 156395    Answers: 0   Comments: 0

A car is moving along a straight road level when the driver see a boy crossing the road 1.5m when the driver immediately applies the brakes which produces constant retardation in the first second. After applying the brakes the car travels 25m and in the next second it traveles 15m. i) find the retardation in m/s^2 ii) show that the car comes to rest at the point where it started

$${A}\:{car}\:{is}\:{moving}\:{along}\:{a}\:{straight}\:{road}\:{level}\:{when}\: \\ $$$${the}\:{driver}\:{see}\:{a}\:{boy}\:{crossing}\:{the}\:{road}\:\mathrm{1}.\mathrm{5}{m}\:{when}\:{the}\:{driver} \\ $$$${immediately}\:{applies}\:{the}\:{brakes}\:{which}\:{produces} \\ $$$$\:{constant}\:{retardation}\:{in}\:{the}\:{first}\:{second}.\:{After}\:{applying}\:{the}\:{brakes} \\ $$$${the}\:{car}\:{travels}\:\mathrm{25}{m}\:{and}\:{in}\:{the}\:{next}\:{second}\:{it} \\ $$$${traveles}\:\mathrm{15}{m}.\: \\ $$$$\left.{i}\right)\:{find}\:{the}\:{retardation}\:{in}\:{m}/{s}^{\mathrm{2}} \\ $$$$\left.{ii}\right)\:{show}\:{that}\:{the}\:{car}\:{comes}\:{to}\:{rest}\:{at}\: \\ $$$${the}\:{point}\:{where}\:{it}\:{started} \\ $$

Question Number 156330    Answers: 0   Comments: 0

Question Number 156328    Answers: 1   Comments: 4

Question Number 156321    Answers: 0   Comments: 1

cos^4 ((π/9))+cos^4 (((2π)/9))+cos^4 (((3π)/9))+cos^4 (((4π)/9))=?

$$\:\:\mathrm{cos}\:^{\mathrm{4}} \left(\frac{\pi}{\mathrm{9}}\right)+\mathrm{cos}\:^{\mathrm{4}} \left(\frac{\mathrm{2}\pi}{\mathrm{9}}\right)+\mathrm{cos}\:^{\mathrm{4}} \left(\frac{\mathrm{3}\pi}{\mathrm{9}}\right)+\mathrm{cos}\:^{\mathrm{4}} \left(\frac{\mathrm{4}\pi}{\mathrm{9}}\right)=? \\ $$

Question Number 156319    Answers: 1   Comments: 1

∫ ((36)/((12cos x+5sin x)^2 )) dx=?

$$\:\int\:\frac{\mathrm{36}}{\left(\mathrm{12cos}\:\mathrm{x}+\mathrm{5sin}\:\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{dx}=? \\ $$

Question Number 156316    Answers: 3   Comments: 1

Question Number 156313    Answers: 0   Comments: 0

rationalize (2/( (2)^(1/3) −(6)^(1/3) −(9)^(1/3) ))

$$\:\mathrm{rationalize}\:\frac{\mathrm{2}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}−\sqrt[{\mathrm{3}}]{\mathrm{6}}−\sqrt[{\mathrm{3}}]{\mathrm{9}}}\: \\ $$

Question Number 156308    Answers: 0   Comments: 0

Find exact form sin 1°

$$\mathrm{Find}\:\mathrm{exact}\:\mathrm{form}\:\mathrm{sin}\:\mathrm{1}° \\ $$

Question Number 156305    Answers: 1   Comments: 0

∫ ((sec^2 (x))/(3sin^2 (x)−1)) dx

$$\:\:\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{3sin}\:^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{1}}\:\mathrm{dx} \\ $$

Question Number 156296    Answers: 0   Comments: 4

Question Number 156295    Answers: 2   Comments: 0

Question Number 156292    Answers: 0   Comments: 0

(1/3)+(3/(3×7))+(5/(3×7×11))+(7/(3×7×11×15))+…

$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{3}×\mathrm{7}}+\frac{\mathrm{5}}{\mathrm{3}×\mathrm{7}×\mathrm{11}}+\frac{\mathrm{7}}{\mathrm{3}×\mathrm{7}×\mathrm{11}×\mathrm{15}}+\ldots \\ $$

Question Number 156290    Answers: 0   Comments: 0

Question Number 156281    Answers: 2   Comments: 0

∫_(−3) ^5 (√(∣x∣^3 ))dx

$$\int_{−\mathrm{3}} ^{\mathrm{5}} \:\sqrt{\mid{x}\mid^{\mathrm{3}} }{dx} \\ $$

Question Number 156275    Answers: 1   Comments: 0

Helllo to All Good (morning night) we are her too shar our knowelegdes we must respect evrey one we need that positiv energy sorry for my English

$${Helllo}\:{to}\:{All}\:{Good}\:\left({morning}\:{night}\right) \\ $$$${we}\:{are}\:{her}\:{too}\:{shar}\:{our}\:{knowelegdes} \\ $$$${we}\:{must}\:{respect}\:{evrey}\:{one}\:{we}\:{need}\:{that} \\ $$$${positiv}\:{energy}\:{sorry}\:{for}\:{my}\:{English} \\ $$$$ \\ $$

Question Number 156270    Answers: 1   Comments: 1

Show that i = sin^(− 1) (((√2)/2))^2 in air, if the refractive index n = ((sin^2 (60))/(sin^2 (45)))

$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\:\mathrm{i}\:\:\:\:=\:\:\:\mathrm{sin}^{−\:\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:\:\:\:\mathrm{in}\:\mathrm{air},\:\mathrm{if}\:\mathrm{the}\:\mathrm{refractive} \\ $$$$\mathrm{index}\:\:\:\:\:\:\:\:\mathrm{n}\:\:\:=\:\:\:\frac{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{60}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{45}\right)} \\ $$

Question Number 156259    Answers: 0   Comments: 0

Question Number 156257    Answers: 0   Comments: 0

∫ ((xsin^(−1) (x^2 ))/(1−x^4 )) dx=?

$$\:\int\:\frac{{x}\mathrm{sin}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)}{\mathrm{1}−{x}^{\mathrm{4}} }\:{dx}=? \\ $$

Question Number 156253    Answers: 1   Comments: 0

Question Number 156252    Answers: 1   Comments: 1

Question Number 156250    Answers: 0   Comments: 1

lim_(x→0) ((1−cos x (√(cos 2x)) ((cos 3x))^(1/3) ((cos 4x))^(1/4) )/x^2 ) =?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}\:\sqrt{\mathrm{cos}\:\mathrm{2x}}\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\mathrm{3x}}\:\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{4x}}}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$

Question Number 156248    Answers: 1   Comments: 0

Question Number 156244    Answers: 1   Comments: 0

solve the pairs of simultaneous equations ax−2y=2 x+3y=3 qy−px=(q^2 −p^2 )/pq py+qx=2

$${solve}\:{the}\:{pairs}\:{of}\:{simultaneous}\:{equations} \\ $$$${ax}−\mathrm{2}{y}=\mathrm{2} \\ $$$${x}+\mathrm{3}{y}=\mathrm{3} \\ $$$${qy}−{px}=\left({q}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)/{pq} \\ $$$${py}+{qx}=\mathrm{2} \\ $$

Question Number 156240    Answers: 0   Comments: 3

∫^(π/2) _((−π)/2) ∣sin(x)∣ dx ∫^π _0 ∣cos(x)∣dx

$$\underset{\frac{−\pi}{\mathrm{2}}} {\int}^{\frac{\pi}{\mathrm{2}}} \mid{sin}\left({x}\right)\mid\:{dx} \\ $$$$\underset{\mathrm{0}} {\int}^{\pi} \mid{cos}\left({x}\right)\mid{dx} \\ $$

Question Number 156269    Answers: 0   Comments: 1

  Pg 559      Pg 560      Pg 561      Pg 562      Pg 563      Pg 564      Pg 565      Pg 566      Pg 567      Pg 568   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com