Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 564
Question Number 153488 Answers: 0 Comments: 2
$$\:\mathrm{my}\:\mathrm{notifications}\:\mathrm{dont}\:\mathrm{work}. \\ $$$$\:\mathrm{am}\:\mathrm{i}\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{with}\:\mathrm{this}\:\mathrm{problem}?\: \\ $$$$\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{contact}\:\mathrm{tinku}\:\mathrm{tara}\:\mathrm{and}\: \\ $$$$\:\mathrm{do}\:\mathrm{they}\:\mathrm{still}\:\mathrm{update}\:\mathrm{the}\:\mathrm{app}?\: \\ $$
Question Number 153486 Answers: 1 Comments: 0
Question Number 153483 Answers: 2 Comments: 6
Question Number 153479 Answers: 1 Comments: 0
$${Find}\:\:{area}\:\:{of}\:\:{region}\:\:{that}\:\:{satisfy}\:\: \\ $$$$\:\:\:\mid{x}−\mathrm{2}\mid\:+\:\mid{y}+\mathrm{3}\mid\:<\:\mathrm{3} \\ $$
Question Number 153478 Answers: 0 Comments: 0
$$\mathrm{2016}−\mathrm{2}{x}\:=\:\mid{x}−{a}\mid+\mid{x}−{b}\mid+\mid{x}−{c}\mid\:\:\:{has}\:\:{only}\:\:{one}\:\:{solution}\:. \\ $$$${a}<{b}<{c}\:\: \\ $$$${a},{b},{c}\:\in\:\mathbb{Z} \\ $$$${Find}\:\:{the}\:\:{lowest}\:\:{value}\:\:{of}\:\:{c}. \\ $$
Question Number 153505 Answers: 1 Comments: 1
Question Number 153472 Answers: 0 Comments: 0
Question Number 176888 Answers: 1 Comments: 3
Question Number 153458 Answers: 0 Comments: 1
$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$
Question Number 153457 Answers: 2 Comments: 0
Question Number 153450 Answers: 1 Comments: 0
$$\begin{cases}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} ={x}+{y}+\mathrm{2}}\\{\left({y}+\mathrm{1}\right)^{\mathrm{2}} ={y}+{z}+\mathrm{2}}\\{\left({z}+\mathrm{1}\right)^{\mathrm{2}} ={z}+{x}+\mathrm{2}}\end{cases} \\ $$
Question Number 153449 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}}{\:\sqrt{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}−\sqrt{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}}\:=? \\ $$
Question Number 153447 Answers: 2 Comments: 1
Question Number 153446 Answers: 1 Comments: 1
$$\mathrm{L}^{−\mathrm{1}} \left\{\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}} \:-\:\mathrm{12s}\:+\:\mathrm{40}}\right\}\:=\:? \\ $$
Question Number 153438 Answers: 0 Comments: 2
Question Number 153435 Answers: 0 Comments: 0
Question Number 153432 Answers: 2 Comments: 1
Question Number 153430 Answers: 1 Comments: 2
Question Number 153426 Answers: 1 Comments: 0
Question Number 153420 Answers: 1 Comments: 0
$${how}\:{many}\:{x}\:\in\mathbb{R}\:{satisfy}\:{x}^{\mathrm{99}} −\mathrm{99}{x}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 153412 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d}\in\left(\mathrm{0};\infty\right)\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{bc}}\:+\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{cd}}\:+\:\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{da}}\:+\:\frac{\mathrm{d}^{\mathrm{3}} }{\mathrm{ab}}\:\geqslant\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:+\:\mathrm{d} \\ $$
Question Number 153409 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{S}=\mathrm{4}\pi\mathrm{r}^{\mathrm{2}} \\ $$
Question Number 153407 Answers: 2 Comments: 0
Question Number 153422 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}^{{x}} }\:= \\ $$
Question Number 153405 Answers: 0 Comments: 0
Question Number 153404 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{8}^{{x}} +\mathrm{3}^{{x}} }\:−\sqrt{\mathrm{4}^{{x}} −\mathrm{2}^{{x}} }\:=? \\ $$
Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568
Terms of Service
Privacy Policy
Contact: info@tinkutara.com