Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 564
Question Number 161946 Answers: 2 Comments: 0
Question Number 161945 Answers: 1 Comments: 0
$$\:\:\boldsymbol{{P}\mathrm{rove}}\:\boldsymbol{\mathrm{that}}\:\int_{\mathrm{0}} ^{\infty} \frac{\left(\boldsymbol{{xcos}}\left(\boldsymbol{{x}}\right)β\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{6}} }\boldsymbol{{dx}}\:=\frac{\boldsymbol{\pi}}{\mathrm{15}} \\ $$
Question Number 161939 Answers: 0 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\mathrm{1010}} {\sum}}\boldsymbol{\mathrm{tg}}^{\mathrm{2}} \left(\frac{\pi\boldsymbol{\mathrm{n}}}{\mathrm{2022}}\right)=? \\ $$
Question Number 161931 Answers: 0 Comments: 4
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f}\:\:\:\:\frac{\:\mathrm{1}β{sin}\left({x}\right)β{cos}\left({x}\right)}{\mathrm{1}+{sin}\left({x}\right)β{cos}\left({x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{then}\:\:{find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{tan}\left({x}\right)\:+\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=? \\ $$$$\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 161930 Answers: 1 Comments: 0
$$\begin{cases}{{a}_{\mathrm{0}} =β\mathrm{2}\:}\\{{a}_{{n}} ={a}_{{n}β\mathrm{1}} +\mathrm{2}{n}}\end{cases}\:\:\:\:\:;\:{a}_{{n}} =? \\ $$
Question Number 161926 Answers: 0 Comments: 0
Question Number 161919 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{β\infty} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right){dx}\: \\ $$$$\: \\ $$
Question Number 161917 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{β\infty} ^{\:\infty} \:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{4}} +{x}+\mathrm{1}}\:}\:{dx} \\ $$$$\: \\ $$
Question Number 161914 Answers: 1 Comments: 0
$$\:\mathrm{If}\:, \\ $$$$\:\:\:{x}^{\:\mathrm{2}} \:+\:\mathrm{9}{y}^{\:\mathrm{2}} \:+\:\mathrm{4}{x}\:+\mathrm{18}{y}\:β\mathrm{23}=\mathrm{0} \\ $$$$ \\ $$$$\:{then}\:\:{find}\:{the}\:{value}\:\:{of}\:\:,\:\:\mathrm{M}_{\:} {ax}\:\left(\:\mathrm{3}{x}+\mathrm{2}{y}\:\right)\:. \\ $$$$\:βββββββββ \\ $$$$ \\ $$
Question Number 161912 Answers: 1 Comments: 6
Question Number 162027 Answers: 1 Comments: 0
Question Number 161907 Answers: 0 Comments: 1
$$\left(\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{9}\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{27}\pi}{\mathrm{20}}\right)=? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{tan}\:\frac{\pi}{\mathrm{30}}\:\mathrm{tan}\:\frac{\mathrm{7}\pi}{\mathrm{30}}\:\mathrm{tan}\:\frac{\mathrm{11}\pi}{\mathrm{30}}\:=? \\ $$
Question Number 161903 Answers: 2 Comments: 1
$$\frac{\mathrm{1}β\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)β\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)β\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}=??? \\ $$$$ \\ $$
Question Number 161900 Answers: 1 Comments: 0
$$\mathrm{0}<\mathrm{x};\mathrm{y};\mathrm{z}<\mathrm{1} \\ $$$$\left(\mathrm{1}-\mathrm{x}\right)\left(\mathrm{1}-\mathrm{y}\right)\left(\mathrm{1}-\mathrm{z}\right)=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\Omega\:=\:\mathrm{min}\:\left(\frac{\mathrm{1}-\mathrm{x}}{\mathrm{xy}}\:+\:\frac{\mathrm{1}-\mathrm{y}}{\mathrm{yz}}\:+\:\frac{\mathrm{1}-\mathrm{z}}{\mathrm{zx}}\right) \\ $$
Question Number 161899 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:-\infty} {\overset{\:\infty} {\int}}\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \right)^{\mathrm{2}} }\:\mathrm{dx}\:\:;\:\:\mathrm{n}\in\mathbb{Z} \\ $$
Question Number 161884 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt[{\mathrm{7}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{-\mathrm{1}} }\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{7}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:-\:\mathrm{2}^{-\mathrm{1}} } \\ $$
Question Number 162231 Answers: 1 Comments: 0
$${nature}\:{et}\:{calcul} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\:\sqrt{\mathrm{1}β{x}}}{dx} \\ $$
Question Number 161875 Answers: 0 Comments: 0
Question Number 161888 Answers: 1 Comments: 5
$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{one}\::\:\mathrm{C}_{\mathrm{40}} ^{\mathrm{2n}} \:=\:\mathrm{C}_{\mathrm{40}} ^{\mathrm{16}+\mathrm{n}} \\ $$
Question Number 161868 Answers: 1 Comments: 0
$$\:\:\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} \:+\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} }\:=\:\mathrm{2}^{{x}} \\ $$$$\:\:{x}=? \\ $$
Question Number 161867 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{9}}\:β\sqrt{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}}\:\right)^{\mathrm{4}{x}} \:=\:? \\ $$
Question Number 161866 Answers: 1 Comments: 3
Question Number 161862 Answers: 0 Comments: 0
Question Number 161861 Answers: 1 Comments: 8
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!β\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={n}^{\mathrm{2}} +{n}β\mathrm{2} \\ $$
Question Number 161860 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Simplify} \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!β\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{to} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}^{\mathrm{2}} +\mathrm{n}β\mathrm{2} \\ $$
Question Number 161854 Answers: 1 Comments: 1
Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568
Terms of Service
Privacy Policy
Contact: info@tinkutara.com