Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 564
Question Number 162177 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:\mathrm{Li}_{\:\mathrm{2}} \:\left({x}\:\right)}{{x}^{\:} }\:{dx}\:=? \\ $$
Question Number 162174 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:{x}^{\:\mathrm{2}} β\:\mathrm{4}{x}\:β\mathrm{1}=\mathrm{0}\:\: \\ $$$$\:\:\:\:\:\alpha\:,\:\beta\:\:{are}\:{roots}\: \\ $$$$\:\:\:\:\:\alpha^{\:\mathrm{3}} \:+\:\mathrm{17}\beta\:+\mathrm{5}\:=? \\ $$$$\:\:βββ{solution}βββ \\ $$$$\:\:\:\alpha\:\:\:{is}\:{root}\:\:\:\Rightarrow\:\alpha^{\:\mathrm{2}} β\mathrm{4}\alpha\:β\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\Rightarrow\:\alpha^{\:\mathrm{2}} =\:\mathrm{4}\alpha\:+\mathrm{1}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\alpha^{\:\mathrm{3}} +\:\mathrm{17}\beta\:+\mathrm{5}\:=\:\alpha\:.\:\alpha^{\:\mathrm{2}} +\mathrm{17}\beta\:+\mathrm{5} \\ $$$$\:\:=\:\alpha\:\left(\:\mathrm{4}\alpha\:+\mathrm{1}\:\right)+\:\mathrm{17}\beta\:+\mathrm{5} \\ $$$$\:\:=\:\mathrm{4}\alpha^{\:\mathrm{2}} +\:\alpha\:+\:\mathrm{17}\beta\:+\mathrm{5} \\ $$$$\:\:=\:\mathrm{4}\:\left(\mathrm{4}\alpha\:+\mathrm{1}\:\right)+\alpha\:+\mathrm{17}\beta\:+\mathrm{5}=\mathrm{17}\left(\alpha+\beta\right)+\mathrm{9} \\ $$$$\:\:=\:\mathrm{17S}\:+\mathrm{9}=\:\mathrm{17}\:\left(\mathrm{4}\:\right)+\mathrm{9}=\mathrm{77} \\ $$$$ \\ $$
Question Number 162171 Answers: 0 Comments: 0
Question Number 162169 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\begin{array}{|c|}{\overset{\bullet} {\:\:\:\:\:\begin{array}{|c|}{\:\:\:\underset{{x}=?,{y}=?\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {\overset{{x},{y}\in\mathbb{Z}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:} {{x}+{y}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{586}}}\:\:}\\\hline\end{array}_{} ^{} }\:\:\:\:}\\\hline\end{array} \\ $$$$ \\ $$
Question Number 162168 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{integro}β\mathrm{differential} \\ $$$$\mathrm{equation}: \\ $$$$\:{i}\left({t}\right)\:+\:\mathrm{4}\frac{{di}}{{dt}}\:+\:\int{i}\left({t}\right){dt}\:=\:\mathrm{2}\:\mathrm{cos}\:\left(\mathrm{3}{t}+\:\mathrm{60}Β°\right) \\ $$$$\mathrm{where}\:{i}\left({t}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{sinulsodial}\:\mathrm{current}. \\ $$
Question Number 162151 Answers: 1 Comments: 0
Question Number 162116 Answers: 2 Comments: 0
$${A}\:{function}\:\:{f}\:\:\:{is}\:\:{such}\:\:{that}\:\:{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R}\:\:{where} \\ $$$$\:\:\:{f}\left({xy}+\mathrm{1}\right)\:=\:{f}\left({x}\right)\centerdot{f}\left({y}\right)β{f}\left({y}\right)β{x}+\mathrm{2}\:\:,\:\:\forall{x},{y}\:\in\:\mathbb{R}\:. \\ $$$${Find}\:\:{value}\:\:{of}\:\:\mathrm{10}\centerdot{f}\left(\mathrm{2017}\right)+{f}\left(\mathrm{0}\right)\:. \\ $$
Question Number 162112 Answers: 1 Comments: 0
$$\int\frac{\:\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}{\left(\mathrm{1}β\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$
Question Number 162109 Answers: 1 Comments: 0
Question Number 162103 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sinx}\:-\:\mathrm{sin}^{-\mathrm{1}} \mathrm{x}}{\mathrm{sinhx}\:-\:\mathrm{sinh}^{-\mathrm{1}} \mathrm{x}}\:=\:? \\ $$
Question Number 162102 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{5}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{4}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}} \:+\:\mathrm{25}^{\boldsymbol{\mathrm{x}}} \:\centerdot\:\mathrm{16}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}} \:=\:\mathrm{2527} \\ $$
Question Number 162100 Answers: 1 Comments: 1
Question Number 162099 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathscr{PROVE}\:\:\:\mathscr{THAT}\:\: \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Li}_{\:\mathrm{2}} \:\left({x}\:\right).\:\mathrm{ln}\left(\:{x}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\:β\pi^{\:\mathrm{4}} }{\mathrm{90}} \\ $$$$\:\:\:\:\:ββββββββββ \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\:\left({x}\:\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{x}^{\:{n}β\mathrm{1}} }{{n}^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\:\mathrm{2}} }\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}^{\:{n}β\mathrm{1}} .\:\mathrm{ln}\left({x}\:\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\:\mathrm{2}} }\:\left\{\left[\:\frac{{x}^{\:{n}} }{{n}}\:\mathrm{ln}\left(\:{x}\:\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} β\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:{n}β\mathrm{1}} {dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{β\mathrm{1}}{{n}^{\:\mathrm{4}} }\:=\:β\:\zeta\:\left(\mathrm{4}\:\right)\:=\:\frac{β\pi^{\:\mathrm{4}} }{\:\mathrm{90}}\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:βββ\:\mathscr{M}\:.\:\mathscr{N}\:\:βββ\: \\ $$$$ \\ $$
Question Number 162139 Answers: 2 Comments: 0
Question Number 162138 Answers: 1 Comments: 0
Question Number 162118 Answers: 0 Comments: 7
$${determiner}\:{le}\:{reste}\:{de}\:{la}\:{division}\:{euclidienne}\:{de} \\ $$$$\mathrm{10}^{\mathrm{100}} \:{par}\:\mathrm{105} \\ $$
Question Number 162117 Answers: 2 Comments: 1
Question Number 162092 Answers: 0 Comments: 0
Question Number 162088 Answers: 2 Comments: 0
$${x}^{\mathrm{2}} =\mathrm{2}^{{x}} \\ $$$${solve}\:\:\:{for}\:\:\:\:{x}=? \\ $$
Question Number 162083 Answers: 0 Comments: 0
Question Number 162081 Answers: 2 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\sqrt{\frac{\mathrm{1}}{{x}}+\sqrt{\frac{\mathrm{1}}{{x}}+\sqrt{\frac{\mathrm{1}}{{x}}}}}\:β\sqrt{\frac{\mathrm{1}}{{x}}β\sqrt{\frac{\mathrm{1}}{{x}}+\sqrt{\frac{\mathrm{1}}{{x}}}}}\:=?\right. \\ $$
Question Number 162165 Answers: 2 Comments: 1
$$\mathrm{If}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:{ax}^{\mathrm{2}} +\mathrm{2}{bx}+{c}=\mathrm{0}\:\mathrm{is}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:{px}^{\mathrm{2}} +\mathrm{2}{qx}+{r}=\mathrm{0}\:\mathrm{where} \\ $$$$\:{a},{b},{c},{p}\:,{r}\:\mathrm{are}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\frac{{b}^{\mathrm{2}} }{{q}^{\mathrm{2}} }\right)\left(\frac{{p}}{{a}}\right)\left(\frac{{r}}{{c}}\right)\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\: \\ $$
Question Number 162074 Answers: 1 Comments: 0
$${Find}\:\:{the}\:\:{exact}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{1004}} {\sum}}\:\left(\underset{{k}} {\overset{\mathrm{2014}} {\:}}\right)\:\centerdot\:\mathrm{3}^{{k}} \:. \\ $$
Question Number 162071 Answers: 1 Comments: 9
Question Number 162068 Answers: 1 Comments: 0
Question Number 162066 Answers: 0 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(β\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{H}}_{\boldsymbol{\mathrm{n}}} }{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }=??? \\ $$
Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567 Pg 568
Terms of Service
Privacy Policy
Contact: info@tinkutara.com