Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 563
Question Number 162893 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{\:{x}^{\:} }{\mathrm{ln}^{\:} \left(\:\mathrm{1}−{x}\:\right)}\right)^{\:\mathrm{2}} {dx}\overset{?} {=}\:\mathrm{ln}\:\left(\frac{\:\mathrm{27}}{\mathrm{16}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:−−−− \\ $$$$ \\ $$
Question Number 162877 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{ln}^{\mathrm{2}} \:\left(\mathrm{1}\:-\:\mathrm{x}\right)}\:\mathrm{dx} \\ $$
Question Number 162876 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\left(\mathrm{xcot}\boldsymbol{\mathrm{x}}\:\centerdot\:\mathrm{lncos}^{\mathrm{2}} \boldsymbol{\mathrm{x}}\:+\:\mathrm{ln}^{\mathrm{2}} \mathrm{cos}\boldsymbol{\mathrm{x}}\right)\mathrm{dx}\:=\:\frac{\pi^{\mathrm{3}} }{\mathrm{24}} \\ $$
Question Number 162872 Answers: 1 Comments: 1
Question Number 162866 Answers: 1 Comments: 0
Question Number 162865 Answers: 0 Comments: 4
Question Number 162864 Answers: 2 Comments: 0
Question Number 162860 Answers: 2 Comments: 0
Question Number 162859 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\frac{\mathrm{e}^{\boldsymbol{\mathrm{cos}}\:\mathrm{2}\boldsymbol{\mathrm{x}}} \:\centerdot\:\mathrm{sin}\left(\mathrm{x}\:+\:\mathrm{sin}\:\mathrm{2x}\right)}{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:=\:\frac{\pi{e}}{\mathrm{2}} \\ $$
Question Number 162856 Answers: 0 Comments: 0
Question Number 162854 Answers: 0 Comments: 0
$$\mathrm{let}\:\:\mathrm{a};\mathrm{b};\mathrm{c}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{a}\:-\:\mathrm{1}}{\:\sqrt{\mathrm{b}\:+\:\mathrm{3}}}\:+\:\frac{\mathrm{b}\:-\:\mathrm{1}}{\:\sqrt{\mathrm{c}\:+\:\mathrm{3}}}\:+\:\frac{\mathrm{c}\:-\:\mathrm{1}}{\:\sqrt{\mathrm{a}\:+\:\mathrm{3}}}\:\geqslant\:\mathrm{0} \\ $$
Question Number 162847 Answers: 2 Comments: 0
Question Number 162845 Answers: 1 Comments: 1
Question Number 162834 Answers: 5 Comments: 0
Question Number 162833 Answers: 1 Comments: 0
Question Number 162827 Answers: 1 Comments: 0
Question Number 162825 Answers: 2 Comments: 0
Question Number 162823 Answers: 2 Comments: 0
$$\:\:{Given}:\:\:{x}.{p}\left({x}−\mathrm{1}\right)=\left({x}−\mathrm{5}\right).{p}\left({x}\right) \\ $$$$\:\:{and}\:{p}\left(−\mathrm{1}\right)=\mathrm{1}.\: \\ $$$$\:\:{Find}\:{p}\left(\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$
Question Number 163727 Answers: 0 Comments: 0
Question Number 163724 Answers: 0 Comments: 0
Question Number 162819 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:#{combinatorial}\:{mathematics}# \\ $$$$\:\:\:\:\:\:\mathrm{I}{n}\:{how}\:{many}\:\:{subsets}\:{of}\:\mathrm{10}\: \\ $$$${members}\:{of}\:\:{the}\:{set}\:,\:\left\{\:\mathrm{1},\:\mathrm{2},\:...,\:\mathrm{20}\:\right\} \\ $$$$\:\:\:{is}\:{there}\:{no}\:{difference}\:{between} \\ $$$$\:{two}\:{members}\:{of}\:\:\:\:\mathrm{5}\:?\: \\ $$$${a}:\:\:\mathrm{2}^{\:\mathrm{10}} \:\:\:\:\:\:{b}\::\:\:\mathrm{3}^{\:\mathrm{5}} \:\:\:\:\:\:\:{c}\::\:\:\:\mathrm{2}^{\:\mathrm{8}} \:\:\:\:\:\:\:\:{d}:\:\:\:\mathrm{10}^{\:\mathrm{4}} \\ $$
Question Number 162814 Answers: 2 Comments: 0
Question Number 162811 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}\:\right)}{\left(\:\mathrm{1}+{x}^{\:\mathrm{2}} \:\right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−−−−−−− \\ $$
Question Number 162809 Answers: 2 Comments: 0
$${if}\:{y}\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}._{._{._{._{.} } } } }}\:\:{find}\:{y}^{'} \\ $$
Question Number 162804 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\Omega\:=\:\int\:{sin}^{\:\mathrm{2}} \left({x}\right).{cos}^{\:\mathrm{4}} \left({x}\:\right)\:{dx} \\ $$$$ \\ $$
Question Number 162794 Answers: 0 Comments: 0
Pg 558 Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567
Terms of Service
Privacy Policy
Contact: info@tinkutara.com