Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 563
Question Number 162513 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{log}\left(\mathrm{x}\right)}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{9}\right)} \\ $$
Question Number 162512 Answers: 0 Comments: 1
$${solve}\:\int\sqrt{{cosec}^{\mathrm{2}} {x}−\mathrm{2}}\:{dx} \\ $$
Question Number 162506 Answers: 0 Comments: 1
Question Number 162490 Answers: 1 Comments: 0
Question Number 162496 Answers: 1 Comments: 0
Question Number 162520 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\boldsymbol{\pi}} {\int}}\:\left(\frac{\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{sin}\:\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx}\: \\ $$
Question Number 162481 Answers: 1 Comments: 0
Question Number 162478 Answers: 1 Comments: 0
$$\mathrm{Calculate}:\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{H}_{\boldsymbol{\mathrm{k}}} \:\mathrm{2}^{-\boldsymbol{\mathrm{k}}} }{\mathrm{k}\:+\:\mathrm{1}} \\ $$$$\mathrm{where}\:\mathrm{H}_{\boldsymbol{\mathrm{k}}} \:\mathrm{is}\:\mathrm{the}\:\boldsymbol{\mathrm{k}}-\mathrm{th}\:\mathrm{harmonic}\:\mathrm{number} \\ $$
Question Number 162473 Answers: 1 Comments: 0
Question Number 162471 Answers: 2 Comments: 0
$$\left[{reposted}\right] \\ $$$${find}\:\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right){dx}\:+\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{sin}^{-\mathrm{1}} \left(\sqrt[{\mathrm{8}}]{\mathrm{x}}\right)\:{dx}=? \\ $$
Question Number 162429 Answers: 0 Comments: 1
$${put}\:{the}\:{digits}\:\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},{in}\:{place}\:{of}\:{the}\:{letters}\:{in}\:{order}\:{to}\:{perform}\:{the}\:{edditon} \\ $$
Question Number 162424 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(−\mathrm{1}\right)^{\:{n}} {n}}{\mathrm{3}^{\:{n}} \:\left(\mathrm{2}{n}\:−\mathrm{1}\:\right)}\:=?\:\:\:\: \\ $$$$\:\:\:\:−\:\mathrm{I}{nspired}\:{from}\:{Sir}\:\mathrm{G}{haderi}'{s}\:{post}− \\ $$
Question Number 162533 Answers: 5 Comments: 0
Question Number 162416 Answers: 1 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\:\frac{\mathrm{4}\:\mathrm{ln}\:\left(\mathrm{cot}\boldsymbol{\mathrm{x}}\right)}{\mathrm{cos}\left(\mathrm{2x}\:+\:\mathrm{2022}\boldsymbol{\pi}\right)}\:\mathrm{dx}\:=\:\mathrm{3}\boldsymbol{\zeta}\left(\mathrm{2}\right) \\ $$
Question Number 162417 Answers: 0 Comments: 4
$$\mathrm{Prove} \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right)\:+\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{sin}^{-\mathrm{1}} \:\left(\sqrt[{\mathrm{8}}]{\mathrm{x}}\right)\:\geqslant\:\frac{\pi}{\mathrm{2}} \\ $$
Question Number 162414 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{Identity}\:\mathrm{for}\:\mathrm{any}\:\left(\mathrm{a},\mathrm{n}\right)\:\mathrm{in}\:\mathrm{Real}\:\mathrm{Number} \\ $$$$\left(\mathrm{1}\:+\:\mathrm{a}\right)\centerdot\mathrm{a}^{\left[\boldsymbol{\mathrm{n}}\right]} \:=\:\mathrm{a}\:\centerdot\:\mathrm{a}^{\mathrm{2}\left[\frac{\boldsymbol{\mathrm{n}}}{\mathrm{2}}\right]} \:+\:\mathrm{a}^{\mathrm{2}\left[\frac{\boldsymbol{\mathrm{n}}+\mathrm{1}}{\mathrm{2}}\right]} \\ $$$$\left[\ast\right]\:\mathrm{Greatest}\:\mathrm{Integer}\:\mathrm{Function} \\ $$
Question Number 162411 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{for}\:\mathrm{any}\:'\boldsymbol{\mathrm{n}}'\:\mathrm{in}\:\mathrm{Real}\:\mathrm{number} \\ $$$$\left[\frac{\mathrm{n}}{\mathrm{2}}\right]\:\centerdot\:\left[\frac{\mathrm{n}\:+\:\mathrm{1}}{\mathrm{2}}\right]\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\left[\mathrm{n}\right]^{\mathrm{2}} \:+\:\mathrm{2}\left[\frac{\mathrm{n}}{\mathrm{2}}\right]\:-\:\left[\mathrm{n}\right]\right) \\ $$$$\left[\ast\right]\:\mathrm{Greatest}\:\mathrm{Integer}\:\mathrm{Function} \\ $$
Question Number 162410 Answers: 1 Comments: 0
$$\int\frac{{dx}}{\left({a}−{cosx}\right)^{\mathrm{2}} }\:\:\:{a}>\mathrm{1} \\ $$
Question Number 162510 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{7tan}\:{x}−\mathrm{tan}\:\mathrm{7}{x}}{\mathrm{3}{x}}\:=? \\ $$
Question Number 162509 Answers: 0 Comments: 0
$$\mathrm{find}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{3}} \left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Question Number 162399 Answers: 1 Comments: 1
$$\:\:{Let}\:{m}\:\&\:{n}\:{be}\:{two}\:{positive}\:{numbers}\: \\ $$$$\:{greater}\:{than}\:\mathrm{1}\:.\:{If}\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{\mathrm{cos}\:\left({p}^{{n}} \right)} −{e}}{{p}^{{m}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}{e}\: \\ $$$$\:{then}\:\frac{{n}}{{m}}=? \\ $$
Question Number 162398 Answers: 1 Comments: 0
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{arctan}\:\left(\mathrm{t}+\mathrm{sin}\:\mathrm{x}\right)−\mathrm{arctan}\:\mathrm{t}\right)\mathrm{dt}}{\mathrm{arctan}\:\mathrm{x}}=? \\ $$
Question Number 162396 Answers: 1 Comments: 1
Question Number 162395 Answers: 0 Comments: 1
Question Number 162390 Answers: 0 Comments: 0
Question Number 162382 Answers: 2 Comments: 0
Pg 558 Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567
Terms of Service
Privacy Policy
Contact: info@tinkutara.com