Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 563
Question Number 162847 Answers: 2 Comments: 0
Question Number 162845 Answers: 1 Comments: 1
Question Number 162834 Answers: 5 Comments: 0
Question Number 162833 Answers: 1 Comments: 0
Question Number 162827 Answers: 1 Comments: 0
Question Number 162825 Answers: 2 Comments: 0
Question Number 162823 Answers: 2 Comments: 0
$$\:\:{Given}:\:\:{x}.{p}\left({x}−\mathrm{1}\right)=\left({x}−\mathrm{5}\right).{p}\left({x}\right) \\ $$$$\:\:{and}\:{p}\left(−\mathrm{1}\right)=\mathrm{1}.\: \\ $$$$\:\:{Find}\:{p}\left(\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$
Question Number 163727 Answers: 0 Comments: 0
Question Number 163724 Answers: 0 Comments: 0
Question Number 162819 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:#{combinatorial}\:{mathematics}# \\ $$$$\:\:\:\:\:\:\mathrm{I}{n}\:{how}\:{many}\:\:{subsets}\:{of}\:\mathrm{10}\: \\ $$$${members}\:{of}\:\:{the}\:{set}\:,\:\left\{\:\mathrm{1},\:\mathrm{2},\:...,\:\mathrm{20}\:\right\} \\ $$$$\:\:\:{is}\:{there}\:{no}\:{difference}\:{between} \\ $$$$\:{two}\:{members}\:{of}\:\:\:\:\mathrm{5}\:?\: \\ $$$${a}:\:\:\mathrm{2}^{\:\mathrm{10}} \:\:\:\:\:\:{b}\::\:\:\mathrm{3}^{\:\mathrm{5}} \:\:\:\:\:\:\:{c}\::\:\:\:\mathrm{2}^{\:\mathrm{8}} \:\:\:\:\:\:\:\:{d}:\:\:\:\mathrm{10}^{\:\mathrm{4}} \\ $$
Question Number 162814 Answers: 2 Comments: 0
Question Number 162811 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}\:\right)}{\left(\:\mathrm{1}+{x}^{\:\mathrm{2}} \:\right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−−−−−−− \\ $$
Question Number 162809 Answers: 2 Comments: 0
$${if}\:{y}\:=\:{x}\:+\:\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{x}}._{._{._{._{.} } } } }}\:\:{find}\:{y}^{'} \\ $$
Question Number 162804 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\Omega\:=\:\int\:{sin}^{\:\mathrm{2}} \left({x}\right).{cos}^{\:\mathrm{4}} \left({x}\:\right)\:{dx} \\ $$$$ \\ $$
Question Number 162794 Answers: 0 Comments: 0
Question Number 162792 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:\:=\:\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{x}\centerdot\left(\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{x}\:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$
Question Number 162791 Answers: 3 Comments: 0
Question Number 162790 Answers: 1 Comments: 0
$${Calculate}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{2}^{{n}} +\mathrm{3}^{{n}} \right)^{\frac{\mathrm{1}}{{n}}} \\ $$
Question Number 162788 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\:>\:\mathrm{0} \\ $$$$\mathrm{such}\:\mathrm{that}\:\:\mathrm{x}^{\mathrm{4}} +\mathrm{y}^{\mathrm{4}} +\mathrm{z}^{\mathrm{4}} \:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{P}\:=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{z}}\:+\:\frac{\mathrm{z}^{\mathrm{2}} }{\mathrm{x}} \\ $$
Question Number 162787 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{happy}}\:\boldsymbol{\mathrm{new}}\:\boldsymbol{\mathrm{year}} \\ $$$$\left\{\boldsymbol{{a}};\boldsymbol{{b}};\boldsymbol{{c}}\right\}\in\mathbb{Z}−\left\{\mathrm{0}\right\} \\ $$$$\boldsymbol{{p}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{bx}}+\boldsymbol{{c}}\:\:\:\: \\ $$$$\boldsymbol{{p}}\left(\boldsymbol{{a}}\right)=\mathrm{0} \\ $$$$\boldsymbol{{p}}\left(\boldsymbol{{b}}\right)=\mathrm{0} \\ $$$$\boldsymbol{{p}}\left(\mathrm{1}\right)=? \\ $$
Question Number 162783 Answers: 0 Comments: 0
Question Number 162782 Answers: 0 Comments: 0
Question Number 162776 Answers: 3 Comments: 0
$$\:\:\:\frac{\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{cos}\:{x}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\:{x}=? \\ $$
Question Number 162775 Answers: 2 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{a}\:\mathrm{sin}\:\mathrm{3}{x}\:−\:{b}\:\mathrm{sin}\:\mathrm{2}{x}\:}{{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{Find}\:{a}\:{and}\:{b}\:. \\ $$
Question Number 162785 Answers: 1 Comments: 0
Question Number 162747 Answers: 1 Comments: 0
Pg 558 Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566 Pg 567
Terms of Service
Privacy Policy
Contact: info@tinkutara.com