Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 562
Question Number 160638 Answers: 0 Comments: 0
Question Number 160636 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}\:\:} ^{\:\mathrm{1}} \left(\frac{{tanh}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{{x}}\:\right)^{\:\mathrm{2}} =\:\zeta\:\left(\:\mathrm{2}\:\right)\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\: \\ $$$$ \\ $$$$ \\ $$
Question Number 160630 Answers: 2 Comments: 0
$${f}\left({x}\right)={x}^{{x}^{{x}^{{x}^{{x}} } } } . \\ $$$${Df}\left({x}\right)=??? \\ $$$${svp}\:{les}\:{baos} \\ $$
Question Number 160625 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}+\mathrm{0}} {\mathrm{lim}}\left(\mathrm{x}^{\mathrm{x}} −\mathrm{1}\right)\mathrm{lnx} \\ $$
Question Number 160624 Answers: 0 Comments: 0
Question Number 160618 Answers: 1 Comments: 0
Question Number 160615 Answers: 0 Comments: 1
Question Number 160609 Answers: 4 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\left(\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}\right)=? \\ $$
Question Number 160608 Answers: 0 Comments: 6
$$ \\ $$$$ \\ $$
Question Number 160606 Answers: 0 Comments: 1
$$\mathrm{Evaluate}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:\mathrm{when}\:{x}=\mathrm{ln}\:\mathrm{2}\:\mathrm{and}\:{y}=\mathrm{2}. \\ $$
Question Number 160605 Answers: 0 Comments: 1
$$\mathrm{Given}\:\mathrm{that}\:{y}=\left(\mathrm{3}\:\mathrm{sin}\:{x}−\mathrm{4}\:\mathrm{cos}\:{x}+\mathrm{6}\right)^{\mathrm{2}} ,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{of}\:{y}. \\ $$
Question Number 160604 Answers: 0 Comments: 0
$$\:\:\mathrm{S}_{\mathrm{n}} =\:\frac{\mathrm{12}}{\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)}+\frac{\mathrm{12}^{\mathrm{2}} }{\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{3}} −\mathrm{3}^{\mathrm{3}} \right)}+\frac{\mathrm{12}^{\mathrm{3}} }{\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{4}} −\mathrm{3}^{\mathrm{4}} \right)}+...+\frac{\mathrm{12}^{\mathrm{n}} }{\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} \right)\left(\mathrm{4}^{\mathrm{n}+\mathrm{1}} −\mathrm{3}^{\mathrm{n}+\mathrm{1}} \right)} \\ $$$$\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{S}_{\mathrm{n}} \:=\:? \\ $$
Question Number 160603 Answers: 1 Comments: 0
$$\:\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\left(\mathrm{y}+\sqrt{\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\right)=\mathrm{2021} \\ $$$$\:\forall\mathrm{x},\mathrm{y}\in\mathbb{R}^{+} \:.\:\mathrm{min}\:\left(\mathrm{x}+\mathrm{y}\right)=? \\ $$
Question Number 160597 Answers: 1 Comments: 0
$$\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{dx}}{\mathrm{2}−\mathrm{cos}\:\mathrm{x}}\:=? \\ $$
Question Number 160596 Answers: 1 Comments: 0
Question Number 160594 Answers: 1 Comments: 0
$$\:\:\:\:\int\:\frac{\mathrm{dx}}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \left(\mathrm{x}\right)}\:=? \\ $$
Question Number 160626 Answers: 0 Comments: 1
$$\int\:\frac{{lnz}}{{z}+{lnz}}\:{dz}\: \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$
Question Number 160591 Answers: 0 Comments: 0
Question Number 160590 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\frac{\mathrm{1}}{\mathrm{2}}} \frac{\:{arcsinh}\left({x}\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\pi^{\mathrm{2}} }{\mathrm{20}} \\ $$
Question Number 160589 Answers: 0 Comments: 0
Question Number 160577 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} {tan}^{\:−\mathrm{1}} \:\left({x}\right).{ln}\left({x}\right)\:=\:? \\ $$$$\:\:\:\:\:−−−−{solution}−−−− \\ $$$$\:\:\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\mathrm{1}} {tan}^{\:−\mathrm{1}} \left(\:{x}\right)\:.{x}^{\:{a}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}+{a}−\mathrm{1}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:\left(\frac{\mathrm{1}}{\mathrm{2}{n}+\:{a}}\:\right) \\ $$$$\:\:\:\:\:\Omega=\:{f}\:'\:\left({a}\:\right)\mid_{{a}=\mathrm{0}} =\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\:\mathrm{2}{n}+\:{a}\right)^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\Omega=\:{f}\:'\:\left(\mathrm{0}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}\Sigma\frac{\:\left(−\mathrm{1}\:\right)^{{n}−\mathrm{1}} \left(\mathrm{2}{n}−\mathrm{1}−\mathrm{2}{n}\:\right)\:}{\left(\:\mathrm{2}{n}−\mathrm{1}\right){n}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\:\mathrm{2}} }\:−\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)\left(\mathrm{2}{n}\right)} \\ $$$$\:\:\:\:\:\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{48}}\:−\left\{\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}\:−\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{\mathrm{2}{n}}\right\}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\Omega\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{48}}\:−\:\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Question Number 160576 Answers: 1 Comments: 2
Question Number 160580 Answers: 0 Comments: 0
$${Calculate}\: \\ $$$$\mathrm{1}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{x}\sqrt{\mathrm{ln}\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{\mathrm{1}+{e}^{{x}−\mathrm{3}} } \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{{x}^{\mathrm{3}} +\mathrm{5}}{{x}^{\mathrm{2}} +\mathrm{2}}\right)^{\frac{{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}} \\ $$
Question Number 160569 Answers: 1 Comments: 0
$${Calculate}\: \\ $$$$\mathrm{1}.\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{2}{e}^{\frac{{x}}{{x}+\mathrm{1}}} −\mathrm{1}\right]^{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$$\mathrm{2}.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}×\mathrm{2}^{{x}} }{\mathrm{1}+{x}×\mathrm{3}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$ \\ $$
Question Number 160564 Answers: 3 Comments: 2
$${if}\:{the}\:{roots}\:{of}\:{th}\mathrm{e}\:{equation}\:\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0} \\ $$$${are}\:{in}\:{the}\:{ratio}\:\mathrm{3}:\mathrm{4},{then}\:{show}\:{that}\: \\ $$$$\mathrm{12b}^{\mathrm{2}} =\mathrm{49ac}. \\ $$
Question Number 160563 Answers: 1 Comments: 0
$$\int\mathrm{x}\left\{\mathrm{x}\right\}\left[\mathrm{x}\right]\mathrm{dx}=? \\ $$
Pg 557 Pg 558 Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566
Terms of Service
Privacy Policy
Contact: info@tinkutara.com