Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 562
Question Number 153714 Answers: 2 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{three}−\mathrm{digit}\:\mathrm{numbers}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{formed}\:\mathrm{using}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7},\mathrm{8}\:\mathrm{if}\: \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{no}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{repeted}? \\ $$
Question Number 153708 Answers: 2 Comments: 0
Question Number 153704 Answers: 1 Comments: 1
Question Number 153696 Answers: 1 Comments: 0
Question Number 153867 Answers: 0 Comments: 2
Question Number 153698 Answers: 2 Comments: 0
$${solve}\:{in}\:\mathbb{R} \\ $$$$\begin{cases}{{x}^{\mathrm{3}} −{y}^{\mathrm{3}} =\mathrm{19}}\\{{xy}=\mathrm{6}}\end{cases} \\ $$
Question Number 153685 Answers: 3 Comments: 2
Question Number 153682 Answers: 1 Comments: 0
$$\:\left(\sqrt[{{i}}]{{i}}\:\right)^{{xi}} \:=\:{i}^{{x}} \: \\ $$$$\:\:{x}=?\: \\ $$
Question Number 153681 Answers: 1 Comments: 0
$$\:\:\mathrm{24}^{\mathrm{log}\:_{\mathrm{10}} \left({x}\right)} −\mathrm{26}^{\mathrm{log}\:_{\mathrm{10}} \left({x}\right)} =\mathrm{1} \\ $$$$\:{x}=? \\ $$
Question Number 153679 Answers: 1 Comments: 0
$${Find}\:{the}\:{constant}\:{of}\:{polynom} \\ $$$$\:{P}\left(\mathrm{11}{x}−\mathrm{2}\right)\:{if}\:{given}\:{the}\:{equation} \\ $$$$\mathrm{3}{P}\left({x}+\mathrm{2}\right)−{P}\left(\mathrm{2}{x}+\mathrm{3}\right)=−\mathrm{4}{x}^{\mathrm{2}} −{x}+\mathrm{3} \\ $$
Question Number 153676 Answers: 2 Comments: 0
Question Number 153671 Answers: 0 Comments: 1
Question Number 153668 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\mathrm{probability}\:\mathrm{question}} \\ $$$$\: \\ $$$$\:\mathrm{let}\:{T}_{{V}\:} \:\mathrm{be}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{tetrahedron}\:{T}\:\:\: \\ $$$$\:\mathrm{that}\:\mathrm{is}\:\mathrm{in}\:\mathrm{a}\:\mathrm{cone}\:{C}\:\mathrm{with}\:\mathrm{volume}\:{C}_{{V}} \\ $$$$\:\mathrm{find}\:\mathrm{P}\left({T}_{{V}} \:\:\geqslant\:\frac{\mathrm{1}}{\mathrm{8}}\:{C}_{{V}} \right) \\ $$$$\: \\ $$
Question Number 153657 Answers: 0 Comments: 2
$$\: \\ $$$$\:\mathrm{let}\:{d}\left({n}\right)\:\mathrm{denote}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digits}\:\: \\ $$$$\:\mathrm{of}\:{n}. \\ $$$$\:\mathrm{i}.\mathrm{e}\:\:\:\:{d}\left(\mathrm{1000}\right)\:=\:\mathrm{1}\:,\:\:\:\:\:{d}\left(\mathrm{999}\right)\:=\:\mathrm{27} \\ $$$$\: \\ $$$$\:\mathrm{find}\:\mathrm{minimum}\:{k}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\underset{{k}\:\mathrm{times}} {\underbrace{{d}\left({d}\left(.....}{d}}\left(\mathrm{5}^{\mathrm{10}^{\mathrm{100}} } \right).....\right)\:\ll\:\mathrm{10}\right. \\ $$$$\: \\ $$
Question Number 153651 Answers: 2 Comments: 0
Question Number 153638 Answers: 1 Comments: 2
Question Number 153629 Answers: 0 Comments: 3
Question Number 153628 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{thrown}\:\mathrm{vertically}\:\mathrm{upwards}. \\ $$$$\mathrm{Its}\:\mathrm{hight}\left(\mathrm{h}\right)\mathrm{meters}\:\mathrm{at}\:\mathrm{time}\left(\:\mathrm{t}\right)\mathrm{seconds} \\ $$$$\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{h}=\:\mathrm{5}+\mathrm{30t}−\mathrm{5t}^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{maximum}\:\mathrm{hight}\:\mathrm{reached}\:\mathrm{by}\:\mathrm{the}\:\mathrm{ball}. \\ $$
Question Number 153626 Answers: 1 Comments: 0
$$\mathrm{Ten}\:\mathrm{eggs}\:\mathrm{are}\:\mathrm{picked}\:\mathrm{at}\:\mathrm{random}\:\mathrm{without} \\ $$$$\mathrm{replacement}\:\mathrm{from}\:\mathrm{a}\:\mathrm{lot}\:\mathrm{containing}\: \\ $$$$\mathrm{20\%}\:\mathrm{defective}\:\mathrm{eggs}.\: \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\: \\ $$$$\mathrm{at}\:\mathrm{least}\:\mathrm{four}\:\mathrm{defective}\:\mathrm{eggs} \\ $$
Question Number 153616 Answers: 0 Comments: 1
Question Number 153605 Answers: 1 Comments: 2
$$\:\:\begin{cases}{\sqrt{\mathrm{x}}\:+\sqrt{\mathrm{y}+\mathrm{z}}\:=\mathrm{5}}\\{\sqrt{\mathrm{y}}+\sqrt{\mathrm{z}+\mathrm{x}}\:=\:\mathrm{7}}\\{\sqrt{\mathrm{z}}+\sqrt{\mathrm{x}+\mathrm{y}}\:=\:\mathrm{7}}\end{cases} \\ $$
Question Number 153598 Answers: 0 Comments: 3
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}cos}\:\left({n}\pi\:\sqrt[{\mathrm{2}{n}}]{{e}}\:\right)=? \\ $$
Question Number 153736 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{7}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{24}\:\mathrm{sin}^{\mathrm{2}} \theta={R}\:\mathrm{cos}\left(\mathrm{2}\theta−\alpha\right), \\ $$$$\mathrm{where}\:{R}>\mathrm{0}\:\mathrm{and}\:\mathrm{0}<\alpha<\frac{\pi}{\mathrm{2}},\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{14}\:\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{48}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta. \\ $$
Question Number 153593 Answers: 1 Comments: 0
$$\boldsymbol{{Solve}}\::\:\left(\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{x}}\right)\right)!\:=\:\mathrm{2} \\ $$
Question Number 153611 Answers: 3 Comments: 0
Question Number 153596 Answers: 0 Comments: 5
Pg 557 Pg 558 Pg 559 Pg 560 Pg 561 Pg 562 Pg 563 Pg 564 Pg 565 Pg 566
Terms of Service
Privacy Policy
Contact: info@tinkutara.com