Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 559
Question Number 162336 Answers: 1 Comments: 0
$$ \\ $$$${lim}_{\:{n}\rightarrow\infty} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{n}^{\:\mathrm{3}} }\:+\frac{\:\mathrm{4}}{\mathrm{8}\:+{n}^{\:\mathrm{3}} }\:+\:\frac{\mathrm{9}}{\mathrm{27}\:+{n}^{\:\mathrm{3}} }\:+...+\frac{{n}^{\:\mathrm{2}} }{\mathrm{2}{n}^{\:\mathrm{3}} }\:\right)=? \\ $$$$ \\ $$
Question Number 162326 Answers: 1 Comments: 0
$${Hello}\:{please}\:{show}\:{it}... \\ $$$$\:{a}\:\in\:\left[\mathrm{0}\:,\:\frac{\pi}{\mathrm{4}}\right]\:\:\:\:\:\:\:\:{a}\:\leqslant{tan}\:{a}\:\leqslant\:\mathrm{2}{a} \\ $$
Question Number 162309 Answers: 1 Comments: 3
Question Number 162305 Answers: 2 Comments: 0
$${proof}\:{that} \\ $$$$\mathrm{2}^{{n}+\mathrm{1}} >\left({n}+\mathrm{2}\right)\mathrm{sin}\:{n} \\ $$
Question Number 162303 Answers: 0 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ln}^{\mathrm{2}} \left({x}+{y}+{z}\right){dxdydz}=? \\ $$
Question Number 162280 Answers: 1 Comments: 0
$${y}={x}^{{sinx}} \\ $$$${find}\:\:{y}' \\ $$
Question Number 162278 Answers: 0 Comments: 0
Question Number 162275 Answers: 0 Comments: 0
Question Number 162265 Answers: 0 Comments: 0
$$\mathrm{Calculate}:\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{H}_{\mathrm{2}\boldsymbol{\mathrm{k}}} \:\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{k}}-\mathrm{1}} }{\mathrm{2k}\:+\:\mathrm{1}} \\ $$$$\mathrm{where},\:\mathrm{H}_{\boldsymbol{\mathrm{n}}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{n}-\mathrm{th}\:\mathrm{harmonic}\:\mathrm{number} \\ $$
Question Number 162264 Answers: 0 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\:\mathrm{dxdydz}\:=\:? \\ $$
Question Number 162261 Answers: 3 Comments: 1
$${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{5}^{{n}} −\mathrm{1}}=? \\ $$$${or}\:{generally} \\ $$$$\Phi\left({k}\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}^{{n}} −\mathrm{1}}=?\:{with}\:{k}\in{N},\:{k}\geqslant\mathrm{2} \\ $$
Question Number 162301 Answers: 1 Comments: 0
$$\: \\ $$$$\mathrm{lim}\:_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\left(\:\mathrm{1}−\:{sin}\left({x}\right)\right)^{\:\left(\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}\:\right)} =? \\ $$$$ \\ $$
Question Number 162299 Answers: 1 Comments: 0
$$\mathrm{calculta}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 162298 Answers: 1 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnx}\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)\mathrm{dx} \\ $$
Question Number 162297 Answers: 1 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 162253 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{ax}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$${P}\:\left({ap}^{\mathrm{2}} ,\:\mathrm{2}{ap}\right)\:\mathrm{intersects}\:\mathrm{the}\:\mathrm{line}\:{x}+{a}=\mathrm{0}\:\mathrm{at}\:{T}\:. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{If}\:{M}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PT}\:,\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\:\:\:\:\:\:\mathrm{coordinates}\:\mathrm{of}\:{M}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a}\:\mathrm{and}\:{p}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{locus}\:\mathrm{of}\:{M}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:{y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)={a}\left(\mathrm{3}{x}+{a}\right)^{\mathrm{2}} \\ $$
Question Number 162249 Answers: 1 Comments: 0
Question Number 162243 Answers: 2 Comments: 0
$$\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{4}} }{\:\sqrt{{x}}\:}\right)\:{dx}\:=? \\ $$
Question Number 162240 Answers: 1 Comments: 0
$$\int\frac{\mathrm{2}\boldsymbol{{x}}−\mathrm{5}}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{4}\boldsymbol{{x}}+\mathrm{5}}\boldsymbol{{dx}} \\ $$
Question Number 162238 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{7}} +\mathrm{1}}\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 162234 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\underset{{p}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{p}} {C}_{{p}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \left(−\mathrm{1}\right)^{{n}−{p}} {C}_{{n}−{p}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:\:\:???? \\ $$$$\:\:\:\:\:\:\:{Please}\:{Help}\:{me}\left({Aidez}\:{moi}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 162229 Answers: 1 Comments: 0
Question Number 162287 Answers: 0 Comments: 4
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt[{\mathrm{n}}]{\mathrm{x}^{\mathrm{n}} +\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }\mathrm{dx}=? \\ $$
Question Number 162219 Answers: 2 Comments: 0
$$\Omega=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{log}\left(\mathrm{1}+{x}^{\mathrm{7}} \right)}{\mathrm{1}+{x}^{\mathrm{7}} }{dx}=? \\ $$
Question Number 162209 Answers: 1 Comments: 2
Question Number 162190 Answers: 1 Comments: 0
$$\lfloor\:\frac{\mathrm{3}^{\mathrm{2}} +\mathrm{1}}{\mathrm{3}^{\mathrm{2}} −\mathrm{1}}\:+\:\frac{\mathrm{3}^{\mathrm{3}} +\mathrm{1}}{\mathrm{3}^{\mathrm{3}} −\mathrm{1}}\:+\:\frac{\mathrm{3}^{\mathrm{4}} +\mathrm{1}}{\mathrm{3}^{\mathrm{4}} −\mathrm{1}}\:+\:\ldots+\:\frac{\mathrm{3}^{\mathrm{2017}} +\mathrm{1}}{\mathrm{3}^{\mathrm{2017}} −\mathrm{1}}\:\rfloor\:=\:\:? \\ $$
Pg 554 Pg 555 Pg 556 Pg 557 Pg 558 Pg 559 Pg 560 Pg 561 Pg 562 Pg 563
Terms of Service
Privacy Policy
Contact: info@tinkutara.com