Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 556
Question Number 160900 Answers: 0 Comments: 2
$${Calculate} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right)^{{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{x}}{\mathrm{sin}\:{a}}\right)^{\frac{\mathrm{1}}{{x}−{a}}} \\ $$
Question Number 160895 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{x}^{\boldsymbol{\mathrm{n}}-\mathrm{1}} \:+\:...\:+\:\mathrm{1}}\:\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:\left[\boldsymbol{\psi}^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{2}}{\mathrm{n}}\right)\:-\:\boldsymbol{\psi}^{\left(\mathrm{1}\right)} \left(\frac{\mathrm{1}}{\mathrm{n}}\right)\right] \\ $$
Question Number 160894 Answers: 1 Comments: 0
Question Number 160886 Answers: 0 Comments: 0
$$\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{root}\:\mathrm{of}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{n}} +\mathrm{x}=\mathrm{1},\mathrm{a}_{\mathrm{n}} \in\left(\mathrm{0},\mathrm{1}\right). \\ $$$$\mathrm{Find}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}−\mathrm{na}_{\mathrm{n}} −\mathrm{lnn}}{\mathrm{ln}\left(\mathrm{lnn}\right)}=? \\ $$
Question Number 160885 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}+\frac{\mathrm{1}}{\mathrm{k}}}{\:\sqrt{\mathrm{n}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} }}\centerdot\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{n}}=? \\ $$
Question Number 160883 Answers: 1 Comments: 0
$$\:\sqrt{\mathrm{x}+\mathrm{1}}\:=\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{2x}+\mathrm{1}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2x}+\mathrm{1}}\:−\mathrm{3}\:}\: \\ $$$$\:\mathrm{x}\:\in\mathbb{R}\: \\ $$
Question Number 160875 Answers: 1 Comments: 0
$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{n}}]{\mathrm{5}^{\mathrm{n}} +\mathrm{7}^{\mathrm{n}} }\:=? \\ $$
Question Number 160873 Answers: 2 Comments: 0
Question Number 160871 Answers: 1 Comments: 0
$$\:\:\sqrt[{\mathrm{6}}]{\left(\mathrm{2}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{13}}+\mathrm{5}}{\:\sqrt{\mathrm{5}}+\mathrm{2}}}\:+\mathrm{2}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}\sqrt{\mathrm{13}}−\mathrm{5}}{\:\sqrt{\mathrm{5}}−\mathrm{2}}}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}=? \\ $$
Question Number 160869 Answers: 0 Comments: 2
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{x}\:\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx}\:=\:? \\ $$
Question Number 160867 Answers: 0 Comments: 0
$$ \\ $$A piece of metal in the form of an equilateral triangle that has been subjected to hammering, and its circumference expands at a rate of 6 cm/s so that it remains preserved in its shape. The rate of change in its area when its side length is 12 cm
Question Number 160866 Answers: 0 Comments: 0
Question Number 160865 Answers: 0 Comments: 1
$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{3}} {\boldsymbol{\mathrm{lim}}}\frac{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{tan}}\left(\mathrm{3}\right)}{\boldsymbol{{sin}}\left(\boldsymbol{{ln}}\left(\boldsymbol{{x}}−\mathrm{2}\right)\right)} \\ $$$$\boldsymbol{{work}}\:\boldsymbol{{with}}\:{the}\:{rule}\:{of} \\ $$$${substitution}\:\:{of}\:{infinitely} \\ $$$${small}\:\:{functions}\:{equivalent}\: \\ $$$${to}\:{a}\:{limit} \\ $$
Question Number 160853 Answers: 1 Comments: 1
Question Number 160852 Answers: 0 Comments: 0
Question Number 160848 Answers: 2 Comments: 0
$${Find}\:\:{the}\:\:{value}\:\:{of}\:\:{a}\:\:{such}\:\:{that} \\ $$$$\:\:\:\:\:−\mathrm{2}\:<\:\frac{\mathrm{2}{x}+{a}}{{x}^{\mathrm{2}} +\mathrm{1}}\:<\:\mathrm{2} \\ $$
Question Number 160844 Answers: 1 Comments: 0
Question Number 160839 Answers: 2 Comments: 1
Question Number 160837 Answers: 0 Comments: 4
Question Number 160833 Answers: 1 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{cos}\:\left(\mathrm{ln}\:{k}\right)}{\:\sqrt{{k}}} \\ $$$$\mathrm{divergespnt}\:\mathrm{or}\:\mathrm{convergent}? \\ $$
Question Number 160832 Answers: 1 Comments: 0
$$\:\sqrt{\mathrm{2021}−\mathrm{2}\sqrt{\mathrm{2021}−\mathrm{2}\sqrt{\mathrm{2021}−\mathrm{2x}}}}\:=\:\mathrm{x} \\ $$$$\:\mathrm{x}=? \\ $$
Question Number 160831 Answers: 0 Comments: 4
$$\mathrm{simplify}\:\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}} \\ $$
Question Number 160829 Answers: 0 Comments: 1
Question Number 160825 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{sin}\:\frac{\pi\mathrm{t}}{\mathrm{2}}\right)^{\mathrm{n}} \mathrm{dt}\right]^{\frac{\mathrm{1}}{\mathrm{n}}} =? \\ $$
Question Number 160823 Answers: 0 Comments: 1
Question Number 160822 Answers: 0 Comments: 0
Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558 Pg 559 Pg 560
Terms of Service
Privacy Policy
Contact: info@tinkutara.com