Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 556
Question Number 160529 Answers: 2 Comments: 0
$${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$
Question Number 160528 Answers: 0 Comments: 0
$$\left(\mathrm{2}\boldsymbol{\mathrm{cosh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dx}}+\left(\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dy}}=\mathrm{0} \\ $$
Question Number 160526 Answers: 1 Comments: 0
$${Montre}\:{que}\:{Sup}\left({A}−{B}\right)={Sup}\left({A}\right)−{Inf}\left({B}\right) \\ $$$${Avec}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in\:{A}\:,\:{b}\in\:{B}\right\} \\ $$
Question Number 160522 Answers: 1 Comments: 0
Question Number 160521 Answers: 0 Comments: 0
$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}\right)\sqrt{{x}+\mathrm{2}}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{y}}\right)^{\mathrm{2}} +{x}=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{3} \\ $$
Question Number 160520 Answers: 1 Comments: 0
$$\:\mathrm{Given}\:\mathrm{data}\::\:\mathrm{1},\mathrm{3},\mathrm{3},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{8},\mathrm{9},\mathrm{10},\mathrm{10},\mathrm{12} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{quartile}\:\mathrm{1}^{\mathrm{st}} \\ $$
Question Number 160516 Answers: 1 Comments: 0
Question Number 160508 Answers: 0 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{27x}^{\mathrm{3}} +\mathrm{5x}^{\mathrm{2}} −\mathrm{2} \\ $$$$\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{27x}\right)−\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}=? \\ $$
Question Number 160507 Answers: 0 Comments: 0
Question Number 160506 Answers: 0 Comments: 0
Question Number 160504 Answers: 1 Comments: 2
Question Number 160496 Answers: 2 Comments: 0
Question Number 160493 Answers: 1 Comments: 0
$${montrer}\:{a}\:{l}\:{aide}\:{de}\:{binome}\:{de}\:{newton}\:{que}:\: \\ $$$$\underset{{k}={o}} {\overset{{r}} {\sum}}\left(\underset{{k}} {\:}^{{n}} \right)\left(_{{r}−{k}} ^{{m}} \right)=\left(_{\:\:\:\:\:{r}} ^{{m}+{n}} \right)\: \\ $$
Question Number 160491 Answers: 0 Comments: 1
Question Number 160487 Answers: 3 Comments: 0
Question Number 160482 Answers: 2 Comments: 1
Question Number 160473 Answers: 1 Comments: 0
Question Number 160466 Answers: 0 Comments: 0
Question Number 160457 Answers: 2 Comments: 0
$$\mathrm{Simplfy}: \\ $$$$\frac{\mathrm{1}\:+\:\mathrm{cos}\boldsymbol{\alpha}}{\mathrm{sin}^{\mathrm{2}} \boldsymbol{\alpha}}\::\:\left(\mathrm{1}\:+\:\left(\frac{\mathrm{1}\:+\:\mathrm{cos}\boldsymbol{\alpha}}{\mathrm{sin}\boldsymbol{\alpha}}\right)^{\mathrm{2}} \right) \\ $$
Question Number 160451 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{system}\:\mathrm{below}: \\ $$$$\begin{cases}{{y}_{\mathrm{1}} '=\mathrm{2}{y}_{\mathrm{1}} +{y}_{\mathrm{2}} +{y}_{\mathrm{3}} }\\{{y}_{\mathrm{2}} '=−\mathrm{2}{y}_{\mathrm{1}} −{y}_{\mathrm{3}} }\\{{y}_{\mathrm{3}} '=\mathrm{2}{y}_{\mathrm{1}} +{y}_{\mathrm{2}} +\mathrm{2}{y}_{\mathrm{3}} }\end{cases} \\ $$
Question Number 160445 Answers: 1 Comments: 2
$$\mathrm{Find}: \\ $$$$\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\centerdot\:\frac{\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}}}}{\mathrm{2}}\:\centerdot\:\frac{\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}}}}}{\mathrm{2}}\:\centerdot\:...\:=\:? \\ $$
Question Number 160444 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{x}}\:+\:\mathrm{1}\right)\:-\:\frac{\sqrt{\pi}}{\mathrm{x}}}{\mathrm{x}^{\mathrm{3}} \:-\:\mathrm{8}}\:=\:? \\ $$
Question Number 160436 Answers: 0 Comments: 0
Question Number 160501 Answers: 1 Comments: 1
$${Calculate} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{cos}\:\left(\frac{\Pi}{\mathrm{2}}\right){x}}{\mathrm{1}−\sqrt{{x}}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\frac{{e}^{\mathrm{1}+{x}} }{\left(\mathrm{1}+{x}\right)^{{x}} }−\frac{{x}}{{e}} \\ $$
Question Number 160431 Answers: 0 Comments: 0
$$\int\:{e}^{{y}} \:{tany}\:{dy}\: \\ $$
Question Number 160432 Answers: 1 Comments: 0
$$\int\:\frac{{dx}}{{sinx}+{cosx}+\mathrm{1}} \\ $$
Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558 Pg 559 Pg 560
Terms of Service
Privacy Policy
Contact: info@tinkutara.com