Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 555
Question Number 157258 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}\boldsymbol{\mathrm{k}}} \left(\mathrm{x}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}\boldsymbol{\mathrm{k}}} \left(\mathrm{x}\right)}\:=\:\mathrm{8}\:\:\:;\:\:\:\mathrm{k}\in\mathbb{Z} \\ $$
Question Number 157257 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{sin}\:^{\mathrm{6}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx} \\ $$
Question Number 157251 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:#\:\mathrm{Nice}\:\mathrm{Mathematics}\:# \\ $$$$\:\:\:\:\:\:\:...{calculation}\:... \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left(\sqrt{\:{x}}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\:\pi^{\:\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:−−−−−−−−−−−−− \\ $$$$\:\:\:\:\Omega\::\overset{\sqrt{{x}}\:=\:{t}} {=}\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left({t}\:\right)}{{t}}\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\::\overset{\left\{{tanh}^{\:−\mathrm{1}} \:\left({t}\:\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\:\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\:\right)\:\right\}} {=}\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\:\mathrm{1}+{t}\:\right)−\:{ln}\left(\mathrm{1}−{t}\:\right)}{{t}}\:{dt} \\ $$$$\:\:\:\::\:\:=\:\:−\mathrm{Li}_{\:\mathrm{2}} \:\left(−\mathrm{1}\:\right)\:+\:\mathrm{Li}_{\:\mathrm{2}} \:\left(\mathrm{1}\:\right) \\ $$$$\:\:\:\:\::\overset{\:\left\{\mathrm{Li}_{\:\mathrm{2}} \:\left({z}\:\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{z}^{\:{n}} }{{n}^{\:\mathrm{2}} }\:\right\}} {=}\:\:\eta\:\left(\mathrm{2}\right)\:+\:\zeta\:\left(\mathrm{2}\right)\: \\ $$$$\:\:\:\:\::=\:\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}}\:\:=\:\frac{\:\pi^{\:\mathrm{2}} }{\:\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 157247 Answers: 3 Comments: 0
$${F}\left({x},{y}\right)={x}^{\mathrm{2}} −\mathrm{2}{xy}+\mathrm{6}{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{2}{y}+\mathrm{45} \\ $$$${find}\:{x}\:\&{y}\:{such}\:{that}\:{F}\left({x},{y}\right)\:{minimum} \\ $$
Question Number 157241 Answers: 0 Comments: 0
Question Number 157231 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\mathcal{SOLVE}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\lfloor\:{x}\:\rfloor\:+\:\lfloor\mathrm{2}{x}\:\rfloor\:+\lfloor\:\mathrm{3}{x}\:\rfloor=\:\mathrm{1} \\ $$$$−−−−−−−−−− \\ $$$$ \\ $$
Question Number 157433 Answers: 0 Comments: 0
Question Number 157230 Answers: 1 Comments: 0
$$\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{100}} \:\: \\ $$$$\mathrm{Find}\:\mathrm{this}\:\mathrm{max}\:\mathrm{Koeffitcient} \\ $$
Question Number 157438 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{all}\:\mathrm{subgroups}\:\mathrm{of}\:: \\ $$$$\left.\mathrm{a}\right)\:\mathrm{grup}\:\left(\mathrm{Z}_{\mathrm{6}} \:,\:+\right) \\ $$$$\left.\mathrm{b}\right)\:\mathrm{grup}\:\left(\mathrm{Z}_{\mathrm{6}} \:−\left\{\mathrm{0}\right\},\:×\right) \\ $$
Question Number 157436 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{then}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}} \:+\:\mathrm{2}\:\geqslant\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{y}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{z}}} \\ $$$$ \\ $$
Question Number 157435 Answers: 1 Comments: 0
Question Number 157225 Answers: 0 Comments: 2
Question Number 157219 Answers: 0 Comments: 0
$$\underset{\mathrm{0}<\boldsymbol{\mathrm{n}}} {\sum}\frac{\left(−\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}−\mathrm{1}} \boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{sinh}}\left(\pi\boldsymbol{\mathrm{n}}\right)}=\frac{\mathrm{1}}{\mathrm{4}\pi}\:\:\:\:{prove} \\ $$
Question Number 157254 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx}\:=\:\mathrm{ln}\left(\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$
Question Number 157199 Answers: 1 Comments: 0
$${What}\:{is}\:{the}\:{general}\:{expression}\:{of}\:{the}\:{divergence}\left({div}\overset{\dashrightarrow} {{V}}\right) \\ $$
Question Number 157227 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{x}}\left(\mathrm{3}\boldsymbol{\mathrm{sin}}\left(\sqrt{\boldsymbol{\mathrm{x}}}\right)−\mathrm{2}\sqrt{\boldsymbol{\mathrm{x}}}\right)=\boldsymbol{\mathrm{sin}}^{\mathrm{3}} \left(\sqrt{\boldsymbol{\mathrm{x}}}\right) \\ $$
Question Number 157191 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{sin}\:{x}\:−\:{x}\:+\:\frac{\mathrm{1}}{\mathrm{6}}\:{x}^{\mathrm{3}} }{{x}^{\mathrm{5}} }\:\:\:=\:\:? \\ $$$$\left(\:{Without}\:\:{L}'{Hospital}\:,\:{Taylor}\:\:{or}\:\:{Maclaurin}\:\:{Series}\:\right)\:. \\ $$
Question Number 157184 Answers: 1 Comments: 0
$${p}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{ax}^{\mathrm{2}} +\left(\mathrm{3}{a}^{\mathrm{2}} +\mathrm{1}\right){x}−\left({a}^{\mathrm{3}} +{a}\right) \\ $$$${p}\left(\mathrm{2}\right)<\mathrm{0} \\ $$$${prove}\:{that}\:\mathrm{2}<{a}<\mathrm{3} \\ $$
Question Number 157220 Answers: 1 Comments: 0
$$\mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{find}\:\:\sqrt{\mathrm{x}\:+\:\mathrm{1}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}}\:=\:? \\ $$
Question Number 157177 Answers: 1 Comments: 0
Question Number 157217 Answers: 0 Comments: 2
$${show}\:{that} \\ $$$$\:\frac{{cos}\mathrm{2}{x}+{cos}\mathrm{3}{x}+{cos}\mathrm{8}{x}}{{sin}\mathrm{2}{x}+{sin}\mathrm{3}{x}+{sin}\mathrm{8}{x}}={tanx} \\ $$
Question Number 157216 Answers: 1 Comments: 1
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =? \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{tan}\:\mathrm{4}{x}}}{\mathrm{tan}\sqrt{\mathrm{4}{x}}}=? \\ $$
Question Number 157222 Answers: 2 Comments: 0
Question Number 157223 Answers: 2 Comments: 0
Question Number 157175 Answers: 2 Comments: 1
Question Number 157171 Answers: 1 Comments: 0
$${calculate}\:\underset{{n}\rightarrow+\infty} {{lim}}\left(\frac{{n}+{ln}\left({n}\right)+\mathrm{1}}{\left(\mathrm{5}+\sqrt{{n}}\right)^{\mathrm{2}} }\right) \\ $$
Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558 Pg 559
Terms of Service
Privacy Policy
Contact: info@tinkutara.com