Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 555
Question Number 153808 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}<\mathrm{1}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\underset{\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\left(\frac{\mathrm{1}\:-\:\mathrm{xyz}}{\mathrm{1}\:+\:\mathrm{xyz}}\right)^{\mathrm{3}} \mathrm{dxdydz}\:\geqslant\:\left(\underset{\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\frac{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{3}} }{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx}\right)^{\mathrm{3}} \\ $$
Question Number 153803 Answers: 1 Comments: 1
$${solve}\:{for}\:{x} \\ $$$${cos}^{\mathrm{2}} {x}\:−\:{cos}^{\mathrm{2}} \mathrm{2}{x}\:=\:{cos}^{\mathrm{2}} \mathrm{4}{x}\:−\:{cos}^{\mathrm{2}} \mathrm{3}{x} \\ $$
Question Number 153800 Answers: 2 Comments: 0
Question Number 153784 Answers: 0 Comments: 1
Question Number 153781 Answers: 1 Comments: 1
Question Number 153780 Answers: 1 Comments: 0
$$\:\lfloor\:\frac{\mathrm{125}}{\mathrm{12}}\:\rfloor\:=\mathrm{10}\:{or}\:\mathrm{11}\:? \\ $$
Question Number 153775 Answers: 1 Comments: 1
Question Number 153772 Answers: 1 Comments: 2
Question Number 153769 Answers: 1 Comments: 0
Question Number 153765 Answers: 2 Comments: 0
$$\:{Given}\:{f}:{R}\rightarrow{R}\:{is}\:{increasing}\:{positive} \\ $$$${function}\:{with}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left(\mathrm{3}{x}\right)}{{f}\left({x}\right)}=\mathrm{1}\:.\: \\ $$$${What}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left(\mathrm{2}{x}\right)}{{f}\left({x}\right)}. \\ $$$$\left({A}\right)\:\mathrm{3}\:\:\:\:\:\left({B}\right)\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\left({C}\right)\:\mathrm{1}\:\:\:\:\:\left({D}\right)\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\left({E}\right)\:\infty \\ $$
Question Number 153764 Answers: 1 Comments: 2
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}\:-\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\mathrm{dxdy}\:>\:\frac{\pi}{\mathrm{4}} \\ $$
Question Number 153763 Answers: 1 Comments: 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\mathrm{x};\mathrm{y}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{which}\:\mathrm{satisfy} \\ $$$$\mid\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{y}^{\mathrm{2}} \mid\:-\:\sqrt{\mathrm{16y}\:+\:\mathrm{1}}\:=\:\mathrm{0} \\ $$
Question Number 153760 Answers: 1 Comments: 0
$$\int\:\mathrm{sin}^{\mathrm{2}} \mathrm{4}{x}\:\mathrm{cos}\:\mathrm{4}{x}\:{dx}= \\ $$
Question Number 153759 Answers: 0 Comments: 0
$$ \\ $$$$\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left\{{n}^{\mathrm{2}} \left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}^{\:\mathrm{2}} \left({x}\:\right)}{\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)^{\:\mathrm{4}} }\right)^{\:{n}} {dx}\right\}=? \\ $$$$ \\ $$
Question Number 153757 Answers: 1 Comments: 1
Question Number 153755 Answers: 0 Comments: 0
Question Number 153742 Answers: 1 Comments: 0
Question Number 153737 Answers: 2 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\left(\mathrm{cos}\:\theta+\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} }\:{d}\theta=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\:} \\ $$
Question Number 153734 Answers: 0 Comments: 0
Question Number 153733 Answers: 0 Comments: 0
Question Number 153728 Answers: 0 Comments: 0
Question Number 153722 Answers: 0 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}+{x}\:\mathrm{sec}\:{x}−\mathrm{sin}\:{x}−{x}}{{x}^{\mathrm{3}} \:\mathrm{cos}\:{x}}\:=? \\ $$
Question Number 153721 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}^{\:\mathrm{3}} }{{sinh}\:\left(\:{x}\:\right)}\:{dx}\:=\:\frac{\pi\:^{\mathrm{4}} }{\mathrm{8}}\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 153716 Answers: 1 Comments: 1
Question Number 153714 Answers: 2 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{three}−\mathrm{digit}\:\mathrm{numbers}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{formed}\:\mathrm{using}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7},\mathrm{8}\:\mathrm{if}\: \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{no}\:\mathrm{digit}\:\mathrm{is}\:\mathrm{repeted}? \\ $$
Question Number 153708 Answers: 2 Comments: 0
Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558 Pg 559
Terms of Service
Privacy Policy
Contact: info@tinkutara.com