Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 554

Question Number 158559    Answers: 1   Comments: 0

Question Number 158615    Answers: 0   Comments: 0

Question Number 158543    Answers: 1   Comments: 4

Question Number 158537    Answers: 0   Comments: 1

find all subgroup of (Z_7 ,+)

$$\mathrm{find}\:\mathrm{all}\:\mathrm{subgroup}\:\mathrm{of}\:\left(\mathrm{Z}_{\mathrm{7}} ,+\right)\: \\ $$

Question Number 158535    Answers: 0   Comments: 0

Question Number 158534    Answers: 0   Comments: 0

Prove that a^2 tan^k x+b^2 sin^k x > 2abx^k for all x∈(0 ; (π/2)) and positive integer k

$$\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{a}^{\mathrm{2}} \mathrm{tan}^{\boldsymbol{\mathrm{k}}} \mathrm{x}+\mathrm{b}^{\mathrm{2}} \mathrm{sin}^{\boldsymbol{\mathrm{k}}} \mathrm{x}\:>\:\mathrm{2abx}^{\boldsymbol{\mathrm{k}}} \\ $$$$\mathrm{for}\:\mathrm{all}\:\:\mathrm{x}\in\left(\mathrm{0}\:;\:\frac{\pi}{\mathrm{2}}\right)\:\mathrm{and}\:\mathrm{positive}\:\mathrm{integer}\:\boldsymbol{\mathrm{k}} \\ $$$$ \\ $$

Question Number 158524    Answers: 0   Comments: 0

find the differintial equation by cancel the conestant lny = ax^2 +bx+c

$${find}\:{the}\:{differintial}\:\:{equation}\:{by}\:{cancel}\:{the}\: \\ $$$${conestant}\: \\ $$$${lny}\:=\:{ax}^{\mathrm{2}} +{bx}+{c}\: \\ $$

Question Number 158523    Answers: 1   Comments: 0

find the number of values of p for which equation sin^3 x+1+p^3 −3p sin x =0(p>0) has a root?

$${find}\:{the}\:{number}\:{of}\:{values}\:{of}\:{p} \\ $$$${for}\:{which}\:{equation}\: \\ $$$$\mathrm{sin}^{\mathrm{3}} {x}+\mathrm{1}+{p}^{\mathrm{3}} −\mathrm{3}{p}\:\mathrm{sin}\:{x}\:=\mathrm{0}\left({p}>\mathrm{0}\right) \\ $$$${has}\:{a}\:{root}? \\ $$

Question Number 158522    Answers: 1   Comments: 0

Σ_(n=2) ^∞ (((ζ(n)−n))/2^n )=?

$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\left(\zeta\left({n}\right)−{n}\right)}{\mathrm{2}^{{n}} }=? \\ $$

Question Number 158517    Answers: 0   Comments: 0

ϑ =∫_( 0) ^( π/2) (dx/((1+(1/(sin^2 x)))^2 )) ?

$$\:\:\:\vartheta\:=\int_{\:\mathrm{0}} ^{\:\pi/\mathrm{2}} \frac{{dx}}{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {x}}\right)^{\mathrm{2}} }\:? \\ $$

Question Number 158715    Answers: 0   Comments: 0

Question Number 158531    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (1/(n^2 (2n+1)^3 ))=?

$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{{n}}^{\mathrm{2}} \left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$

Question Number 158506    Answers: 0   Comments: 0

Question Number 158508    Answers: 0   Comments: 0

if x;y;z>0 and xyz=27 prove that: (1/(x^2 +27)) + (1/(y^2 +27)) + (1/(z^2 +27)) ≤ (1/(12))

$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{xyz}=\mathrm{27}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{27}}\:+\:\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} +\mathrm{27}}\:+\:\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{2}} +\mathrm{27}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$

Question Number 158503    Answers: 0   Comments: 5

Question Number 158590    Answers: 1   Comments: 0

prove that 1. I= ∫_0 ^( (π/2)) (( sin( x+tan(x)))/(sin(x)))dx =(π/2) 2. J = ∫_0 ^( (π/2)) ((sin(x−tan(x)))/(sin(x)))dx=((1/e) −(1/2))π

$$ \\ $$$$\:\:\:{prove}\:{that}\: \\ $$$$\mathrm{1}.\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left(\:{x}+{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}\:=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}.\:\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({x}−{tan}\left({x}\right)\right)}{{sin}\left({x}\right)}{dx}=\left(\frac{\mathrm{1}}{{e}}\:−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi \\ $$$$ \\ $$

Question Number 158494    Answers: 0   Comments: 0

Question Number 158492    Answers: 1   Comments: 0

∫ (dx/(1+x^7 )) ?

$$\:\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{7}} }\:? \\ $$

Question Number 158489    Answers: 0   Comments: 0

find the partial derivatives of the function with respect to each variable f(x,y)=∫_x ^y g(t) dt

$${find}\:{the}\:{partial}\:{derivatives}\:{of}\:{the}\:{function} \\ $$$${with}\:{respect}\:{to}\:{each}\:{variable} \\ $$$${f}\left({x},{y}\right)=\int_{{x}} ^{{y}} {g}\left({t}\right)\:{dt} \\ $$

Question Number 158483    Answers: 0   Comments: 0

Question Number 158482    Answers: 0   Comments: 0

Question Number 158519    Answers: 0   Comments: 0

Question Number 158477    Answers: 2   Comments: 0

I_(n ) =∫_0 ^1 (x^(2n+1) /( (√(1+x^2 ))))dx , n≥0 prove that ∀ n≥0 (2n+1)I_n =(√2)−2nI_(n−1)

$${I}_{{n}\:} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:,\:{n}\geqslant\mathrm{0}\: \\ $$$${prove}\:{that}\:\forall\:{n}\geqslant\mathrm{0}\: \\ $$$$\left(\mathrm{2}{n}+\mathrm{1}\right){I}_{{n}} =\sqrt{\mathrm{2}}−\mathrm{2}{nI}_{{n}−\mathrm{1}} \\ $$

Question Number 158529    Answers: 1   Comments: 0

In how many ways can 30 students be distributed to 10 schools, if 1. each school should get at least one student. 2. no restriction

$${In}\:{how}\:{many}\:{ways}\:{can}\:\mathrm{30}\:{students} \\ $$$${be}\:{distributed}\:{to}\:\mathrm{10}\:{schools},\:{if} \\ $$$$\mathrm{1}.\:{each}\:{school}\:{should}\:{get}\:{at}\:{least}\:{one} \\ $$$$\:\:\:\:\:{student}. \\ $$$$\mathrm{2}.\:{no}\:{restriction} \\ $$

Question Number 158528    Answers: 0   Comments: 0

Π_(n=1) ^∞ ((((n+1)^3 −1)/((n+1)^3 +1)))=?

$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}}{\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{1}}\right)=? \\ $$

Question Number 158472    Answers: 1   Comments: 1

  Pg 549      Pg 550      Pg 551      Pg 552      Pg 553      Pg 554      Pg 555      Pg 556      Pg 557      Pg 558   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com