Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 554

Question Number 157388    Answers: 1   Comments: 2

If m tan (θ − 30°) = n tan (θ + 12°) cos 2θ = ?

$${If}\:\:{m}\:\mathrm{tan}\:\left(\theta\:−\:\mathrm{30}°\right)\:=\:{n}\:\mathrm{tan}\:\left(\theta\:+\:\mathrm{12}°\right) \\ $$$$\mathrm{cos}\:\mathrm{2}\theta\:\:=\:? \\ $$

Question Number 157382    Answers: 1   Comments: 0

Question Number 157379    Answers: 2   Comments: 1

Question Number 157374    Answers: 0   Comments: 3

I see there are idiot comments on this forum. a comment that tells someone not to answer a member's question. this is a provocateur. what's the point of telling people not to answer questions posted by members. If the one who ordered it doesn't want to answer, then do it. no need to tell people to follow you.

$$ \\ $$I see there are idiot comments on this forum. a comment that tells someone not to answer a member's question. this is a provocateur. what's the point of telling people not to answer questions posted by members. If the one who ordered it doesn't want to answer, then do it. no need to tell people to follow you.

Question Number 157351    Answers: 3   Comments: 1

Prove by mathematical induction Σ_(r=1) ^n (1/(r(r+1))) = (n/(n+1))

$$\mathrm{Prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction} \\ $$$$\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{r}\left({r}+\mathrm{1}\right)}\:=\:\frac{{n}}{{n}+\mathrm{1}} \\ $$

Question Number 157343    Answers: 1   Comments: 0

Question Number 157341    Answers: 0   Comments: 0

Question Number 157332    Answers: 2   Comments: 0

Question Number 157329    Answers: 2   Comments: 0

whats the value of !5

$$\:\boldsymbol{{whats}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\: \\ $$$$\:\:\:\:!\mathrm{5} \\ $$

Question Number 157324    Answers: 1   Comments: 1

Find the general solution for the equation cos 7x − cos 4x + cos x = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{cos}\:\mathrm{7}{x}\:−\:\mathrm{cos}\:\mathrm{4}{x}\:+\:\mathrm{cos}\:{x}\:=\:\mathrm{0} \\ $$

Question Number 157323    Answers: 2   Comments: 0

Prove that: Ψ_1 ((1/8)) + Ψ_2 ((5/8)) = 32G + 4π^2 Ψ-trigamma function G-catalan constant

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\Psi_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{8}}\right)\:+\:\Psi_{\mathrm{2}} \left(\frac{\mathrm{5}}{\mathrm{8}}\right)\:=\:\mathrm{32G}\:+\:\mathrm{4}\pi^{\mathrm{2}} \\ $$$$\Psi-\mathrm{trigamma}\:\mathrm{function} \\ $$$$\mathrm{G}-\mathrm{catalan}\:\mathrm{constant} \\ $$

Question Number 157315    Answers: 1   Comments: 0

Question Number 157314    Answers: 0   Comments: 1

lim_(x→∞) ((3 ln (1+5tan (4/x)))/(x (1−cos (6/x)))) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{5tan}\:\frac{\mathrm{4}}{{x}}\right)}{{x}\:\left(\mathrm{1}−\mathrm{cos}\:\frac{\mathrm{6}}{{x}}\right)}\:=? \\ $$

Question Number 157309    Answers: 3   Comments: 0

∫ (dx/( (√x)+x(√(x+1)))) =?

$$\:\:\int\:\frac{{dx}}{\:\sqrt{{x}}+{x}\sqrt{{x}+\mathrm{1}}}\:=? \\ $$

Question Number 157292    Answers: 1   Comments: 6

Question Number 157283    Answers: 1   Comments: 0

Question Number 157278    Answers: 3   Comments: 0

Question Number 157272    Answers: 2   Comments: 0

for solving equation which one we use ⇒ and =, i mean where we use ⇒ and where we use, = and where we use one of them to consider wrong.

$${for}\:{solving}\:{equation}\:{which}\:{one}\:{we}\:{use} \\ $$$$\Rightarrow\:{and}\:=,\:{i}\:{mean}\:{where}\:{we}\:{use}\:\Rightarrow\:{and}\:{where}\:{we}\:{use},\:= \\ $$$${and}\:{where}\:{we}\:{use}\:{one}\:{of}\:{them}\:{to} \\ $$$${consider}\:{wrong}. \\ $$

Question Number 157268    Answers: 1   Comments: 0

prove that ∫(x^2 /((xsin x+cos x)^2 ))dx=−((xsec x)/(xsin x+cos x))+tan x+c

$${prove}\:{that} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}=−\frac{{x}\mathrm{sec}\:{x}}{{x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}+\mathrm{tan}\:{x}+{c} \\ $$

Question Number 157267    Answers: 0   Comments: 3

(1+x^2 )y′′−2xy′+2y=x

$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}''−\mathrm{2}{xy}'+\mathrm{2}{y}={x}\: \\ $$

Question Number 157265    Answers: 1   Comments: 0

Solve for real numbers: sin(x) + cos(x) + sec(x)∙csc(x)=2+(√2)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{sec}\left(\mathrm{x}\right)\centerdot\mathrm{csc}\left(\mathrm{x}\right)=\mathrm{2}+\sqrt{\mathrm{2}} \\ $$

Question Number 157258    Answers: 0   Comments: 2

Solve for real numbers: (1/(sin^(2k) (x))) + (1/(cos^(2k) (x))) = 8 ; k∈Z

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}\boldsymbol{\mathrm{k}}} \left(\mathrm{x}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}\boldsymbol{\mathrm{k}}} \left(\mathrm{x}\right)}\:=\:\mathrm{8}\:\:\:;\:\:\:\mathrm{k}\in\mathbb{Z} \\ $$

Question Number 157257    Answers: 1   Comments: 0

∫ ((sin^6 x+cos^5 x)/(sin^2 x cos^2 x)) dx

$$\int\:\frac{\mathrm{sin}\:^{\mathrm{6}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx} \\ $$

Question Number 157251    Answers: 1   Comments: 0

# Nice Mathematics # ...calculation ... Ω :=∫_0 ^( 1) (( tanh^( −1) ((√( x)) ))/x) dx =^? (( π^( 2) )/4) −−−−−−−−−−−−− Ω :=^((√x) = t) 2∫_0 ^( 1) (( tanh^( −1) (t ))/t) dt :=^({tanh^( −1) (t )= (1/2) ln( ((1+t)/(1−t)) ) }) ∫_0 ^( 1) ((ln( 1+t )− ln(1−t ))/t) dt : = −Li_( 2) (−1 ) + Li_( 2) (1 ) :=^( {Li_( 2) (z )= Σ_(n=1) ^∞ (( z^( n) )/n^( 2) ) }) η (2) + ζ (2) := (π^( 2) /(12)) + (π^( 2) /6) = (( π^( 2) )/( 4)) ■ m.n

$$ \\ $$$$\:\:\:\:\:#\:\mathrm{Nice}\:\mathrm{Mathematics}\:# \\ $$$$\:\:\:\:\:\:\:...{calculation}\:... \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left(\sqrt{\:{x}}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\:\pi^{\:\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:−−−−−−−−−−−−− \\ $$$$\:\:\:\:\Omega\::\overset{\sqrt{{x}}\:=\:{t}} {=}\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left({t}\:\right)}{{t}}\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\::\overset{\left\{{tanh}^{\:−\mathrm{1}} \:\left({t}\:\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\:\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\:\right)\:\right\}} {=}\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\:\mathrm{1}+{t}\:\right)−\:{ln}\left(\mathrm{1}−{t}\:\right)}{{t}}\:{dt} \\ $$$$\:\:\:\::\:\:=\:\:−\mathrm{Li}_{\:\mathrm{2}} \:\left(−\mathrm{1}\:\right)\:+\:\mathrm{Li}_{\:\mathrm{2}} \:\left(\mathrm{1}\:\right) \\ $$$$\:\:\:\:\::\overset{\:\left\{\mathrm{Li}_{\:\mathrm{2}} \:\left({z}\:\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{z}^{\:{n}} }{{n}^{\:\mathrm{2}} }\:\right\}} {=}\:\:\eta\:\left(\mathrm{2}\right)\:+\:\zeta\:\left(\mathrm{2}\right)\: \\ $$$$\:\:\:\:\::=\:\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}}\:\:=\:\frac{\:\pi^{\:\mathrm{2}} }{\:\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 157247    Answers: 3   Comments: 0

F(x,y)=x^2 −2xy+6y^2 −12x+2y+45 find x &y such that F(x,y) minimum

$${F}\left({x},{y}\right)={x}^{\mathrm{2}} −\mathrm{2}{xy}+\mathrm{6}{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{2}{y}+\mathrm{45} \\ $$$${find}\:{x}\:\&{y}\:{such}\:{that}\:{F}\left({x},{y}\right)\:{minimum} \\ $$

Question Number 157241    Answers: 0   Comments: 0

  Pg 549      Pg 550      Pg 551      Pg 552      Pg 553      Pg 554      Pg 555      Pg 556      Pg 557      Pg 558   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com