Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 554
Question Number 154516 Answers: 0 Comments: 0
Question Number 154514 Answers: 0 Comments: 1
Question Number 154586 Answers: 1 Comments: 0
Question Number 154507 Answers: 2 Comments: 1
Question Number 154649 Answers: 0 Comments: 2
$$\mathrm{if}\:\:\mathrm{n}\:\in\:\mathbb{N}^{>\mathrm{2}} \:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\left[\left(\sqrt[{\mathrm{3}}]{\mathrm{n}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{n}\:+\:\mathrm{2}}\:\right)^{\mathrm{3}} \right]\:+\:\mathrm{1}\:=\:\mathrm{0}\:\left(\mathrm{mod}\:\mathrm{8}\right) \\ $$
Question Number 154620 Answers: 0 Comments: 0
Question Number 154497 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\mathrm{2}\:\sqrt{\mathrm{2x}^{\mathrm{3}} \:-\:\mathrm{x}}\:=\:\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{3x}\:+\:\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\:\:\:\sqrt{\frac{\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{16}}{\mathrm{2}}}\:+\:\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4}\right)}\:=\:\mathrm{3x}\:+\:\mathrm{2} \\ $$
Question Number 154495 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{n}^{\mathrm{1}-\boldsymbol{\mathrm{t}}} \:\left(\frac{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}+\mathrm{1}}]{\left(\mathrm{n}+\mathrm{1}\right)!}\right)^{\boldsymbol{\mathrm{t}}} }\:-\:\frac{\mathrm{n}^{\mathrm{2}\boldsymbol{\mathrm{t}}} }{\left(\sqrt[{\boldsymbol{\mathrm{n}}}]{\mathrm{n}!}\right)^{\boldsymbol{\mathrm{t}}} }\right) \\ $$$$\mathrm{with}\:\:\mathrm{t}>\mathrm{0} \\ $$$$\mathrm{then}\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}S}_{\boldsymbol{\mathrm{n}}} \left(\mathrm{t}\right)\:=\:\mathrm{te}^{\boldsymbol{\mathrm{t}}} \\ $$
Question Number 154493 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{n}\in\mathbb{N}^{+} \:\:\mathrm{then}: \\ $$$$\frac{\mathrm{a}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:+\:\mathrm{c}^{\mathrm{2}\boldsymbol{\mathrm{n}}} }{\mathrm{a}^{\boldsymbol{\mathrm{n}}} \mathrm{b}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} \mathrm{c}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{c}^{\boldsymbol{\mathrm{n}}} \mathrm{a}^{\boldsymbol{\mathrm{n}}} }\:\geqslant\:\frac{\sqrt{\mathrm{3}\centerdot\left(\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \right)}}{\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}} \\ $$
Question Number 154478 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:{prove}\:{that}\:# \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{3}} \left(\:{x}\:\right).{ln}\left(\:{x}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\pi}{\mathrm{8}}\:\left(−\mathrm{2}\gamma\:+{ln}\left(\mathrm{3}\right)\right)\:.....\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\: \\ $$$$ \\ $$
Question Number 154476 Answers: 3 Comments: 0
$${soit}:{y}''−\mathrm{3}{y}'−\mathrm{4}{y}=\mathrm{3}{e}^{\mathrm{3}{x}\:} \:{avec}\:, \\ $$$${f}\left({o}\right)=−\frac{\mathrm{1}}{\mathrm{2}}\:{et}\:{f}'\left(\mathrm{0}\right)=\mathrm{4} \\ $$$${alors}\:{f}\left(\mathrm{1}\right)=? \\ $$$$ \\ $$
Question Number 154475 Answers: 2 Comments: 4
Question Number 154467 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\left(\mathrm{1}+\:\frac{\mathrm{1}}{{n}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{2}{n}}} \\ $$$$\: \\ $$
Question Number 154465 Answers: 0 Comments: 2
Question Number 154458 Answers: 1 Comments: 0
Question Number 154456 Answers: 1 Comments: 2
$${S}=\mathrm{90}^{\mathrm{2}} +\mathrm{91}^{\mathrm{2}} +.....+\mathrm{100}^{\mathrm{2}} \:\:=\:\:?? \\ $$
Question Number 154469 Answers: 1 Comments: 0
$$ \\ $$$${prove}:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\:\left(\mathrm{4}−\:\mathrm{2}{x}\:+{x}^{\:\mathrm{2}} \right){dx}\:=\mathrm{2}{ln}\left(\frac{\mathrm{2}}{{e}}\right)\:+\frac{\pi}{\:\sqrt{\mathrm{3}}} \\ $$$$ \\ $$
Question Number 154444 Answers: 2 Comments: 1
Question Number 154441 Answers: 1 Comments: 1
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\:\left(\mathrm{1}+\:\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} \:}{\:\mathrm{1}+\:\frac{\mathrm{2}}{{n}}\:} \\ $$$$\: \\ $$
Question Number 154440 Answers: 0 Comments: 0
$${arcsec}\left({sec}+\mathrm{2}\right)=?? \\ $$
Question Number 154437 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {arcos}\left(\frac{{cosx}}{\mathrm{1}+\mathrm{2}{cosx}}\right){dx} \\ $$
Question Number 154434 Answers: 1 Comments: 0
Question Number 154433 Answers: 0 Comments: 0
Question Number 154422 Answers: 0 Comments: 0
$$\int\frac{\mathrm{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta}{\mathrm{a}^{\mathrm{4}} \mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{b}^{\mathrm{4}} \mathrm{cos}\:^{\mathrm{2}} \theta}\mathrm{d}\theta \\ $$
Question Number 154421 Answers: 2 Comments: 0
$$\int\left[\left(\frac{\mathrm{x}}{\mathrm{e}}\right)^{\mathrm{x}} +\left(\frac{\mathrm{e}}{\mathrm{x}}\right)^{\mathrm{x}} \right]\mathrm{ln}\:\mathrm{xdx} \\ $$
Question Number 154429 Answers: 0 Comments: 3
Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558
Terms of Service
Privacy Policy
Contact: info@tinkutara.com