Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 554
Question Number 162509 Answers: 0 Comments: 0
$$\mathrm{find}\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{3}} \left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Question Number 162399 Answers: 1 Comments: 1
$$\:\:{Let}\:{m}\:\&\:{n}\:{be}\:{two}\:{positive}\:{numbers}\: \\ $$$$\:{greater}\:{than}\:\mathrm{1}\:.\:{If}\:\underset{{p}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{\mathrm{cos}\:\left({p}^{{n}} \right)} −{e}}{{p}^{{m}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}{e}\: \\ $$$$\:{then}\:\frac{{n}}{{m}}=? \\ $$
Question Number 162398 Answers: 1 Comments: 0
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{arctan}\:\left(\mathrm{t}+\mathrm{sin}\:\mathrm{x}\right)−\mathrm{arctan}\:\mathrm{t}\right)\mathrm{dt}}{\mathrm{arctan}\:\mathrm{x}}=? \\ $$
Question Number 162396 Answers: 1 Comments: 1
Question Number 162395 Answers: 0 Comments: 1
Question Number 162390 Answers: 0 Comments: 0
Question Number 162382 Answers: 2 Comments: 0
Question Number 162377 Answers: 1 Comments: 2
$$ \\ $$$$\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\psi''\:\left(\frac{\mathrm{1}}{\mathrm{4}}\:\right)=\:−\mathrm{2}\pi^{\:\mathrm{3}} −\:\mathrm{56}\:\zeta\:\left(\mathrm{3}\:\right) \\ $$$$ \\ $$
Question Number 162374 Answers: 0 Comments: 2
Question Number 162371 Answers: 2 Comments: 0
$$\:\:{If}\:{x}\:\in\mathbb{R}\:{the}\:{maximum}\:{value}\: \\ $$$$\:{of}\:\frac{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{17}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{7}}\:{is}\:... \\ $$
Question Number 162368 Answers: 1 Comments: 2
Question Number 162367 Answers: 1 Comments: 0
$$\:\:{Let}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{x}_{\mathrm{3}} \:{be}\:{the}\:{roots}\:{of}\:{the}\: \\ $$$${equation}\:{x}^{\mathrm{3}} +\mathrm{3}{x}+\mathrm{5}=\mathrm{0}\:.\:{Then}\:{the} \\ $$$${value}\:{of}\:{expression}\:\left({x}_{\mathrm{1}} +\frac{\mathrm{1}}{{x}_{\mathrm{1}} }\right)\left({x}_{\mathrm{2}} +\frac{\mathrm{1}}{{x}_{\mathrm{2}} }\right)\left({x}_{\mathrm{3}} +\frac{\mathrm{1}}{{x}_{\mathrm{3}} }\right)\:{is} \\ $$$$\:{equal}\:{to} \\ $$
Question Number 162366 Answers: 1 Comments: 0
$$\:{Given}\:{that}\:{the}\:{solution}\:{set}\:{of}\:{the}\: \\ $$$$\:{quadratic}\:{inequality}\:{ax}^{\mathrm{2}} +{bx}+{c}\:>\mathrm{0} \\ $$$$\:{is}\:\left(\mathrm{2},\mathrm{3}\right).\:{Then}\:{the}\:{solution}\:{set}\: \\ $$$$\:{of}\:{the}\:{inequality}\:{cx}^{\mathrm{2}} +{bx}+{a}\:<\mathrm{0}\: \\ $$$$\:{will}\:{be}\: \\ $$
Question Number 162365 Answers: 0 Comments: 0
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ln}^{\mathrm{2}} \left({x}+{y}+{z}\right){dxdydz}=? \\ $$
Question Number 162364 Answers: 2 Comments: 1
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}\:\mathrm{cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{3}{x}\:\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 162351 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{to}\:\mathrm{show}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{16}{x}−\mathrm{20}\: \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\left({x}^{\mathrm{2}} +{x}+{a}\right)^{\mathrm{2}} −\mathrm{4}\left({x}+{b}\right)^{\mathrm{2}} . \\ $$
Question Number 162348 Answers: 1 Comments: 4
Question Number 162344 Answers: 1 Comments: 1
Question Number 162338 Answers: 1 Comments: 0
$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:-\:\mathrm{3}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\:-\:\mathrm{4y}\:=\:\mathrm{tan}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{cos}\left(\mathrm{x}\right)\right) \\ $$
Question Number 162336 Answers: 1 Comments: 0
$$ \\ $$$${lim}_{\:{n}\rightarrow\infty} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{n}^{\:\mathrm{3}} }\:+\frac{\:\mathrm{4}}{\mathrm{8}\:+{n}^{\:\mathrm{3}} }\:+\:\frac{\mathrm{9}}{\mathrm{27}\:+{n}^{\:\mathrm{3}} }\:+...+\frac{{n}^{\:\mathrm{2}} }{\mathrm{2}{n}^{\:\mathrm{3}} }\:\right)=? \\ $$$$ \\ $$
Question Number 162326 Answers: 1 Comments: 0
$${Hello}\:{please}\:{show}\:{it}... \\ $$$$\:{a}\:\in\:\left[\mathrm{0}\:,\:\frac{\pi}{\mathrm{4}}\right]\:\:\:\:\:\:\:\:{a}\:\leqslant{tan}\:{a}\:\leqslant\:\mathrm{2}{a} \\ $$
Question Number 162309 Answers: 1 Comments: 3
Question Number 162305 Answers: 2 Comments: 0
$${proof}\:{that} \\ $$$$\mathrm{2}^{{n}+\mathrm{1}} >\left({n}+\mathrm{2}\right)\mathrm{sin}\:{n} \\ $$
Question Number 162303 Answers: 0 Comments: 0
Question Number 162280 Answers: 1 Comments: 0
$${y}={x}^{{sinx}} \\ $$$${find}\:\:{y}' \\ $$
Question Number 162278 Answers: 0 Comments: 0
Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558
Terms of Service
Privacy Policy
Contact: info@tinkutara.com