Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 554
Question Number 163210 Answers: 1 Comments: 1
Question Number 163209 Answers: 0 Comments: 0
$$\mathrm{f}\::\:\mathrm{I}\:\rightarrow\:\left(\mathrm{0}\:;\:\infty\right)\:\:;\:\:\mathrm{I}\:\subset\:\mathbb{R} \\ $$$$\mathrm{f}\:-\:\mathrm{twice}\:\mathrm{derivable}\:\:;\:\:\mathrm{f}\:^{'} \:;\:\mathrm{f}\:^{''} \:-\:\mathrm{continuous} \\ $$$$\mathrm{f}\:^{''} \left(\mathrm{x}\right)\:\mathrm{f}\left(\mathrm{x}\right)\:\geqslant\:\left(\mathrm{f}\:^{'} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \:;\:\:\forall\:\mathrm{x}\:\in\:\mathrm{I} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{2f}\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{2}}\right)\:\leqslant\:\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\mathrm{y}\right)\:\:;\:\:\forall\:\mathrm{x};\mathrm{y}\:\in\:\mathrm{I} \\ $$
Question Number 163205 Answers: 0 Comments: 0
$$\boldsymbol{{F}}{ourier}\:{series}\:{expansion}\:{for}\:{ln}\left({sin}\left({x}\right)\right) \\ $$
Question Number 163197 Answers: 0 Comments: 1
Question Number 163191 Answers: 0 Comments: 1
Question Number 163175 Answers: 0 Comments: 1
Question Number 163171 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{sin}\:\mathrm{36}°\:=\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}^{} }}}{\mathrm{4}} \\ $$
Question Number 163214 Answers: 0 Comments: 1
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:{x}−\mathrm{2tan}\:{x}+{x}^{\mathrm{3}} }{\mathrm{6}{x}−\mathrm{2sin}\:\mathrm{3}{x}−\mathrm{9}{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 163212 Answers: 1 Comments: 3
Question Number 163168 Answers: 2 Comments: 1
Question Number 163167 Answers: 1 Comments: 0
$$\:\mathrm{6}^{{x}+\mathrm{1}} \:+\mathrm{1}\:=\:\mathrm{8}^{{x}+\mathrm{1}} −\mathrm{27}^{{x}} \: \\ $$$$\:{x}=? \\ $$
Question Number 163166 Answers: 0 Comments: 0
$$ \\ $$
Question Number 163163 Answers: 1 Comments: 1
$${x}^{\mathrm{9}} −\mathrm{2022}{x}^{\mathrm{3}} +\sqrt{\mathrm{2021}}=\mathrm{0} \\ $$$${x}=\left\{?\right\} \\ $$
Question Number 163161 Answers: 1 Comments: 0
Question Number 163158 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\:{sin}\left({x}\right)+{cos}\left({x}\right)}{\:\sqrt{\mathrm{1}+{sin}\left({x}\right){cos}\left({x}\right)}}\:{dx}=\:\sqrt{\mathrm{2}}\:.{cot}^{\:−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\right) \\ $$$$\:\:\:−−−−− \\ $$
Question Number 163153 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\:\frac{{cos}\left({x}−{y}\right)}{{cos}\left({x}+{y}\right)}=\frac{\mathrm{1}+{tanxtany}}{\mathrm{1}−{tanxtany}} \\ $$
Question Number 163148 Answers: 1 Comments: 4
Question Number 163144 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\frac{\pi}{\mathrm{4}}\:-\:\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{1}\:-\:\mathrm{x}}\:\mathrm{dx} \\ $$
Question Number 163143 Answers: 0 Comments: 2
Question Number 163137 Answers: 1 Comments: 0
$${Soit}\:{U}_{{n}} =\frac{{n}−\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{5}{n}+\mathrm{5}}\:{avec}\:{n}\:\in\:\mathbb{N}. \\ $$$${Montrer}\:{par}\:{la}\:{definition}\:{que}\:{U}_{{n}} \: \\ $$$${converge}\:{vers}\:\mathrm{0}. \\ $$
Question Number 164451 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{How}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{you}}\:\boldsymbol{\mathrm{all}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{true}}\:\boldsymbol{\mathrm{or}}\:\boldsymbol{\mathrm{false}}??; \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Prove}}\:\boldsymbol{{the}}: \\ $$$$\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{p}}^{\mathrm{2}} +\boldsymbol{\mathrm{p}}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{q}}+\boldsymbol{{q}}^{\mathrm{2}} +\boldsymbol{{q}}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{r}}+\boldsymbol{{r}}^{\mathrm{2}} +\boldsymbol{{r}}^{\mathrm{3}} }\:+\:\frac{\mathrm{1}}{\mathrm{1}+\boldsymbol{{s}}+\boldsymbol{{s}}^{\mathrm{2}} +\boldsymbol{{s}}^{\mathrm{3}\:} }\:\geqslant\:\mathrm{1} \\ $$
Question Number 163134 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{prove}\:\:{or}\:{disprove} \\ $$$$ \\ $$$$\:\:\:\:\int_{\mathrm{2}\pi} ^{\:\mathrm{4}\pi} \frac{\:{sin}\left({x}\right)}{{x}}\:{dx}\:>\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{because} \\ $$$$\:\int_{\mathrm{2}\pi} ^{\:\mathrm{3}\pi} \frac{\:{sin}\left({x}\:\right)}{{x}}\:{dx}\:>\:\int_{\mathrm{3}\pi} ^{\:\mathrm{4}\pi} \frac{\mid{sin}\left({x}\right)\mid}{{x}}\:{dx} \\ $$$$ \\ $$
Question Number 163126 Answers: 0 Comments: 1
$$\:\boldsymbol{{Please}}\:\boldsymbol{{dear}}\:\boldsymbol{{members}}.\:\boldsymbol{{concerning}}\:\boldsymbol{{this}}\:\boldsymbol{{App}} \\ $$$$\:\boldsymbol{{How}}\:\boldsymbol{{to}}\:\boldsymbol{{change}}\:\boldsymbol{{the}}\:\boldsymbol{{color}}\: \\ $$$$\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{paper}}\:\boldsymbol{{on}}\:\boldsymbol{{which}}\:\boldsymbol{{we}}\:\boldsymbol{{are}} \\ $$$$\:\boldsymbol{{writing}}\left(\boldsymbol{{for}}\:\boldsymbol{{example}}\:\boldsymbol{{from}}\:\boldsymbol{{white}}\:\boldsymbol{{to}}\:\boldsymbol{{any}}\:\boldsymbol{{kind}}\right. \\ $$$$\left.\:\:\boldsymbol{{of}}\:\boldsymbol{{color}}\right)?????? \\ $$
Question Number 163125 Answers: 0 Comments: 0
Question Number 163120 Answers: 1 Comments: 0
Question Number 163119 Answers: 2 Comments: 0
$$\:\:{f}\:'\left({x}\right)=\:{f}\left({x}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\: \\ $$$$\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\Rightarrow{f}\left({x}\right)=? \\ $$
Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557 Pg 558
Terms of Service
Privacy Policy
Contact: info@tinkutara.com