Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 553

Question Number 163316    Answers: 3   Comments: 0

calculer une primitive de x:→ln(1−x^2 ) puis jusrifier la convergence de ∫_0 ^1 ln(1−x^2 )dx

$${calculer}\:{une}\:{primitive}\:{de}\:{x}:\rightarrow{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$${puis}\:{jusrifier}\:{la}\:{convergence}\:{de}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 163313    Answers: 1   Comments: 0

Find the non negative integer solutions of 2x+3y+5z=60

$${Find}\:{the}\:{non}\:{negative}\:{integer} \\ $$$${solutions}\:{of}\:\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{5}{z}=\mathrm{60} \\ $$

Question Number 163318    Answers: 1   Comments: 0

Question Number 163300    Answers: 1   Comments: 0

∫_0 ^2 f(x)dx⋍f(a)+f(2−a) For what values ​​of a is the following formula accurate for polynomials of degree 3?

$$\int_{\mathrm{0}} ^{\mathrm{2}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}\backsimeq\boldsymbol{{f}}\left(\boldsymbol{{a}}\right)+\boldsymbol{{f}}\left(\mathrm{2}−\boldsymbol{{a}}\right) \\ $$$$ \\ $$For what values ​​of a is the following formula accurate for polynomials of degree 3?

Question Number 163292    Answers: 1   Comments: 0

Question Number 163288    Answers: 1   Comments: 0

Question Number 163285    Answers: 1   Comments: 0

# Question # suppose that x_1 , x_( 2) are two distinct roots for ax^( 2) + bx +c = 0 on ( 0, 1 ). find the minimum value of ” a ” : a_( min) = ? −−−−−−−−−

$$ \\ $$$$\:\:\:\:#\:\mathrm{Q}{uestion}\:# \\ $$$$\:\:\:\:\:{suppose}\:{that}\:\:{x}_{\mathrm{1}} \:,\:\:{x}_{\:\mathrm{2}} \:\:{are}\:{two}\:{distinct} \\ $$$$\:\:\:\:{roots}\:{for}\:\:\:{ax}^{\:\mathrm{2}} +\:{bx}\:+{c}\:=\:\mathrm{0}\:\:{on}\:\left(\:\mathrm{0},\:\mathrm{1}\:\right). \\ $$$$\:\:\:\:\:{find}\:\:{the}\:{minimum}\:{value}\:{of}\:\:''\:{a}\:''\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{\:{min}} \:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 163284    Answers: 1   Comments: 0

given 2020^x +2020^(−x) =3 (√((2020^(6x) −2020^(−6x) )/( 2020^x −2020^(−x) )))=?

$$\:{given}\:\:\mathrm{2020}^{{x}} +\mathrm{2020}^{−{x}} =\mathrm{3} \\ $$$$\:\sqrt{\frac{\mathrm{2020}^{\mathrm{6}{x}} −\mathrm{2020}^{−\mathrm{6}{x}} }{\:\mathrm{2020}^{{x}} −\mathrm{2020}^{−{x}} }}=? \\ $$

Question Number 163283    Answers: 1   Comments: 1

hi ! We store 5 objects in three discernible drawers. Suppose that the different ways of carrying out these arrangements are equally probable, calculate the probability that one of the 3 drawers contains at least 3 objects.

$$\mathrm{hi}\:! \\ $$We store 5 objects in three discernible drawers. Suppose that the different ways of carrying out these arrangements are equally probable, calculate the probability that one of the 3 drawers contains at least 3 objects.

Question Number 163280    Answers: 1   Comments: 5

Question Number 163271    Answers: 0   Comments: 0

put : gcd( a , b )= (a, b ) if ( a ,b )= (a ,c )= (b ,c )=1 prove that : (abc , ab +ac +bc )=1

$$ \\ $$$$\:\:\:\:\:\:{put}\::\:\:{gcd}\left(\:{a}\:,\:{b}\:\right)=\:\left({a},\:{b}\:\right) \\ $$$$\:\:\:\:\:\:\:{if}\:\:\:\left(\:{a}\:,{b}\:\right)=\:\left({a}\:,{c}\:\right)=\:\left({b}\:,{c}\:\right)=\mathrm{1} \\ $$$${prove}\:{that}\::\:\:\left({abc}\:,\:{ab}\:+{ac}\:+{bc}\:\right)=\mathrm{1} \\ $$$$ \\ $$

Question Number 163259    Answers: 1   Comments: 0

Question Number 163257    Answers: 0   Comments: 0

Re ( ∫_0 ^( 1) sin^( −1) ((( 1)/(1− x^( 2) )) )dx )=?

$$ \\ $$$$\:\:\:\:\:\mathscr{R}{e}\:\left(\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}^{\:−\mathrm{1}} \left(\frac{\:\mathrm{1}}{\mathrm{1}−\:{x}^{\:\mathrm{2}} }\:\right){dx}\:\right)=? \\ $$$$ \\ $$

Question Number 163263    Answers: 1   Comments: 0

Question Number 163293    Answers: 1   Comments: 1

Question Number 163226    Answers: 2   Comments: 3

Question Number 163223    Answers: 1   Comments: 0

The arc of parabola y=−x^2 +9 in 0<x<3 is revolved about the line y=c and 0<c<9 to generate a solid. Find the value of c that minimizes the volume of the solid.

$$\mathrm{The}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{parabola}\:{y}=−{x}^{\mathrm{2}} +\mathrm{9}\:\mathrm{in}\:\mathrm{0}<{x}<\mathrm{3} \\ $$$$\mathrm{is}\:\mathrm{revolved}\:\mathrm{about}\:\mathrm{the}\:\mathrm{line}\:{y}={c}\:\mathrm{and}\:\mathrm{0}<{c}<\mathrm{9} \\ $$$$\mathrm{to}\:\mathrm{generate}\:\mathrm{a}\:\mathrm{solid}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{c}\:\mathrm{that}\:\mathrm{minimizes}\:\mathrm{the}\: \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}. \\ $$

Question Number 163222    Answers: 1   Comments: 0

(√(((√(x+4)) +2)/(2−(√(x+4))))) ≤ x−4

$$\:\:\:\sqrt{\frac{\sqrt{{x}+\mathrm{4}}\:+\mathrm{2}}{\mathrm{2}−\sqrt{{x}+\mathrm{4}}}}\:\leqslant\:{x}−\mathrm{4}\: \\ $$

Question Number 163217    Answers: 0   Comments: 0

Question Number 163211    Answers: 0   Comments: 0

Question Number 163210    Answers: 1   Comments: 1

Question Number 163209    Answers: 0   Comments: 0

f : I → (0 ; ∞) ; I ⊂ R f - twice derivable ; f^′ ; f^(′′) - continuous f^(′′) (x) f(x) ≥ (f^′ (x))^2 ; ∀ x ∈ I then prove that: 2f (((x + y)/2)) ≤ f(x) + f(y) ; ∀ x;y ∈ I

$$\mathrm{f}\::\:\mathrm{I}\:\rightarrow\:\left(\mathrm{0}\:;\:\infty\right)\:\:;\:\:\mathrm{I}\:\subset\:\mathbb{R} \\ $$$$\mathrm{f}\:-\:\mathrm{twice}\:\mathrm{derivable}\:\:;\:\:\mathrm{f}\:^{'} \:;\:\mathrm{f}\:^{''} \:-\:\mathrm{continuous} \\ $$$$\mathrm{f}\:^{''} \left(\mathrm{x}\right)\:\mathrm{f}\left(\mathrm{x}\right)\:\geqslant\:\left(\mathrm{f}\:^{'} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \:;\:\:\forall\:\mathrm{x}\:\in\:\mathrm{I} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{2f}\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{2}}\right)\:\leqslant\:\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\mathrm{y}\right)\:\:;\:\:\forall\:\mathrm{x};\mathrm{y}\:\in\:\mathrm{I} \\ $$

Question Number 163205    Answers: 0   Comments: 0

Fourier series expansion for ln(sin(x))

$$\boldsymbol{{F}}{ourier}\:{series}\:{expansion}\:{for}\:{ln}\left({sin}\left({x}\right)\right) \\ $$

Question Number 163197    Answers: 0   Comments: 1

Question Number 163191    Answers: 0   Comments: 1

Question Number 163175    Answers: 0   Comments: 1

  Pg 548      Pg 549      Pg 550      Pg 551      Pg 552      Pg 553      Pg 554      Pg 555      Pg 556      Pg 557   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com