Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 553
Question Number 162561 Answers: 2 Comments: 0
Question Number 162560 Answers: 0 Comments: 1
Question Number 162552 Answers: 1 Comments: 1
$$\boldsymbol{\alpha}_{\mathrm{1}} <\boldsymbol{\alpha}_{\mathrm{2}} <\boldsymbol{\alpha}_{\mathrm{3}} <\ldots<\boldsymbol{\alpha}_{{k}} \\ $$$$\frac{\mathrm{2}^{\mathrm{289}} +\mathrm{1}}{\mathrm{2}^{\mathrm{17}} +\mathrm{1}}=\mathrm{2}^{\boldsymbol{\alpha}_{\mathrm{1}} } +\mathrm{2}^{\boldsymbol{\alpha}_{\mathrm{2}} } +\ldots+\mathrm{2}^{\boldsymbol{\alpha}_{{k}} } \:\:\:\:\:\:\:\boldsymbol{\mathrm{k}}=? \\ $$$$ \\ $$$$\boldsymbol{\alpha}_{\mathrm{1}} ,\:\boldsymbol{\alpha}_{\mathrm{2}} ,\boldsymbol{\alpha}_{\mathrm{3}} ....\boldsymbol{\alpha}_{{k}} \\ $$positive increasing integers
Question Number 162539 Answers: 2 Comments: 0
$${Calculate}\: \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left(\mathrm{3}β{h}\right)β{f}\left(\mathrm{3}\right)}{\mathrm{2}{h}},\:{with}\:{f}'\left(\mathrm{3}\right)=\mathrm{2} \\ $$
Question Number 162535 Answers: 2 Comments: 3
$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\:\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\:{x}^{\:\mathrm{4}} \:+\:\mathrm{17}{x}^{\:\mathrm{2}} \:+\:\mathrm{16}}\:{dx}\overset{?} {=}\:\frac{\pi}{\mathrm{60}}\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Question Number 162530 Answers: 4 Comments: 10
Question Number 162525 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\sqrt{{x}}}{\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right)}=? \\ $$
Question Number 162523 Answers: 2 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{7tan}\:{x}β\mathrm{tan}\:\mathrm{7}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 162522 Answers: 1 Comments: 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\boldsymbol{\mathrm{N}}\:\mathrm{which}\:\mathrm{the}\:\mathrm{sphere} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{N} \\ $$$$\mathrm{has}\:\mathrm{an}\:\mathrm{inseribed}\:\mathrm{regular}\:\mathrm{tetrahedron} \\ $$$$\mathrm{whose}\:\mathrm{vertices}\:\mathrm{have}\:\mathrm{integer}\:\mathrm{coordinates} \\ $$
Question Number 162521 Answers: 0 Comments: 0
$$\mathrm{For}\:\mathrm{every}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}\:\boldsymbol{\mathrm{x}}\:,\:\mathrm{let} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\underset{\boldsymbol{\mathrm{r}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\left(\mathrm{x}+\mathrm{1}\right)^{\boldsymbol{\mathrm{r}}+\mathrm{1}} \:-\:\mathrm{x}^{\boldsymbol{\mathrm{r}}+\mathrm{1}} \right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{r}}}} \\ $$$$\mathrm{Find}:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{g}\left(\mathrm{x}\right)}{\mathrm{x}} \\ $$
Question Number 162516 Answers: 0 Comments: 1
$${differenciate}\:{using}\:{implicit}\:{function}\:\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{sin}\:{xy}=\mathrm{3} \\ $$
Question Number 162513 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{log}\left(\mathrm{x}\right)}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{9}\right)} \\ $$
Question Number 162512 Answers: 0 Comments: 1
$${solve}\:\int\sqrt{{cosec}^{\mathrm{2}} {x}β\mathrm{2}}\:{dx} \\ $$
Question Number 162506 Answers: 0 Comments: 1
Question Number 162490 Answers: 1 Comments: 0
Question Number 162496 Answers: 1 Comments: 0
Question Number 162520 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\boldsymbol{\pi}} {\int}}\:\left(\frac{\mathrm{x}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{sin}\:\mathrm{x}}\right)^{\mathrm{2}} \mathrm{dx}\: \\ $$
Question Number 162481 Answers: 1 Comments: 0
Question Number 162478 Answers: 1 Comments: 0
$$\mathrm{Calculate}:\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{H}_{\boldsymbol{\mathrm{k}}} \:\mathrm{2}^{-\boldsymbol{\mathrm{k}}} }{\mathrm{k}\:+\:\mathrm{1}} \\ $$$$\mathrm{where}\:\mathrm{H}_{\boldsymbol{\mathrm{k}}} \:\mathrm{is}\:\mathrm{the}\:\boldsymbol{\mathrm{k}}-\mathrm{th}\:\mathrm{harmonic}\:\mathrm{number} \\ $$
Question Number 162473 Answers: 1 Comments: 0
Question Number 162471 Answers: 2 Comments: 0
$$\left[{reposted}\right] \\ $$$${find}\:\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right){dx}\:+\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{sin}^{-\mathrm{1}} \left(\sqrt[{\mathrm{8}}]{\mathrm{x}}\right)\:{dx}=? \\ $$
Question Number 162429 Answers: 0 Comments: 1
$${put}\:{the}\:{digits}\:\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},{in}\:{place}\:{of}\:{the}\:{letters}\:{in}\:{order}\:{to}\:{perform}\:{the}\:{edditon} \\ $$
Question Number 162424 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{calculate}\: \\ $$$$ \\ $$$$\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\:\left(β\mathrm{1}\right)^{\:{n}} {n}}{\mathrm{3}^{\:{n}} \:\left(\mathrm{2}{n}\:β\mathrm{1}\:\right)}\:=?\:\:\:\: \\ $$$$\:\:\:\:β\:\mathrm{I}{nspired}\:{from}\:{Sir}\:\mathrm{G}{haderi}'{s}\:{post}β \\ $$
Question Number 162533 Answers: 5 Comments: 0
Question Number 162416 Answers: 1 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} {\int}}\:\frac{\mathrm{4}\:\mathrm{ln}\:\left(\mathrm{cot}\boldsymbol{\mathrm{x}}\right)}{\mathrm{cos}\left(\mathrm{2x}\:+\:\mathrm{2022}\boldsymbol{\pi}\right)}\:\mathrm{dx}\:=\:\mathrm{3}\boldsymbol{\zeta}\left(\mathrm{2}\right) \\ $$
Question Number 162417 Answers: 0 Comments: 4
$$\mathrm{Prove} \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{sin}^{\mathrm{8}} \left(\mathrm{x}\right)\:+\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{sin}^{-\mathrm{1}} \:\left(\sqrt[{\mathrm{8}}]{\mathrm{x}}\right)\:\geqslant\:\frac{\pi}{\mathrm{2}} \\ $$
Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557
Terms of Service
Privacy Policy
Contact: info@tinkutara.com