Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 553
Question Number 164134 Answers: 1 Comments: 0
Question Number 164133 Answers: 1 Comments: 0
Question Number 164129 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{prove} \\ $$$$ \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\:\mathscr{R}{e}\:\left(\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{Li}_{\:\mathrm{2}} \:\left(\:\frac{\mathrm{1}}{{x}}\:\right)\:\right){dx}\:=\:\zeta\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:βββ{m}.{n}βββ \\ $$
Question Number 164125 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{arctan}\:\left(\frac{\mathrm{sin}\boldsymbol{\mathrm{x}}}{\mathrm{u}\:+\:\mathrm{cos}\boldsymbol{\mathrm{x}}}\right)\:\mathrm{dudx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{16}}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{ln}\left(\mathrm{2}\right)\:-\:\frac{\pi}{\mathrm{4}} \\ $$
Question Number 164124 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{16}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{1}^{\boldsymbol{\mathrm{x}}} }{\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{1}^{\boldsymbol{\mathrm{x}}} }\:=\:\frac{\mathrm{8}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{1}}{\mathrm{65}} \\ $$
Question Number 164123 Answers: 0 Comments: 0
$$\mathrm{very}\:\mathrm{nice}\:\mathrm{to}\:\mathrm{problem}: \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{in}}\:\boldsymbol{{closed}}\:\boldsymbol{{form}}; \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\boldsymbol{{log}}\:\left(\mathrm{1}β\boldsymbol{{x}}^{\mathrm{2}} \right)\:\boldsymbol{{log}}\:^{\boldsymbol{{n}}\:} \:\left(\mathrm{1}β\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{n}}\:\in\:\:\mathbb{N}^{+} \\ $$$$\:^{\mathrm{z}.} \\ $$
Question Number 164122 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}}=? \\ $$
Question Number 164121 Answers: 1 Comments: 3
$${if}\:{w}\:=\:{f}\left({x},{y}\right)\:{and}\:{x}\:=\:{r}\:{cos}\theta\:,\:{y}\:=\:{rsin}\theta \\ $$$$ \\ $$$${then}\:{prove}\:{that}\:{w}_{{rr}} \:+\:{w}_{\theta\theta} \:=\:\mathrm{0}? \\ $$
Question Number 164120 Answers: 0 Comments: 1
$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{all}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{Integral}; \\ $$$$\:\boldsymbol{{Prove}}\:\boldsymbol{{the}}; \\ $$$$\:\int\:\frac{\left(\boldsymbol{{In}}\:\boldsymbol{{x}}\right)\mathrm{2}}{\boldsymbol{{x}}}\:\boldsymbol{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:\left(\boldsymbol{{In}}\:\boldsymbol{{x}}\right)^{\mathrm{3}} \\ $$
Question Number 164117 Answers: 0 Comments: 0
$${soit}\:\left({a}_{{n}} \right)_{{n}} {une}\:{suite}\:{define}\:{par} \\ $$$${a}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}β{ln}\left({n}\right)\:\:{montrons}\: \\ $$$${a}_{{n}} {converge} \\ $$
Question Number 164116 Answers: 0 Comments: 1
$$\left({a}+{b}+{c}+{x}\right)^{\mathrm{100}} \\ $$$$\mathrm{50}^{{th}} \:{limit}\:{is}\:{equl}\:{to}=? \\ $$
Question Number 164118 Answers: 1 Comments: 0
$$\boldsymbol{{What}}\:\boldsymbol{{is}} \\ $$$$\:\boldsymbol{{Mathematical}}\:\boldsymbol{{Calculus}}\:\boldsymbol{{and}} \\ $$$$\boldsymbol{{Mathematical}}\:\boldsymbol{{fhysics}}, \\ $$$$\boldsymbol{{Then}}\:\boldsymbol{{what}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{difference}}\:\boldsymbol{{and}} \\ $$$$\boldsymbol{{how}}\:\boldsymbol{{to}}\:\boldsymbol{{explain}}?? \\ $$$$\:^{\left[\mathrm{Zaynal}\right]} \\ $$
Question Number 164103 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$\: \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}β{x}}\:\right).\frac{{dx}}{{x}\:\sqrt{\:\mathrm{1}β{x}^{\:\mathrm{2}} }}\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:ββ\:{m}.{n}ββ \\ $$$$ \\ $$
Question Number 164468 Answers: 2 Comments: 0
Question Number 164466 Answers: 0 Comments: 1
Question Number 164085 Answers: 0 Comments: 0
Question Number 164077 Answers: 1 Comments: 0
Question Number 164073 Answers: 2 Comments: 1
Question Number 164071 Answers: 1 Comments: 0
Question Number 164068 Answers: 1 Comments: 0
Question Number 164059 Answers: 0 Comments: 0
$$\:\:\mathrm{Air}\:\mathrm{leaks}\:\mathrm{from}\:\mathrm{a}\:\mathrm{spherical}\:\mathrm{ballon}\:\mathrm{so}\:\mathrm{that}\: \\ $$$$\:\mathrm{it}\:\mathrm{maintains}\:\mathrm{its}\:\mathrm{shape}\:\mathrm{at}\:\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{25}\:\mathrm{cc}/\mathrm{m} \\ $$$$\:.\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{change}\:\mathrm{in}\:\mathrm{the}\:\mathrm{length} \\ $$$$\:\:\mathrm{of}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{balloon}\:\mathrm{when}\:\mathrm{the}\:\mathrm{radius} \\ $$$$\:\:\mathrm{is}\:\mathrm{5}\:\mathrm{cm} \\ $$
Question Number 164052 Answers: 0 Comments: 0
Question Number 164050 Answers: 1 Comments: 0
Question Number 164039 Answers: 1 Comments: 0
$${consider}\:{f}\:{function}\:{Df}=\left[\mathrm{0},\mathrm{1}\right] \\ $$$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right)\:{c}\in\left[\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right]\:{show}\:{that}\:{f}\left({c}\right)={f}\left({c}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Question Number 164027 Answers: 1 Comments: 2
Question Number 164024 Answers: 1 Comments: 0
Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556 Pg 557
Terms of Service
Privacy Policy
Contact: info@tinkutara.com