Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 552
Question Number 163428 Answers: 0 Comments: 2
$${jusgifier}\:{la}\:{convergence}\:{de}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 163414 Answers: 1 Comments: 0
$$\int\frac{\boldsymbol{{dx}}}{\:\sqrt{\boldsymbol{{cosx}}\:\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{x}}}+\sqrt{\boldsymbol{{sinx}}\:\boldsymbol{{cos}}^{\mathrm{3}} \boldsymbol{{x}}}} \\ $$
Question Number 163413 Answers: 0 Comments: 3
Question Number 163408 Answers: 1 Comments: 0
$$\sqrt[{\mathrm{3}}]{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{21}}}+\sqrt[{\mathrm{3}}]{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{9}}\sqrt{\mathrm{21}}}=? \\ $$
Question Number 163402 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{10}} \left(\boldsymbol{{x}}−\mathrm{3}\right)^{\mathrm{3}} \boldsymbol{{dx}} \\ $$
Question Number 163411 Answers: 0 Comments: 0
Question Number 163400 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\: \\ $$$$\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} {cot}^{\:−\mathrm{1}} \left(\mathrm{1}+{x}^{\:\mathrm{2}} \right)=\left(\sqrt{\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\mathrm{2}}}\:\right)\:\:\pi \\ $$$$ \\ $$
Question Number 163397 Answers: 0 Comments: 5
Question Number 163396 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\boldsymbol{\mathrm{a}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{b}}\:\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers} \\ $$$$\mathrm{then}\:\:\Sigma\:\left(\mathrm{an}\:+\:\mathrm{b}\right)^{-\boldsymbol{\mathrm{p}}} \:\:\mathrm{converges}\:\mathrm{if}\:\:\boldsymbol{\mathrm{p}}>\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{diverges}\:\mathrm{if}\:\:\boldsymbol{\mathrm{p}}\leqslant\mathrm{1} \\ $$
Question Number 163393 Answers: 1 Comments: 0
Question Number 163386 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{3}} }−\sqrt[{\mathrm{4}}]{{x}^{\mathrm{4}} −\mathrm{1}} \\ $$
Question Number 163385 Answers: 1 Comments: 0
Question Number 163384 Answers: 2 Comments: 0
Question Number 163383 Answers: 0 Comments: 0
Question Number 163435 Answers: 1 Comments: 0
Question Number 163378 Answers: 0 Comments: 0
Question Number 163368 Answers: 1 Comments: 0
Question Number 163367 Answers: 2 Comments: 0
Question Number 163357 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\mathrm{3}{x}−\mathrm{3}{x}^{\:\mathrm{2}} +\:{x}^{\:\mathrm{3}} \right)=\:? \\ $$$$ \\ $$
Question Number 163349 Answers: 1 Comments: 0
Question Number 163346 Answers: 0 Comments: 2
$${how}\:{do}\:{i}\:{calculate}\:{for}\:\frac{\mathrm{1}}{\mathrm{2}}! \\ $$
Question Number 163340 Answers: 1 Comments: 0
Question Number 163333 Answers: 0 Comments: 2
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{{sinx}}}{\:\sqrt{{sinx}}+\sqrt{{cosx}}}{dx} \\ $$
Question Number 163327 Answers: 1 Comments: 0
$$\left(\mathrm{1}+\frac{\mathrm{20}}{\mathrm{100}}\right)^{{n}} =\frac{\mathrm{216}}{\mathrm{125}}\:\:\:\:\:\:{n}=? \\ $$
Question Number 163325 Answers: 1 Comments: 2
$$\mathrm{2}{a}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}}+\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}}+...+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2024}}+\sqrt{\mathrm{2025}}}=? \\ $$
Question Number 163324 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{sequence} \\ $$$$\mathrm{where}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term},\:{a}_{\mathrm{1}} >\mathrm{1}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{ratio},\:{r}>\mathrm{0}.\: \\ $$$$\mathrm{If}\:{b}_{{n}} =\mathrm{log}_{\mathrm{2}} \:{a}_{{n}} \:\mathrm{where}\:{n}\in\mathbb{N},\:{b}_{\mathrm{1}} +{b}_{\mathrm{3}} +{b}_{\mathrm{5}} =\mathrm{6}, \\ $$$$\mathrm{and}\:{b}_{\mathrm{1}} \centerdot{b}_{\mathrm{3}} \centerdot{b}_{\mathrm{5}} =\mathrm{0},\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{term}\:\mathrm{of}\:\left\{{a}_{{n}} \right\}. \\ $$
Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555 Pg 556
Terms of Service
Privacy Policy
Contact: info@tinkutara.com