Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 552

Question Number 161505    Answers: 1   Comments: 3

((a + ((a+8)/3) (√((a−1)/3))))^(1/3) + ((a − ((a+8)/3) (√((a−1)/3))))^(1/3) = ?

$$\sqrt[{\mathrm{3}}]{{a}\:+\:\frac{{a}+\mathrm{8}}{\mathrm{3}}\:\sqrt{\frac{{a}−\mathrm{1}}{\mathrm{3}}}}\:+\:\sqrt[{\mathrm{3}}]{{a}\:−\:\frac{{a}+\mathrm{8}}{\mathrm{3}}\:\sqrt{\frac{{a}−\mathrm{1}}{\mathrm{3}}}}\:\:=\:\:? \\ $$

Question Number 161504    Answers: 1   Comments: 0

Montrer a^ partir du crite^ re de Cauchy que U_n =Σ_(k=1) ^n (1/k^2 ) est une de Cauchy. −−−−−−−−−−−−−−−− Show by using Cauchy′s sequence definition that U_n =Σ_(k=1) ^n (1/k^2 ) is a sequence of Cauchy.

$${Montrer}\:\grave {{a}}\:{partir}\:{du}\:{crit}\grave {{e}re}\:{de}\: \\ $$$${Cauchy}\:{que}\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:{est}\:{une} \\ $$$${de}\:{Cauchy}. \\ $$$$−−−−−−−−−−−−−−−− \\ $$$${Show}\:{by}\:{using}\:{Cauchy}'{s}\:{sequence} \\ $$$${definition}\:{that}\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:{is}\:{a}\: \\ $$$${sequence}\:{of}\:{Cauchy}. \\ $$

Question Number 161500    Answers: 1   Comments: 0

x^6 - 6x^5 + ax^4 + bx^3 + cx^2 + dx + 1 = 0 all the roots of the equation are positive find a+b+c+d=?

$$\mathrm{x}^{\mathrm{6}} \:-\:\mathrm{6x}^{\mathrm{5}} \:+\:\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{3}} \:+\:\mathrm{cx}^{\mathrm{2}} \:+\:\mathrm{dx}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{find}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=? \\ $$

Question Number 161485    Answers: 0   Comments: 0

Find range of function y=((cos 4x+4sin 4x+1)/(cos 4x+2))

$$\:\mathrm{Find}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function}\:\mathrm{y}=\frac{\mathrm{cos}\:\mathrm{4x}+\mathrm{4sin}\:\mathrm{4x}+\mathrm{1}}{\mathrm{cos}\:\mathrm{4x}+\mathrm{2}} \\ $$

Question Number 161484    Answers: 2   Comments: 0

{ (((1/a)+(1/b)=9)),((((1/( (a)^(1/3) ))+(1/( (b)^(1/3) )))(1+(1/( (a)^(1/3) )))(1+(1/( (b)^(1/3) )))=18)) :} 8a+4b=?

$$\:\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}=\mathrm{9}}\\{\left(\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{b}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{a}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{b}}}\right)=\mathrm{18}}\end{cases} \\ $$$$\:\:\:\mathrm{8a}+\mathrm{4b}=? \\ $$

Question Number 161482    Answers: 3   Comments: 1

Question Number 161476    Answers: 0   Comments: 2

Between (3/6) and −(4/5) How do i list two rational numbers please?

$$\:{Between}\:\frac{\mathrm{3}}{\mathrm{6}}\:\:{and}\:−\frac{\mathrm{4}}{\mathrm{5}} \\ $$$$\:{How}\:{do}\:{i}\:{list}\:{two}\:{rational}\: \\ $$$$\:{numbers}\:{please}? \\ $$

Question Number 161538    Answers: 2   Comments: 0

lim_( x → −2 ) (((2+ 3x + 3x^( 2) + x^( 3) )/( sin ( ((πx)/2) ))) )=? −−−−

$$ \\ $$$${lim}_{\:{x}\:\rightarrow\:−\mathrm{2}\:\:} \left(\frac{\mathrm{2}+\:\mathrm{3}{x}\:+\:\mathrm{3}{x}^{\:\mathrm{2}} \:+\:{x}^{\:\mathrm{3}} }{\:{sin}\:\left(\:\frac{\pi{x}}{\mathrm{2}}\:\right)}\:\right)=? \\ $$$$\:\:\:\:−−−− \\ $$

Question Number 161491    Answers: 0   Comments: 0

Question Number 161464    Answers: 0   Comments: 1

Given that in ΔABC, (sin A+sin B):(sin B+sin C):(sin C+sin A)= 6: 4: 5 Find the angle A.

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{in}\:\Delta\mathrm{ABC}, \\ $$$$\left(\mathrm{sin}\:\mathrm{A}+\mathrm{sin}\:\mathrm{B}\right):\left(\mathrm{sin}\:\mathrm{B}+\mathrm{sin}\:\mathrm{C}\right):\left(\mathrm{sin}\:\mathrm{C}+\mathrm{sin}\:\mathrm{A}\right)=\:\mathrm{6}:\:\mathrm{4}:\:\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{A}. \\ $$

Question Number 161463    Answers: 2   Comments: 0

Let f(x)= x+∣x∣−1. Find lim_(x→0^+ ) ((f(x)−f(0))/(x−0)) and lim_(x→0^− ) ((f(x)−f(0))/(x−0)). Hence, determine whether f(x) is differentiable at x=0.

$$\mathrm{Let}\:{f}\left({x}\right)=\:{x}+\mid{x}\mid−\mathrm{1}.\: \\ $$$$\mathrm{Find}\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{{f}\left({x}\right)−{f}\left(\mathrm{0}\right)}{{x}−\mathrm{0}}\:\mathrm{and}\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\:\frac{{f}\left({x}\right)−{f}\left(\mathrm{0}\right)}{{x}−\mathrm{0}}. \\ $$$$\mathrm{Hence},\:\mathrm{determine}\:\mathrm{whether}\:{f}\left({x}\right)\:\mathrm{is}\: \\ $$$$\mathrm{differentiable}\:\mathrm{at}\:{x}=\mathrm{0}. \\ $$

Question Number 161462    Answers: 1   Comments: 0

Find the particular solution to the differential equation 2y′′+5y′+2y=0 subject to the initial conditions y(0)=2y , y′(0)=1 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{differential} \\ $$$$\mathrm{equation}\:\mathrm{2}{y}''+\mathrm{5}{y}'+\mathrm{2}{y}=\mathrm{0}\:\mathrm{subject}\:\mathrm{to}\:\mathrm{the}\:\mathrm{initial} \\ $$$$\mathrm{conditions}\:\:{y}\left(\mathrm{0}\right)=\mathrm{2}{y}\:,\:\:{y}'\left(\mathrm{0}\right)=\mathrm{1}\:. \\ $$

Question Number 161461    Answers: 0   Comments: 3

Let the region bounded by the curve y=x(1−x) and the x-axis be R. The line y=mx divides R into two parts, find the value of (1−m)^3 .

$$\mathrm{Let}\:\mathrm{the}\:\mathrm{region}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{curve}\: \\ $$$${y}={x}\left(\mathrm{1}−{x}\right)\:\mathrm{and}\:\mathrm{the}\:{x}-\mathrm{axis}\:\mathrm{be}\:\mathrm{R}. \\ $$$$\mathrm{The}\:\mathrm{line}\:{y}={mx}\:\mathrm{divides}\:\mathrm{R}\:\mathrm{into}\:\mathrm{two}\:\mathrm{parts}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{1}−{m}\right)^{\mathrm{3}} . \\ $$

Question Number 161456    Answers: 0   Comments: 0

Question Number 161450    Answers: 0   Comments: 0

A ector field is given by v= (x^2 −y^2 +x)i−(2xy+y)j. Show that vector v is irrotational hence find the scalar potential

$$\mathrm{A}\: \mathrm{ector}\:\mathrm{field}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\mathrm{v}= \\ $$$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} +\mathrm{x}\right)\mathrm{i}−\left(\mathrm{2xy}+\mathrm{y}\right)\mathrm{j}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{vector}\:\mathrm{v}\:\mathrm{is}\:\mathrm{irrotational}\:\mathrm{hence}\:\mathrm{find} \\ $$$$\:\mathrm{the}\:\mathrm{scalar}\:\mathrm{potential} \\ $$

Question Number 161444    Answers: 0   Comments: 2

Question Number 161443    Answers: 1   Comments: 0

Question Number 161442    Answers: 1   Comments: 0

Use the binomial theorem to write the first four terms of the expansion of (√(2+3x−x^2 ))

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{binomial}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{write} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expansion} \\ $$$$\mathrm{of}\:\sqrt{\mathrm{2}+\mathrm{3}{x}−{x}^{\mathrm{2}} } \\ $$

Question Number 161439    Answers: 0   Comments: 1

Question Number 161437    Answers: 2   Comments: 0

lim_(x→0) ((((8x^2 −4x+1))^(1/(10)) +((7x^2 +3x+1))^(1/5) −2)/x) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{10}}]{\mathrm{8}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}\:+\sqrt[{\mathrm{5}}]{\mathrm{7}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}}−\mathrm{2}}{{x}}\:=? \\ $$

Question Number 161433    Answers: 0   Comments: 0

if x;y;z>0 such that x+y+z=3 and 𝛌≥0 then prove that: (x/(y^3 +λy^2 )) + (y/(z^3 +λz^2 )) + (z/(x^3 +λx^2 )) ≥ (3/(λ+1))

$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{3} \\ $$$$\mathrm{and}\:\:\boldsymbol{\lambda}\geqslant\mathrm{0}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}^{\mathrm{3}} +\lambda\mathrm{y}^{\mathrm{2}} }\:+\:\frac{\mathrm{y}}{\mathrm{z}^{\mathrm{3}} +\lambda\mathrm{z}^{\mathrm{2}} }\:+\:\frac{\mathrm{z}}{\mathrm{x}^{\mathrm{3}} +\lambda\mathrm{x}^{\mathrm{2}} }\:\geqslant\:\frac{\mathrm{3}}{\lambda+\mathrm{1}} \\ $$

Question Number 161429    Answers: 0   Comments: 1

help me ! { ((x+3y+z=2)),((−3x+4y+2z=3)),((−2x+7y+3z=5)) :} Gauss Method...

$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\begin{cases}{{x}+\mathrm{3}{y}+{z}=\mathrm{2}}\\{−\mathrm{3}{x}+\mathrm{4}{y}+\mathrm{2}{z}=\mathrm{3}}\\{−\mathrm{2}{x}+\mathrm{7}{y}+\mathrm{3}{z}=\mathrm{5}}\end{cases} \\ $$$$\boldsymbol{\mathrm{G}}\mathrm{auss}\:\mathrm{Method}... \\ $$

Question Number 161424    Answers: 1   Comments: 0

Question Number 161418    Answers: 0   Comments: 0

4^(2021 ) =a^3 +b^3 +c^3 , (a:b:c)⇒ natural numbers

$$\mathrm{4}^{\mathrm{2021}\:} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} ,\:\left({a}:{b}:{c}\right)\Rightarrow\:{natural}\:{numbers} \\ $$

Question Number 161416    Answers: 0   Comments: 0

Question Number 161412    Answers: 0   Comments: 0

  Pg 547      Pg 548      Pg 549      Pg 550      Pg 551      Pg 552      Pg 553      Pg 554      Pg 555      Pg 556   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com