Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 551
Question Number 163798 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:{by}\:{a}\:{simple}\:{method}\:{calculate}\:\:\: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sum_{{k}=\mathrm{0}} ^{{n}} {COS}\left({kx}\right) \\ $$$$ \\ $$$$ \\ $$
Question Number 163789 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{arccotgh}}\left(\boldsymbol{{x}}\right)}{\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$$$\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$
Question Number 163785 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}−\mathrm{1}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{M}}.\boldsymbol{\mathrm{A}} \\ $$
Question Number 163782 Answers: 1 Comments: 1
Question Number 163786 Answers: 1 Comments: 0
Question Number 163775 Answers: 1 Comments: 1
Question Number 163763 Answers: 3 Comments: 1
$$ \\ $$
Question Number 163759 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\mathrm{x}}}\right)^{\mathrm{2}} \boldsymbol{\mathrm{dx}}=? \\ $$$$\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{M}}.\boldsymbol{\mathrm{A}} \\ $$
Question Number 163751 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{{ln}}\left(\mathrm{1}+\boldsymbol{{x}}\right)\boldsymbol{{ln}}\left(\mathrm{1}−\boldsymbol{{x}}\right)\boldsymbol{{dx}}=? \\ $$$$\boldsymbol{{by}}\:\boldsymbol{{MATH}}.\boldsymbol{{AMIN}} \\ $$$$−−−−−−−−−−−−−−−−−−−− \\ $$
Question Number 163747 Answers: 2 Comments: 0
$$\mathrm{a}^{\mathrm{2}} \left(\mathrm{a}\:-\:\mathrm{3b}\right)\:=\:\mathrm{b}^{\mathrm{2}} \left(\mathrm{b}\:-\:\mathrm{3a}\right)\:+\:\mathrm{27} \\ $$$$\mathrm{ab}\:=\:\mathrm{2} \\ $$$$\mathrm{find}\:\:\mathrm{a}^{\mathrm{3}} \:-\:\mathrm{b}^{\mathrm{3}} \:=\:? \\ $$
Question Number 163746 Answers: 3 Comments: 0
$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{5y}^{\mathrm{2}} \:-\:\mathrm{4xy}\:+\:\mathrm{6y}\:+\:\mathrm{9}\:=\:\mathrm{0} \\ $$$$\mathrm{find}\:\:\mathrm{xy}=? \\ $$
Question Number 163743 Answers: 0 Comments: 0
Question Number 163741 Answers: 0 Comments: 4
Question Number 163736 Answers: 1 Comments: 0
Question Number 163735 Answers: 0 Comments: 1
Question Number 163733 Answers: 0 Comments: 0
$${prove}\:{v}=\sqrt{\frac{{F}\centerdot{L}}{{m}}}\:\:\:? \\ $$
Question Number 163732 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\mathrm{I}{f}\:,\:\:\boldsymbol{\phi}\:=\:\int_{−\infty} ^{\:+\infty} \frac{\:{sin}\left({x}\right).{ln}^{\:\mathrm{2}} \left({x}\:\right)}{{x}}\:\:{then} \\ $$$$\:\:\:\:\:\:{find}\:\::\:\:\:\:\:\:\:\:\:\mathcal{I}{m}\:\left(\boldsymbol{\phi}\:\right)\:=\:?\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\: \\ $$$$ \\ $$
Question Number 163730 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\:\int\:\frac{\mathrm{sin}\left(\mathrm{x}\right)\:+\:\sqrt{\mathrm{3}}\:\mathrm{cos}\left(\mathrm{x}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$
Question Number 163720 Answers: 1 Comments: 0
$$\int_{\mathrm{2}} ^{\:\mathrm{4}} \frac{\sqrt{{ln}\left(\mathrm{9}−{x}\right)}}{\:\sqrt{{ln}\left(\mathrm{9}−{x}\right)}+\sqrt{{ln}\left(\mathrm{3}+{x}\right)}}\:{dx} \\ $$$$ \\ $$
Question Number 163719 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{limit}: \\ $$$$\Phi\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:-\:\frac{\mathrm{1}}{\mathrm{n}!}\:\centerdot\:\frac{\mathrm{d}^{\boldsymbol{\mathrm{n}}} }{\mathrm{dx}^{\boldsymbol{\mathrm{n}}} }\:\left(\frac{\mathrm{e}^{\boldsymbol{\mathrm{x}}-\mathrm{1}} }{\mathrm{x}\:-\:\mathrm{1}}\right)\mid_{\boldsymbol{\mathrm{x}}=\mathrm{0}} \\ $$
Question Number 163718 Answers: 0 Comments: 0
$$\mathrm{let}\:\:\mathrm{m}\in\mathbb{N}\:\:\mathrm{and}\:\:\mathrm{0}<\mathrm{x}<\mathrm{m} \\ $$$$\mathrm{if}\:\:\:\boldsymbol{\mathrm{i}}\:=\:\left[\frac{\left(\mathrm{m}\:+\:\mathrm{1}\right)\mathrm{x}}{\mathrm{x}\:+\:\mathrm{1}}\right] \\ $$$$\mathrm{prove}\:\mathrm{that}\:\:\:\mathrm{2}\begin{pmatrix}{\mathrm{m}}\\{\:\:\mathrm{i}}\end{pmatrix}\:\geqslant\:\mathrm{x}^{\boldsymbol{\mathrm{m}}-\boldsymbol{\mathrm{i}}} \\ $$$$\mathrm{where}\:\left[\boldsymbol{\mathrm{x}}\right]\:\mathrm{is}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{of}\:\boldsymbol{\mathrm{x}}\:\mathrm{and}\:\begin{pmatrix}{\mathrm{m}}\\{\:\:\mathrm{i}}\end{pmatrix} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{binomial}\:\mathrm{coefficient} \\ $$
Question Number 163715 Answers: 0 Comments: 0
Question Number 163709 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{CALCULUS}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}} }{\boldsymbol{\mathrm{x}}+\mathrm{1}}\boldsymbol{\mathrm{dx}}=?\:\:\:\:\:\boldsymbol{\mathrm{n}}\geqslant\mathrm{1} \\ $$
Question Number 163707 Answers: 0 Comments: 0
$${etudier}\:{suivant}\:{les}\:{reels}\:\:{a}\:{et}\:{b}\:{la}\:{convergence} \\ $$$$\underset{{n}=\mathrm{1}} {\sum}\frac{{a}^{{n}} }{{b}^{{n}} +{n}} \\ $$
Question Number 163704 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}\left(\zeta\:\left(\mathrm{1}+{n}\right)\:−\mathrm{1}\right)\:=? \\ $$$$ \\ $$
Question Number 163700 Answers: 3 Comments: 0
$$\:\:\mathcal{K}\left({x}\right)\:=\:\frac{\mathrm{3}\:\mathrm{cos}\:{x}}{\mathrm{5}+\mathrm{4sin}\:{x}} \\ $$$$\:\left.\begin{matrix}{{max}\:\mathcal{K}\left({x}\right)}\\{{min}\:\mathcal{K}\left({x}\right)}\end{matrix}\right\}\:=? \\ $$
Pg 546 Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555
Terms of Service
Privacy Policy
Contact: info@tinkutara.com