Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 551

Question Number 154892    Answers: 1   Comments: 2

Find: cos(((3π)/7)) + cos(((3π)/7)) (√(2 - 2cos(((3π)/7)))) = ?

$$\mathrm{Find}: \\ $$$$\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\:\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:\sqrt{\mathrm{2}\:-\:\mathrm{2cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}\:=\:? \\ $$

Question Number 154889    Answers: 0   Comments: 0

Question Number 154888    Answers: 1   Comments: 0

Question Number 154926    Answers: 1   Comments: 0

∫_0 ^1 ((2x^2 )/((x^2 +1)^2 ))dx=

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$

Question Number 154927    Answers: 1   Comments: 0

Let I_n =∫x^n e^(−x) dx show that ∫_0 ^∞ x^n e^(−x) dx=n!

$$\mathrm{Let}\:{I}_{{n}} =\int{x}^{{n}} {e}^{−{x}} {dx} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}={n}! \\ $$

Question Number 154880    Answers: 6   Comments: 0

Question Number 154877    Answers: 2   Comments: 1

∫_(π/2) ^(π/4) sin^3 (x)cos^2 (x)dx

$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{4}}} {sin}^{\mathrm{3}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right){dx} \\ $$

Question Number 154876    Answers: 1   Comments: 0

Integrate: ∫_1 ^( 8) (( (√x)−x^2 )/( ^3 (√x))) dx

$$\:\:\boldsymbol{\mathrm{Integrate}}: \\ $$$$\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{8}} \:\:\frac{\:\sqrt{\boldsymbol{\mathrm{x}}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\overset{\mathrm{3}} {\:}\sqrt{\boldsymbol{\mathrm{x}}}}\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 154875    Answers: 1   Comments: 0

Question Number 154872    Answers: 1   Comments: 0

∫_(−∞) ^( ∞) sin(x^3 )cos(x^4 )dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{3}} \right)\mathrm{cos}\left({x}^{\mathrm{4}} \right){dx} \\ $$$$\: \\ $$

Question Number 154910    Answers: 1   Comments: 2

Question Number 154860    Answers: 0   Comments: 0

(1/(n+1))+(1/(n+2))+(1/(n+3))+...+(1/(2n))<(3/4) n>1 Prove that

$$\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{2n}}<\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{n}>\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$

Question Number 154857    Answers: 1   Comments: 0

Question Number 154854    Answers: 1   Comments: 1

Question Number 154853    Answers: 1   Comments: 0

Question Number 154851    Answers: 0   Comments: 7

Question Number 154849    Answers: 1   Comments: 0

ax + y + z = 1 x + ay + z = a x + y + az = a^2 Find value of x, y, z in a .

$${ax}\:+\:{y}\:+\:{z}\:=\:\mathrm{1} \\ $$$${x}\:+\:{ay}\:+\:{z}\:=\:{a} \\ $$$${x}\:+\:{y}\:+\:{az}\:=\:{a}^{\mathrm{2}} \\ $$$${Find}\:\:{value}\:\:{of}\:\:{x},\:{y},\:{z}\:\:\:{in}\:\:{a}\:. \\ $$

Question Number 154846    Answers: 0   Comments: 2

y′=((y cos(x))/(1+2y^2 )) trouve la solution de lequation differentielle

$${y}'=\frac{{y}\:{cos}\left({x}\right)}{\mathrm{1}+\mathrm{2}{y}^{\mathrm{2}} } \\ $$$${trouve}\:{la}\:{solution}\:{de}\:{lequation}\:{differentielle} \\ $$

Question Number 154823    Answers: 1   Comments: 0

∫_0 ^( ∞) (e^(−x) /( x^(3/4) )) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{x}} }{\:{x}^{\frac{\mathrm{3}}{\mathrm{4}}} \:}\:{dx} \\ $$$$\: \\ $$

Question Number 154824    Answers: 1   Comments: 0

Σ_(k=0) ^∞ ((4^(−k) Γ(k))/(k!))

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}^{−{k}} \Gamma\left({k}\right)}{{k}!} \\ $$$$\: \\ $$

Question Number 154805    Answers: 0   Comments: 2

Question Number 154804    Answers: 2   Comments: 1

Solve for real numbers: ((5(√5) + x))^(1/5) - ((5(√5) - x))^(1/5) = (2)^(1/5)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt[{\mathrm{5}}]{\mathrm{5}\sqrt{\mathrm{5}}\:+\:\mathrm{x}}\:-\:\sqrt[{\mathrm{5}}]{\mathrm{5}\sqrt{\mathrm{5}}\:-\:\mathrm{x}}\:=\:\sqrt[{\mathrm{5}}]{\mathrm{2}} \\ $$

Question Number 154794    Answers: 0   Comments: 1

Question Number 154786    Answers: 0   Comments: 0

((sin(x+60°))/(sin60°))+((sin(x+60°)∙sin30°)/(sin(2x+30°)∙sin60°))=((sinx)/(sin60°))+1 x∈(0;60°) x=?

$$\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{60}°\right)}{\mathrm{sin60}°}+\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{60}°\right)\centerdot\mathrm{sin30}°}{\mathrm{sin}\left(\mathrm{2x}+\mathrm{30}°\right)\centerdot\mathrm{sin60}°}=\frac{\mathrm{sinx}}{\mathrm{sin60}°}+\mathrm{1} \\ $$$$\mathrm{x}\in\left(\mathrm{0};\mathrm{60}°\right)\:\:\mathrm{x}=? \\ $$

Question Number 154785    Answers: 0   Comments: 3

soit: y′+tan(x)y=sin(2x) ,avec f(0)=1 alors f(π)=?

$${soit}:\:{y}'+{tan}\left({x}\right){y}={sin}\left(\mathrm{2}{x}\right)\:,{avec} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}\:\:\:{alors}\:{f}\left(\pi\right)=? \\ $$

Question Number 154780    Answers: 3   Comments: 0

∫_(−∞) ^( ∞) (1/(x^4 +x^3 +x^2 +1)) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$

  Pg 546      Pg 547      Pg 548      Pg 549      Pg 550      Pg 551      Pg 552      Pg 553      Pg 554      Pg 555   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com