Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 551
Question Number 164027 Answers: 1 Comments: 2
Question Number 164024 Answers: 1 Comments: 0
Question Number 164019 Answers: 0 Comments: 0
$$\:\:{x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$$\:\Rightarrow\:\:{x}^{\mathrm{2}} +\frac{{d}}{{x}^{\mathrm{2}} }+{ax}+\frac{{c}}{{x}}+{b}=\mathrm{0} \\ $$$${say}\:\:\:\frac{\mathrm{1}}{{x}}={t}\:\:\Rightarrow \\ $$$$\:\:{x}^{\mathrm{2}} +{ax}+{b}+{dt}^{\mathrm{2}} +{ct}=\mathrm{0} \\ $$$${let}\:\:\:\:{x}^{\mathrm{2}} +{ax}+{p}=\mathrm{0} \\ $$$$\&\:\:\:\:\:\:{dt}^{\mathrm{2}} +{ct}+{q}=\mathrm{0} \\ $$$$\:\:\:\:{p}+{q}={b} \\ $$$${x}=−\frac{{a}}{\mathrm{2}}\pm\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−{p}}\:\: \\ $$$${t}=−\frac{{c}}{\mathrm{2}{d}}\pm\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{4}{d}^{\mathrm{2}} }−\frac{{q}}{{d}}} \\ $$$${tx}=\mathrm{1}\:\:\:\:\Rightarrow \\ $$$$\frac{{ac}}{\mathrm{4}{d}}\mp\frac{{a}}{\mathrm{2}}\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{4}{d}^{\mathrm{2}} }−\frac{{q}}{{d}}}\mp\frac{{c}}{\mathrm{2}{d}}\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−{p}} \\ $$$$\:\:\:\:\:\:\:\:+\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−{p}}\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{4}{d}^{\mathrm{2}} }−\frac{{q}}{{d}}}\:=\mathrm{1} \\ $$$${let}\:\:\:{p}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\:\:\Rightarrow \\ $$$$\:\:\:\frac{{ac}}{\mathrm{4}{d}}\mp\frac{{a}}{\mathrm{2}}\sqrt{\frac{{c}^{\mathrm{2}} }{\mathrm{4}{d}^{\mathrm{2}} }−\frac{{b}}{{d}}+\frac{{a}^{\mathrm{2}} }{\mathrm{4}{d}}}=\mathrm{1} \\ $$$$\Rightarrow\:\:\cancel{\frac{{c}^{\mathrm{2}} }{\mathrm{4}{d}^{\mathrm{2}} }}−\frac{{b}}{{d}}+\frac{{a}^{\mathrm{2}} }{\mathrm{4}{d}}=\frac{\mathrm{4}}{{a}^{\mathrm{2}} }+\cancel{\frac{{c}^{\mathrm{2}} }{\mathrm{4}{d}^{\mathrm{2}} }}−\frac{\mathrm{2}{c}}{{ad}} \\ $$$$\Rightarrow\:\:\:\mathrm{4}{a}^{\mathrm{2}} {b}−{a}^{\mathrm{4}} +\mathrm{16}{d}−\mathrm{8}{ac}=\mathrm{0} \\ $$$${if}\:{x}={s}+{h} \\ $$$${s}^{\mathrm{4}} +\mathrm{4}{hs}\left({s}^{\mathrm{2}} +{h}^{\mathrm{2}} \right)+\mathrm{6}{h}^{\mathrm{2}} {s}^{\mathrm{2}} +{h}^{\mathrm{4}} \\ $$$$+{a}\left\{{s}^{\mathrm{3}} +\mathrm{3}{hs}\left({s}+{h}\right)+{h}^{\mathrm{2}} \right\} \\ $$$$\:\:+{b}\left\{{s}^{\mathrm{2}} +\mathrm{2}{hs}+{h}^{\mathrm{2}} \right\}+{c}\left({s}+{h}\right)+{d}=\mathrm{0} \\ $$$${A}=\mathrm{4}{h}+{a} \\ $$$${B}=\mathrm{6}{h}^{\mathrm{2}} +\mathrm{3}{ah}+{b} \\ $$$${C}=\mathrm{4}{h}^{\mathrm{3}} +\mathrm{3}{ah}^{\mathrm{2}} +\mathrm{2}{bh}+{c} \\ $$$${D}={h}^{\mathrm{4}} +{ah}^{\mathrm{3}} +{bh}^{\mathrm{2}} +{ch}+{d} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{4}{h}+{a}\right)^{\mathrm{2}} \left(\mathrm{8}{h}^{\mathrm{2}} +\mathrm{4}{ah}+\mathrm{4}{b}−{a}^{\mathrm{2}} \right) \\ $$$$+\mathrm{16}\left({h}^{\mathrm{4}} +{ah}^{\mathrm{3}} +{bh}^{\mathrm{2}} +{ch}+{d}\right) \\ $$$$\:\:\:\:\:\:=\mathrm{8}\left(\mathrm{4}{h}+{a}\right)\left(\mathrm{4}{h}^{\mathrm{3}} +\mathrm{3}{ah}^{\mathrm{2}} +\mathrm{2}{bh}+{c}\right) \\ $$$$..... \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 164018 Answers: 1 Comments: 0
Question Number 164028 Answers: 1 Comments: 0
Question Number 164010 Answers: 0 Comments: 3
Question Number 164009 Answers: 2 Comments: 0
Question Number 164471 Answers: 1 Comments: 0
$$\:{une}\:{primitive}\:{de}\:{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$$${puis}\:{la}\:{convergence}\:{de}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 164001 Answers: 1 Comments: 1
Question Number 163998 Answers: 0 Comments: 0
$${Hi}... \\ $$$${Calculate}: \\ $$$$\int−\frac{\lambda}{\mathrm{4}\pi\varepsilon_{\mathrm{0}} }\left[\frac{\sqrt{\mathrm{1}+\left(\pi{u}/\mathrm{2}\right)^{\mathrm{2}} }}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} }\right]{du} \\ $$
Question Number 163996 Answers: 1 Comments: 0
$$\begin{cases}{\mathrm{9}^{\frac{{a}+\mathrm{1}}{{b}}} =\mathrm{125}}\\{\mathrm{5}^{\frac{{b}}{{a}}} =\mathrm{3}}\end{cases} \\ $$$${then}\:\:{faind}\:{the}\:{volve}\:{of}\:\:\frac{\mathrm{25}^{{b}} }{\mathrm{2}{a}^{\mathrm{2}} }=? \\ $$
Question Number 163993 Answers: 0 Comments: 5
Question Number 163988 Answers: 0 Comments: 1
$${if}\:{here}\:{are}\:\mathrm{20}\:{apple}\:{in}\:{a}\:{box},\:{how}\:{many}\: \\ $$$${are}\:{the}\:{significant}\:{figures}\:{in}\:{it}? \\ $$
Question Number 163985 Answers: 0 Comments: 0
Question Number 163986 Answers: 1 Comments: 0
$$\sqrt[{\mathrm{3}}]{\mathrm{1000}}{ln}^{\mathrm{80}} \left({ln}\frac{\mathrm{8}}{\mathrm{5}}−{ln}\frac{\mathrm{8}{e}}{\mathrm{5}}\right)^{\mathrm{80}} \\ $$$${is}\:\:\:\:{simplified}\:\:{form}\:\:{equl}\:\:{to}=? \\ $$$$ \\ $$
Question Number 163978 Answers: 0 Comments: 5
Question Number 163976 Answers: 0 Comments: 0
$${plot}\:{the}\:{single}-{side}\:{and}\:{double}-{side} \\ $$$${line}\:{spectrum}\:{of}\:{g}\left({t}\right) \\ $$$${g}\left({t}\right)=\mathrm{2}{sin}^{\mathrm{2}} \left(\mathrm{10}^{\mathrm{3}} \pi{t}\right)−\mathrm{10}{sin}\left(\mathrm{10}^{\mathrm{3}} \pi{t}−\frac{\pi}{\mathrm{6}}\right) \\ $$
Question Number 163974 Answers: 1 Comments: 1
$${is}\:{light}\:{a}\:{matter}? \\ $$
Question Number 163972 Answers: 0 Comments: 1
Question Number 163968 Answers: 1 Comments: 0
$$\left(−\mathrm{2}^{\mathrm{2}} \right)^{\mathrm{3}} =? \\ $$
Question Number 163966 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{3}}−\sqrt{\mathrm{2tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{10}}}{\mathrm{cot}\:\mathrm{x}}\:=? \\ $$
Question Number 163961 Answers: 1 Comments: 0
$$\underset{\mathrm{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\frac{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}} }{\mathrm{x}−\mathrm{1}}=? \\ $$
Question Number 163954 Answers: 4 Comments: 0
Question Number 163960 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}+\mathrm{7cot}\:^{\mathrm{2}} \mathrm{x}}−\sqrt{\mathrm{7}+\mathrm{7cot}\:^{\mathrm{2}} \mathrm{x}}}{\mathrm{tan}\:\mathrm{x}}\:=? \\ $$
Question Number 163959 Answers: 0 Comments: 0
Question Number 163958 Answers: 0 Comments: 0
Pg 546 Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555
Terms of Service
Privacy Policy
Contact: info@tinkutara.com