Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 551
Question Number 154892 Answers: 1 Comments: 2
$$\mathrm{Find}: \\ $$$$\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\:\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:\sqrt{\mathrm{2}\:-\:\mathrm{2cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}\:=\:? \\ $$
Question Number 154889 Answers: 0 Comments: 0
Question Number 154888 Answers: 1 Comments: 0
Question Number 154926 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$
Question Number 154927 Answers: 1 Comments: 0
$$\mathrm{Let}\:{I}_{{n}} =\int{x}^{{n}} {e}^{−{x}} {dx} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}={n}! \\ $$
Question Number 154880 Answers: 6 Comments: 0
Question Number 154877 Answers: 2 Comments: 1
$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{4}}} {sin}^{\mathrm{3}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right){dx} \\ $$
Question Number 154876 Answers: 1 Comments: 0
$$\:\:\boldsymbol{\mathrm{Integrate}}: \\ $$$$\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{8}} \:\:\frac{\:\sqrt{\boldsymbol{\mathrm{x}}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\overset{\mathrm{3}} {\:}\sqrt{\boldsymbol{\mathrm{x}}}}\:\boldsymbol{\mathrm{dx}} \\ $$
Question Number 154875 Answers: 1 Comments: 0
Question Number 154872 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{3}} \right)\mathrm{cos}\left({x}^{\mathrm{4}} \right){dx} \\ $$$$\: \\ $$
Question Number 154910 Answers: 1 Comments: 2
Question Number 154860 Answers: 0 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{n}+\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{2n}}<\frac{\mathrm{3}}{\mathrm{4}}\:\mathrm{n}>\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$
Question Number 154857 Answers: 1 Comments: 0
Question Number 154854 Answers: 1 Comments: 1
Question Number 154853 Answers: 1 Comments: 0
Question Number 154851 Answers: 0 Comments: 7
Question Number 154849 Answers: 1 Comments: 0
$${ax}\:+\:{y}\:+\:{z}\:=\:\mathrm{1} \\ $$$${x}\:+\:{ay}\:+\:{z}\:=\:{a} \\ $$$${x}\:+\:{y}\:+\:{az}\:=\:{a}^{\mathrm{2}} \\ $$$${Find}\:\:{value}\:\:{of}\:\:{x},\:{y},\:{z}\:\:\:{in}\:\:{a}\:. \\ $$
Question Number 154846 Answers: 0 Comments: 2
$${y}'=\frac{{y}\:{cos}\left({x}\right)}{\mathrm{1}+\mathrm{2}{y}^{\mathrm{2}} } \\ $$$${trouve}\:{la}\:{solution}\:{de}\:{lequation}\:{differentielle} \\ $$
Question Number 154823 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{x}} }{\:{x}^{\frac{\mathrm{3}}{\mathrm{4}}} \:}\:{dx} \\ $$$$\: \\ $$
Question Number 154824 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}^{−{k}} \Gamma\left({k}\right)}{{k}!} \\ $$$$\: \\ $$
Question Number 154805 Answers: 0 Comments: 2
Question Number 154804 Answers: 2 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt[{\mathrm{5}}]{\mathrm{5}\sqrt{\mathrm{5}}\:+\:\mathrm{x}}\:-\:\sqrt[{\mathrm{5}}]{\mathrm{5}\sqrt{\mathrm{5}}\:-\:\mathrm{x}}\:=\:\sqrt[{\mathrm{5}}]{\mathrm{2}} \\ $$
Question Number 154794 Answers: 0 Comments: 1
Question Number 154786 Answers: 0 Comments: 0
$$\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{60}°\right)}{\mathrm{sin60}°}+\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{60}°\right)\centerdot\mathrm{sin30}°}{\mathrm{sin}\left(\mathrm{2x}+\mathrm{30}°\right)\centerdot\mathrm{sin60}°}=\frac{\mathrm{sinx}}{\mathrm{sin60}°}+\mathrm{1} \\ $$$$\mathrm{x}\in\left(\mathrm{0};\mathrm{60}°\right)\:\:\mathrm{x}=? \\ $$
Question Number 154785 Answers: 0 Comments: 3
$${soit}:\:{y}'+{tan}\left({x}\right){y}={sin}\left(\mathrm{2}{x}\right)\:,{avec} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}\:\:\:{alors}\:{f}\left(\pi\right)=? \\ $$
Question Number 154780 Answers: 3 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$
Pg 546 Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555
Terms of Service
Privacy Policy
Contact: info@tinkutara.com