Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 551
Question Number 163658 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{{n}}]{\mathrm{sin}\:\frac{\pi}{\mathrm{2}{n}}×\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{2}{n}}×\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{2}{n}}....×\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{{n}}}=? \\ $$
Question Number 163657 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} −{e}}{{x}}=? \\ $$
Question Number 163656 Answers: 1 Comments: 0
Question Number 163556 Answers: 2 Comments: 0
Question Number 163548 Answers: 0 Comments: 0
$$\mathrm{Lambert}\:\mathrm{series}\:\mathrm{type}\:\mathrm{representation} \\ $$$$\mathrm{for}\:\:\sqrt{-\mathrm{1}}\:\:\mathrm{factorial} \\ $$$$\left(\mathrm{i}^{\boldsymbol{\mathrm{i}}} \right)!\:\left(-\mathrm{i}^{\boldsymbol{\mathrm{i}}} \right)!\:=\:\mathrm{1}\:-\:\mathrm{2}\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{e}^{\boldsymbol{\pi}} \:\mathrm{n}^{\mathrm{2}} \:-\:\mathrm{1}} \\ $$
Question Number 163536 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{9}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{x}\right)}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:\frac{\pi\:\centerdot\:\mathrm{ln}\:\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$
Question Number 163533 Answers: 0 Comments: 5
$$\mathrm{R}\acute {\mathrm{e}soudre}\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {u}}{\partial{y}^{\mathrm{2}} }={e}^{\mathrm{2}{x}+{y}} \\ $$
Question Number 163527 Answers: 0 Comments: 1
Question Number 163522 Answers: 3 Comments: 0
Question Number 163510 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f} \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\mathrm{1}}{\:\sqrt{{sin}^{\:\mathrm{5}} \left({x}\right).{cos}\left({x}\right)}\:+\sqrt{{cos}^{\:\mathrm{5}} \left({x}\right).{sin}\left({x}\right)}}{dx}\:= \\ $$$$\:\:\:{find}\:{the}\:{value}\:{of}\:\::\:\Gamma^{\:\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\:\right).\:\boldsymbol{\phi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 163508 Answers: 0 Comments: 0
$${etudier}\:{la}\:{continuite}\:{de}\:\left[\:{x}\:\right]\:−\:\sqrt{{x}\:−\:\left[\:{x}\:\right]} \\ $$
Question Number 163497 Answers: 1 Comments: 1
Question Number 163496 Answers: 1 Comments: 0
$$\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{256}\boldsymbol{{cos}}^{\mathrm{5}} \left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\boldsymbol{{sin}}^{\mathrm{11}} \left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\boldsymbol{{dx}} \\ $$
Question Number 163490 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{x}}^{\mathrm{3}} }{\boldsymbol{{e}}^{\boldsymbol{{x}}} \:−\mathrm{1}}\:\boldsymbol{{dx}} \\ $$
Question Number 163487 Answers: 1 Comments: 0
$$ \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}^{\:\mathrm{2}} \left(\:\mathrm{ln}\left({x}\:\right)\right).\:\mathrm{ln}\:\left({x}\right)}{\:\sqrt{{x}}}\:{dx}=? \\ $$$$\:\:\:\:−−−−− \\ $$
Question Number 163484 Answers: 0 Comments: 0
$${pour}\:{tout}\:{couple}\:\left({a},{b}\right)\epsilon{R}^{\mathrm{2}} ,{prouver}\:{que} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{p}} \left({lnt}\right)^{{q}} {dt}\:{converge}\:{puis}\:{calculer} \\ $$
Question Number 163483 Answers: 4 Comments: 0
Question Number 163481 Answers: 1 Comments: 0
Question Number 163473 Answers: 0 Comments: 2
Question Number 163472 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{3}} \:\frac{\boldsymbol{\mathrm{xdx}}}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:+\:\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{x}}\:\mathrm{2}}\:= \\ $$
Question Number 163470 Answers: 0 Comments: 0
Question Number 163469 Answers: 1 Comments: 1
Question Number 163468 Answers: 0 Comments: 0
Question Number 163467 Answers: 1 Comments: 0
Question Number 163463 Answers: 1 Comments: 0
$${nature}\:{de}\:{la}\:{serie} \\ $$$$\underset{{n}=\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}}\right) \\ $$
Question Number 163457 Answers: 0 Comments: 1
$$\mathrm{let}\:\:\boldsymbol{\mathrm{a}}>\mathrm{0}\:\:\mathrm{and}\:\:\boldsymbol{\lambda}>\mathrm{0}\:\:\mathrm{fixed} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\:\left(\mathrm{0};\infty\right)\:\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{2a}^{\mathrm{2}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}\lambda}\:-\:\frac{\mathrm{2}\lambda}{\mathrm{x}}\right)\:=\:\mathrm{a}^{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\lambda}}} \:\:+\:\:\mathrm{a}^{\frac{\mathrm{4}\boldsymbol{\lambda}}{\boldsymbol{\mathrm{x}}}} \\ $$
Pg 546 Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553 Pg 554 Pg 555
Terms of Service
Privacy Policy
Contact: info@tinkutara.com