Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 551

Question Number 164628    Answers: 1   Comments: 1

60!=abc…nm000…0 m=? n=?

$$\mathrm{60}!=\underline{\boldsymbol{\mathrm{abc}}\ldots\boldsymbol{\mathrm{nm}}\mathrm{000}\ldots\mathrm{0}} \\ $$$$\boldsymbol{\mathrm{m}}=?\:\:\boldsymbol{\mathrm{n}}=? \\ $$

Question Number 164627    Answers: 1   Comments: 0

Question Number 164626    Answers: 1   Comments: 1

Question Number 164623    Answers: 1   Comments: 0

Given a, b ∈ R. Show that : [a]+[b]≤[a+b]≤[a]+[b]+1

$${Given}\:{a},\:{b}\:\in\:\mathbb{R}. \\ $$$${Show}\:{that}\:: \\ $$$$\left[{a}\right]+\left[{b}\right]\leqslant\left[{a}+{b}\right]\leqslant\left[{a}\right]+\left[{b}\right]+\mathrm{1} \\ $$

Question Number 164622    Answers: 2   Comments: 0

Show that ∀ a, b ∈ R, 1. ∣∣x∣−∣y∣∣≤∣x−y∣ 2. 1+∣xy−1∣≤(1+∣x−1∣)(1+∣y−1∣).

$${Show}\:{that}\:\forall\:{a},\:{b}\:\in\:\mathbb{R}, \\ $$$$\mathrm{1}.\:\mid\mid{x}\mid−\mid{y}\mid\mid\leqslant\mid{x}−{y}\mid \\ $$$$\mathrm{2}.\:\mathrm{1}+\mid{xy}−\mathrm{1}\mid\leqslant\left(\mathrm{1}+\mid{x}−\mathrm{1}\mid\right)\left(\mathrm{1}+\mid{y}−\mathrm{1}\mid\right). \\ $$

Question Number 164615    Answers: 0   Comments: 0

Question Number 164612    Answers: 3   Comments: 0

solve: 1. ∫(1/(sinx))dx 2.∫(1/(cosx))dx

$${solve}: \\ $$$$\:\mathrm{1}.\:\int\frac{\mathrm{1}}{{sinx}}{dx} \\ $$$$\:\mathrm{2}.\int\frac{\mathrm{1}}{{cosx}}{dx} \\ $$

Question Number 164609    Answers: 1   Comments: 0

en posant x=t−(1/t) ∫^(+oo) _0 ((1+t^2 )/(1+t^4 ))dt

$${en}\:{posant}\:{x}={t}−\frac{\mathrm{1}}{{t}} \\ $$$$\underset{\mathrm{0}} {\int}^{+{oo}} \frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$

Question Number 164606    Answers: 2   Comments: 0

Min f(x)= cos 2x +(√3) sin 2x −2(√3) cos x−2sin x is ...

$$\:{Min}\:{f}\left({x}\right)=\:\mathrm{cos}\:\mathrm{2}{x}\:+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{2}{x}\:−\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cos}\:{x}−\mathrm{2sin}\:{x} \\ $$$$\:{is}\:... \\ $$

Question Number 164605    Answers: 1   Comments: 0

Question Number 164600    Answers: 3   Comments: 0

Question Number 164599    Answers: 0   Comments: 1

180<θ<270 and 2sinθ−cos θ=0 faind volue of sin θ×cos θ=?

$$\mathrm{180}<\theta<\mathrm{270}\:\:\:\:{and} \\ $$$$\mathrm{2}{sin}\theta−\mathrm{cos}\:\theta=\mathrm{0} \\ $$$${faind}\:\:\:{volue}\:{of} \\ $$$$\mathrm{sin}\:\theta×\mathrm{cos}\:\theta=? \\ $$

Question Number 164598    Answers: 0   Comments: 0

Prove that; ∫_(−∞) ^∞ y tan x + y^3 tan x dx = undefined

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}; \\ $$$$\:\:\:\:\:\:\int_{−\infty} ^{\infty} \:\boldsymbol{{y}}\:\boldsymbol{{tan}}\:\boldsymbol{{x}}\:+\:\boldsymbol{{y}}^{\mathrm{3}} \:\:\boldsymbol{{tan}}\:\:\boldsymbol{{x}}\:\boldsymbol{{dx}}\:=\:\boldsymbol{{undefined}} \\ $$

Question Number 164591    Answers: 1   Comments: 0

pour quelle valeur α la serie converge Σ_(n=2) (ln(n)+αln(n−(1/n))

$${pour}\:{quelle}\:{valeur}\:\alpha\:{la}\:{serie}\:{converge} \\ $$$$\underset{{n}=\mathrm{2}} {\sum}\left({ln}\left({n}\right)+\alpha{ln}\left({n}−\frac{\mathrm{1}}{{n}}\right)\right. \\ $$

Question Number 164590    Answers: 1   Comments: 0

∫ ((In(x^2 .e^(cos2) ))/x) dx

$$\int\:\frac{\mathrm{In}\left(\mathrm{x}^{\mathrm{2}} .\boldsymbol{{e}}^{\boldsymbol{{cos}}\mathrm{2}} \right)}{\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 164589    Answers: 0   Comments: 0

∫ A.^5 (√(x^3 )) dx

$$\int\:\mathrm{A}.\:^{\mathrm{5}} \sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 164588    Answers: 0   Comments: 0

soit K un corps; pour toute permutation σ de S_n , on note P(σ) sa matrice dans la base canonique de K^n . montrer que deux permutations σ_1 et σ_2 sont conjugues dans S_n si et seulement si P(σ_1 ) et P(σ_2 ) sont semblables.

$${soit}\:{K}\:{un}\:{corps};\:{pour}\:{toute}\:{permutation} \\ $$$$\sigma\:{de}\:{S}_{{n}} ,\:{on}\:{note}\:{P}\left(\sigma\right)\:{sa}\:{matrice}\:{dans}\:{la}\:{base} \\ $$$${canonique}\:{de}\:{K}^{{n}} . \\ $$$${montrer}\:{que}\:{deux}\:{permutations}\:\sigma_{\mathrm{1}} \:{et}\:\sigma_{\mathrm{2}} \:{sont} \\ $$$${conjugues}\:{dans}\:{S}_{{n}} \:{si}\:{et}\:{seulement}\:{si}\: \\ $$$${P}\left(\sigma_{\mathrm{1}} \right)\:{et}\:{P}\left(\sigma_{\mathrm{2}} \right)\:{sont}\:{semblables}. \\ $$

Question Number 164585    Answers: 2   Comments: 0

I = ∫_0 ^( 1) (( Li_( 2) ( x ))/(1 + x)) dx = ? −−−−−−

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathcal{I}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Li}_{\:\mathrm{2}} \:\left(\:{x}\:\right)}{\mathrm{1}\:+\:{x}}\:{dx}\:=\:? \\ $$$$\:\:\:\:−−−−−−\: \\ $$

Question Number 164576    Answers: 1   Comments: 0

Question Number 164568    Answers: 2   Comments: 0

(1/( (√(2−x)))) > (1/(x−1))

$$\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}−{x}}}\:>\:\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$

Question Number 164564    Answers: 0   Comments: 0

when F does not contain y explicity . Find the extremals of ∫_x_1 ^x_2 ((y′^2 )/x^2 )dx

$$ \\ $$$${when}\:{F}\:{does}\:{not}\:{contain}\:{y}\:{explicity}\:.\:{Find}\:{the}\:{extremals}\:{of} \\ $$$$\underset{{x}_{\mathrm{1}} } {\overset{{x}_{\mathrm{2}} } {\int}}\frac{{y}'^{\mathrm{2}} }{{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 164560    Answers: 2   Comments: 1

6 boys and 6 girls go to an exhibition and the cost of ticket is Rs 10.Each girl has a 10 rupees note while each boy has a 20 rupees note. They stand in a queue at the counter and the cashier does not have any money at the begining , then the number of ways of arranging the boys and girls so that no one waits for a change is A) 132 B) 264 C) 132(720)^2 D)264(720)^2

$$\mathrm{6}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{6}\:\mathrm{girls}\:\mathrm{go}\:\mathrm{to}\:\mathrm{an}\:\mathrm{exhibition}\:\mathrm{and}\:\mathrm{the}\:\mathrm{cost} \\ $$$$\mathrm{of}\:\mathrm{ticket}\:\mathrm{is}\:\mathrm{Rs}\:\mathrm{10}.\mathrm{Each}\:\mathrm{girl}\:\mathrm{has}\:\mathrm{a}\:\mathrm{10}\:\mathrm{rupees}\:\mathrm{note} \\ $$$$\mathrm{while}\:\mathrm{each}\:\mathrm{boy}\:\mathrm{has}\:\mathrm{a}\:\mathrm{20}\:\mathrm{rupees}\:\mathrm{note}.\:\mathrm{They}\:\mathrm{stand}\: \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{queue}\:\mathrm{at}\:\mathrm{the}\:\mathrm{counter}\:\mathrm{and}\:\mathrm{the}\:\mathrm{cashier}\:\mathrm{does} \\ $$$$\mathrm{not}\:\mathrm{have}\:\mathrm{any}\:\mathrm{money}\:\mathrm{at}\:\mathrm{the}\:\mathrm{begining}\:,\:\mathrm{then}\:\mathrm{the}\: \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{arranging}\:\mathrm{the}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{girls} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{one}\:\mathrm{waits}\:\mathrm{for}\:\mathrm{a}\:\mathrm{change}\:\mathrm{is} \\ $$$$\left.\mathrm{A}\left.\right)\left.\:\left.\mathrm{132}\:\:\:\:\:\mathrm{B}\right)\:\:\:\:\mathrm{264}\:\mathrm{C}\right)\:\:\mathrm{132}\left(\mathrm{720}\right)^{\mathrm{2}} \:\:\:\:\mathrm{D}\right)\mathrm{264}\left(\mathrm{720}\right)^{\mathrm{2}} \\ $$

Question Number 164555    Answers: 2   Comments: 0

prove that ( _( k−1) ^(2k) ) =^? Σ_(r=0) ^(k−1) ( _( r) ^( k) ) (^( ) _( r+1) ^( k) ) −−−−

$$ \\ $$$$\:\:\:{prove}\:\:{that} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\left(\underset{\:{k}−\mathrm{1}} {\overset{\mathrm{2}{k}} {\:}}\:\right)\:\overset{?} {=}\:\underset{{r}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\:\left(\:\underset{\:{r}} {\overset{\:{k}} {\:}}\:\:\:\right)\:\overset{\:\:} {\left(}\underset{\:{r}+\mathrm{1}} {\overset{\:\:{k}} {\:}}\:\right) \\ $$$$\:\:−−−− \\ $$

Question Number 164553    Answers: 3   Comments: 1

Question Number 164549    Answers: 2   Comments: 0

Question Number 164547    Answers: 1   Comments: 0

prove Ω= ∫_0 ^( ∞) (( (√x))/(( 1+x +x^( 2) )^( 3) )) dx =^? ((π(√3))/(36)) −−m.n−−

$$ \\ $$$$\:\:\:\:\:\:\:\:{prove} \\ $$$$\: \\ $$$$\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\sqrt{{x}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)^{\:\mathrm{3}} \:}\:{dx}\:\overset{?} {=}\:\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{36}}\: \\ $$$$\:\:\:\:\:\:−−{m}.{n}−−\: \\ $$$$ \\ $$

  Pg 546      Pg 547      Pg 548      Pg 549      Pg 550      Pg 551      Pg 552      Pg 553      Pg 554      Pg 555   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com