Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 549

Question Number 161407    Answers: 1   Comments: 0

Question Number 161406    Answers: 0   Comments: 0

f (x ) = cos^( 2) ( x ) + sin^( 4) ( x ) R_( f) = ? −−−solution−−− y = cos^( 2) (x ) + sin^( 2) (x) .( 1−cos^( 2) (x)) = 1 − (1/4) sin^( 2) ( 2x) we know that : 0≤ sin^( 2) ( αx) ≤1 therefore −1≤− sin^( 2) (2x) ≤ 0 1−(1/4) ≤ 1− (1/4) sin^( 2) (2x) ≤1 R_( f) = [ (3/4) , 1 ] ◂ ★ ▶

$$ \\ $$$$\:\:\:\:\:\:\:\:\:{f}\:\left({x}\:\right)\:=\:{cos}^{\:\mathrm{2}} \left(\:{x}\:\right)\:+\:{sin}^{\:\mathrm{4}} \left(\:{x}\:\right) \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:−−−{solution}−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{y}\:=\:{cos}^{\:\mathrm{2}} \left({x}\:\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:.\left(\:\mathrm{1}−{cos}^{\:\mathrm{2}} \left({x}\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{4}}\:{sin}^{\:\mathrm{2}} \left(\:\mathrm{2}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{we}\:{know}\:\:{that}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant\:{sin}^{\:\mathrm{2}} \left(\:\alpha{x}\right)\:\leqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{therefore} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{1}\leqslant−\:{sin}^{\:\mathrm{2}} \left(\mathrm{2}{x}\right)\:\leqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\:\leqslant\:\mathrm{1}−\:\frac{\mathrm{1}}{\mathrm{4}}\:{sin}^{\:\mathrm{2}} \left(\mathrm{2}{x}\right)\:\leqslant\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{R}_{\:{f}} \:=\:\left[\:\frac{\mathrm{3}}{\mathrm{4}}\:\:,\:\mathrm{1}\:\right]\:\:\:\:\:\:\:\:\:\:\blacktriangleleft\:\bigstar\:\blacktriangleright \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 161404    Answers: 1   Comments: 0

Question Number 161403    Answers: 0   Comments: 0

Two force f1 act on a particle f1 has aa mgnitude of 5n in the direction 30 andf 2 has a magnitude of 8n in then directio of 90 fine the magnitude andi drection of their resultant

$$\mathrm{Two}\:\mathrm{force}\:\mathrm{f1}\:\mathrm{act}\:\mathrm{on}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{f1}\:\mathrm{has}\:\mathrm{aa} \\ $$$$\mathrm{mgnitude}\:\mathrm{of}\:\mathrm{5n}\:\mathrm{in}\:\mathrm{the}\:\mathrm{direction}\:\mathrm{30}\:\mathrm{andf} \\ $$$$\mathrm{2}\:\mathrm{has}\:\mathrm{a}\:\mathrm{magnitude}\:\mathrm{of}\:\mathrm{8n}\:\mathrm{in}\:\mathrm{then} \\ $$$$\mathrm{directio}\:\mathrm{of}\:\mathrm{90}\:\mathrm{fine}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{andi} \\ $$$$\mathrm{drection}\:\mathrm{of}\:\mathrm{their}\:\mathrm{resultant} \\ $$

Question Number 161396    Answers: 0   Comments: 2

If y = cos^2 x + sin^4 x for all values of x, then prove that (3/4) ≤ y ≤ 1

$$\mathrm{If}\:{y}\:=\:{cos}^{\mathrm{2}} {x}\:+\:{sin}^{\mathrm{4}} {x}\:\mathrm{for}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}, \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{3}}{\mathrm{4}}\:\leq\:{y}\:\leq\:\mathrm{1} \\ $$

Question Number 161393    Answers: 0   Comments: 0

Question Number 161391    Answers: 0   Comments: 4

f^( 3) (x)+x^2 f(x)=2x^3 +4x^2 +3x+1 ∀x∈R

$$\:\:{f}^{\:\mathrm{3}} \left({x}\right)+{x}^{\mathrm{2}} \:{f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1} \\ $$$$\:\forall{x}\in\mathbb{R}\: \\ $$

Question Number 161387    Answers: 0   Comments: 0

sin(√(1+π^2 n^2 )) ∼ (((−1)^n )/(2πn)) ?

$$\:{sin}\sqrt{\mathrm{1}+\pi^{\mathrm{2}} {n}^{\mathrm{2}} }\:\sim\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}\pi{n}}\:\:? \\ $$

Question Number 161386    Answers: 0   Comments: 0

Question Number 161378    Answers: 0   Comments: 0

determine, pour tout α∈R, la nature de la serie de terme general U_n =Σ_(k=1) ^n (1/((k^2 +(n−k)^2 )^α )) besoin d′aide svp please help me

$${determine},\:{pour}\:{tout}\:\alpha\in\mathbb{R},\:\:{la}\:{nature} \\ $$$$\:{de}\:{la}\:{serie}\:{de}\:{terme}\:{general} \\ $$$${U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left({k}^{\mathrm{2}} +\left({n}−{k}\right)^{\mathrm{2}} \right)^{\alpha} } \\ $$$${besoin}\:{d}'{aide}\:{svp} \\ $$$${please}\:{help}\:{me} \\ $$

Question Number 161377    Answers: 3   Comments: 2

please calculate A and B. A = (1 − (1/4))(1 − (1/9))(1 − (1/(16)))...(1 − (1/(4 084 441))) (and 2021^(2 ) = 4084441 ) B = (1^2 −2^2 −3^2 + 4^2 ) + ( 5^2 − 6^2 −7^2 +8^2 ) +(9^2 −10^2 −11^2 +12^2 )+... +(2021^2 −2022^2 −2023^2 +2024^(2 ) )

$${please}\:{calculate}\:{A}\:{and}\:\:{B}. \\ $$$$ \\ $$$${A}\:=\:\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{9}}\right)\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{16}}\right)...\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{084}\:\mathrm{441}}\right)\:\:\left({and}\:\mathrm{2021}^{\mathrm{2}\:} =\:\mathrm{4084441}\:\right) \\ $$$${B}\:=\:\left(\mathrm{1}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} \:−\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{4}^{\mathrm{2}} \right)\:+\:\left(\:\mathrm{5}^{\mathrm{2}} \:−\:\mathrm{6}^{\mathrm{2}} \:−\mathrm{7}^{\mathrm{2}} \:+\mathrm{8}^{\mathrm{2}} \right)\:+\left(\mathrm{9}^{\mathrm{2}} \:−\mathrm{10}^{\mathrm{2}} \:−\mathrm{11}^{\mathrm{2}} \:+\mathrm{12}^{\mathrm{2}} \right)+...\:+\left(\mathrm{2021}^{\mathrm{2}} \:−\mathrm{2022}^{\mathrm{2}} \:−\mathrm{2023}^{\mathrm{2}} \:+\mathrm{2024}^{\mathrm{2}\:} \right) \\ $$

Question Number 161381    Answers: 1   Comments: 0

∫ (dy/( (√(ae^y +1))))

$$\int\:\frac{{dy}}{\:\sqrt{{ae}^{{y}} +\mathrm{1}}} \\ $$

Question Number 161371    Answers: 0   Comments: 0

1.The Trapejoidal Rule ∫_x_o ^(x_o +nh) ydx=(h/2)[(y_o +y_n )+2(y_1 +y_2 +y_3 ....]

$$\:\mathrm{1}.{The}\:{Trapejoidal}\:{Rule} \\ $$$$\int_{{x}_{{o}} } ^{{x}_{{o}} +{nh}} {ydx}=\frac{{h}}{\mathrm{2}}\left[\left({y}_{{o}} +{y}_{{n}} \right)+\mathrm{2}\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} +{y}_{\mathrm{3}} ....\right]\right. \\ $$

Question Number 161369    Answers: 2   Comments: 0

Determine the value of the following proposition . ( True or False ) ∃ x ∈ R ; determinant ((( 1+2x),( 2x),(2x)),(( 2x),( 1+2x),( 2x )),(( 2x),( 2x),(1 +2x)))= x^( 3) + 8x−2 −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\mathrm{D}{etermine}\:{the}\:{value}\:{of}\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:{proposition}\:.\:\left(\:\:\mathrm{T}{rue}\:\:{or}\:\:\mathrm{F}{alse}\:\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\exists\:{x}\:\in\:\mathbb{R}\:;\:\:\begin{vmatrix}{\:\mathrm{1}+\mathrm{2}{x}}&{\:\mathrm{2}{x}}&{\mathrm{2}{x}}\\{\:\:\mathrm{2}{x}}&{\:\mathrm{1}+\mathrm{2}{x}}&{\:\mathrm{2}{x}\:}\\{\:\:\mathrm{2}{x}}&{\:\mathrm{2}{x}}&{\mathrm{1}\:+\mathrm{2}{x}}\end{vmatrix}=\:{x}^{\:\mathrm{3}} +\:\mathrm{8}{x}−\mathrm{2}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$$$\:\:\: \\ $$

Question Number 161366    Answers: 2   Comments: 0

[similar question reposted] if a+(3/b)=b+(3/c)=c+(3/a) with a≠b≠c and a,b,c ∈ R. find (abc)^2 =?

$$\left[{similar}\:{question}\:{reposted}\right] \\ $$$${if}\:{a}+\frac{\mathrm{3}}{{b}}={b}+\frac{\mathrm{3}}{{c}}={c}+\frac{\mathrm{3}}{{a}}\:{with}\:{a}\neq{b}\neq{c} \\ $$$${and}\:{a},{b},{c}\:\in\:\mathbb{R}.\:{find}\:\left({abc}\right)^{\mathrm{2}} =? \\ $$

Question Number 161362    Answers: 0   Comments: 1

log _(√(x/3)) (3x−54)^(log _3 (x)) = 18−3log _(x/3) (x^2 ) x=?

$$\:\mathrm{log}\:_{\sqrt{\frac{{x}}{\mathrm{3}}}} \left(\mathrm{3}{x}−\mathrm{54}\right)^{\mathrm{log}\:_{\mathrm{3}} \left({x}\right)} \:=\:\mathrm{18}−\mathrm{3log}\:_{\frac{{x}}{\mathrm{3}}} \left({x}^{\mathrm{2}} \right) \\ $$$$\:{x}=? \\ $$

Question Number 161361    Answers: 0   Comments: 1

lim_(x→0) (((√(x+1)) +((1+2x))^(1/h) −2)/x) = (3/5) h^3 −(2/9)(h+7)=?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}\:+\sqrt[{{h}}]{\mathrm{1}+\mathrm{2}{x}}−\mathrm{2}}{{x}}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\: \\ $$$$\:\:{h}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{9}}\left({h}+\mathrm{7}\right)=? \\ $$

Question Number 161356    Answers: 1   Comments: 2

a + b + c = 0 Find the value of (((b−c)/a) + ((c−a)/b) + ((a−b)/c))((a/(b−c)) + (b/(c−a)) + (c/(a−b))) .

$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0} \\ $$$$ \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\left(\frac{{b}−{c}}{{a}}\:+\:\frac{{c}−{a}}{{b}}\:+\:\frac{{a}−{b}}{{c}}\right)\left(\frac{{a}}{{b}−{c}}\:+\:\frac{{b}}{{c}−{a}}\:+\:\frac{{c}}{{a}−{b}}\right)\:. \\ $$

Question Number 161353    Answers: 0   Comments: 0

Prove that: Σ_(n=0) ^∞ (((-1)^n )/(2n + 1)) ∫_( 0) ^( 1) ∫_( 0) ^( 1) ((dxdy)/((x^2 + y^2 )^n )) = (2/3)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}} }{\mathrm{2n}\:+\:\mathrm{1}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{dxdy}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)^{\boldsymbol{\mathrm{n}}} }\:=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Question Number 161367    Answers: 1   Comments: 1

Question Number 161346    Answers: 0   Comments: 0

Question Number 161342    Answers: 2   Comments: 0

2log _x (3) log _(3x) (3)=log _(9(√x)) (3) x=?

$$\:\:\mathrm{2log}\:_{\mathrm{x}} \left(\mathrm{3}\right)\:\mathrm{log}\:_{\mathrm{3x}} \left(\mathrm{3}\right)=\mathrm{log}\:_{\mathrm{9}\sqrt{\mathrm{x}}} \left(\mathrm{3}\right) \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 161338    Answers: 1   Comments: 1

Question Number 161337    Answers: 0   Comments: 1

(1) lim_(x→0) ((2cos (p+x)−cos (p+2x)−cos p)/x^2 ) ? (2) lim_(x→0) ((tan (2x+q)−2tan (x+q)+tan q)/x^2 ) ?

$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2cos}\:\left(\mathrm{p}+\mathrm{x}\right)−\mathrm{cos}\:\left(\mathrm{p}+\mathrm{2x}\right)−\mathrm{cos}\:\mathrm{p}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\mathrm{q}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\mathrm{q}\right)+\mathrm{tan}\:\mathrm{q}}{\mathrm{x}^{\mathrm{2}} }\:? \\ $$

Question Number 161335    Answers: 0   Comments: 1

Question Number 161331    Answers: 0   Comments: 0

  Pg 544      Pg 545      Pg 546      Pg 547      Pg 548      Pg 549      Pg 550      Pg 551      Pg 552      Pg 553   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com