Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 549
Question Number 164425 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{it}'\mathrm{s}\:?? \\ $$$$\mathrm{5}×\mathrm{55}×\mathrm{555}×\mathrm{5555}×\mathrm{55555}.............\infty= \\ $$
Question Number 164419 Answers: 1 Comments: 0
$${please}\:{help}\:{me} \\ $$$${prouve}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnt}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$
Question Number 164418 Answers: 2 Comments: 2
Question Number 164416 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}<\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}^{\mathrm{2}} }} \centerdot\:\left(\mathrm{1}\:+\:\frac{\mathrm{c}}{\mathrm{b}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{c}}^{\mathrm{2}} }} \centerdot\:\left(\mathrm{1}\:+\:\frac{\mathrm{a}}{\mathrm{c}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{2}} }} \geqslant\:\mathrm{8} \\ $$
Question Number 164417 Answers: 1 Comments: 0
Question Number 164405 Answers: 0 Comments: 0
$$\boldsymbol{{let}}\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}}\:>\:\mathrm{0}\:;\:\boldsymbol{{a}}\:+\:\boldsymbol{{b}}\:+\:\boldsymbol{{c}}\:=\:\mathrm{3} \\ $$$$\boldsymbol{{prove}}\:\boldsymbol{{that}};\:\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} \:+\:\boldsymbol{{bc}}\:+\:\boldsymbol{{c}}^{\mathrm{2}} }\:\:+\:\:\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\boldsymbol{{c}}^{\mathrm{2}} \:+\:\boldsymbol{{ac}}\:+\:\boldsymbol{{a}}^{\mathrm{2}} \:}\:\:+\:\:\frac{\boldsymbol{{c}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} \:+\boldsymbol{{ba}}\:+\:\boldsymbol{{a}}^{\mathrm{2}} }\:\:\mathrm{6}\:\:\geqslant\:\:\mathrm{2}\boldsymbol{{abc}}\:\:+\:\:\frac{\mathrm{5}}{\mathrm{3}}\:\:\left(\boldsymbol{{a}}^{\mathrm{2}} \:+\:\boldsymbol{{b}}^{\mathrm{2}} \:+\:\boldsymbol{{c}}^{\mathrm{2}} \:\right)\:\:\geqslant\:\:\mathrm{7} \\ $$$$\:^{\left\{\boldsymbol{\mathrm{Z}}.\mathrm{A}\right\}} \\ $$
Question Number 164396 Answers: 2 Comments: 1
$${If}\:\:{f}\left({x}\right)={f}\left({x}−\mathrm{1}\right)+{x}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$${and}\:\:{f}\left(\mathrm{0}\right)=\mathrm{17}\:\:,\:\:{find}\:{f}\left(\mathrm{17}\right). \\ $$
Question Number 164395 Answers: 2 Comments: 0
Question Number 164391 Answers: 1 Comments: 0
$$\:\:\mathrm{If}\:\begin{cases}{\mathrm{sin}\:\left(\mathrm{A}−\mathrm{B}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}}\\{\mathrm{cos}\:\left(\mathrm{A}+\mathrm{B}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{29}}}}\end{cases};\:\mathrm{0}<\mathrm{A}<\frac{\pi}{\mathrm{4}}\:;\:\mathrm{0}<\mathrm{B}<\frac{\pi}{\mathrm{4}} \\ $$$$\:\mathrm{Find}\:\mathrm{tan}\:\mathrm{2A}. \\ $$
Question Number 164386 Answers: 0 Comments: 8
$${CH}_{\mathrm{3}} −{C}\underset{\underset{{CH}_{\mathrm{3}} } {\mid}} {{H}}−{CH}=\overset{\overset{\overset{\mid{CH}_{\mathrm{3}} } {{C}H}_{\mathrm{2}} } {\mid}} {{C}}−{C}\underset{\underset{{C}\underset{\underset{{CH}_{\mathrm{2}} } {\parallel}} {{H}}} {\mid}} {{H}}−{C}\underset{\underset{\Delta} {\mid}} {{H}}−{C}\underset{\underset{{Br}} {\mid}} {{H}}−{CH}_{\mathrm{3}} \:\:\:\: \\ $$$${what}\:{is}\:{the}\:{iupac}\:{name}? \\ $$
Question Number 164496 Answers: 2 Comments: 0
$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{xy}\:=\:\mathrm{11}}\\{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}\:=\:\mathrm{24}}\end{cases}\:\:\Rightarrow\:\mid\mathrm{x}+\mathrm{y}\mid=? \\ $$
Question Number 164376 Answers: 2 Comments: 0
Question Number 164374 Answers: 0 Comments: 2
Question Number 164372 Answers: 1 Comments: 1
Question Number 164367 Answers: 1 Comments: 0
$$\int\:\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \:\boldsymbol{{dx}} \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{{A}}\right\} \\ $$
Question Number 164366 Answers: 1 Comments: 1
$$\frac{\boldsymbol{{d}}}{\boldsymbol{{dx}}}\:\left(\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \right) \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{\mathrm{A}}\right\} \\ $$
Question Number 164364 Answers: 0 Comments: 0
$$\boldsymbol{{Lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\left(\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \right) \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{\mathrm{A}}\right\} \\ $$
Question Number 164347 Answers: 0 Comments: 4
Question Number 164345 Answers: 2 Comments: 1
Question Number 164341 Answers: 0 Comments: 1
$$\:\:{x}^{\mathrm{4}} ={x}^{\mathrm{2}} +{cx} \\ $$$$\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ={cx}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${let}\:\:\:\:{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}={t}\:\:\:\Rightarrow \\ $$$$\left({t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${now}\:\:{let}\:\:\:{t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}={z}\:\:\:\Rightarrow \\ $$$$\left({z}^{\mathrm{2}} −\frac{{c}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} ={c}^{\mathrm{4}} \left({z}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${z}^{\mathrm{2}} −\frac{{c}^{\mathrm{2}} }{\mathrm{2}}={p}\:\:\Rightarrow\:\:\left({p}^{\mathrm{2}} −\frac{{c}^{\mathrm{4}} }{\mathrm{4}}\right)^{\mathrm{2}} ={c}^{\mathrm{8}} \left({p}+\frac{{c}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\:{p}^{\mathrm{4}} −\frac{{c}^{\mathrm{4}} {p}^{\mathrm{2}} }{\mathrm{2}}−{c}^{\mathrm{8}} {p}+\frac{{c}^{\mathrm{8}} }{\mathrm{16}}−\frac{{c}^{\mathrm{10}} }{\mathrm{2}}=\mathrm{0} \\ $$$${p}^{\mathrm{4}} −{Ap}^{\mathrm{2}} −{Bp}−\lambda=\mathrm{0} \\ $$$$\left({p}^{\mathrm{2}} +{sp}+{h}\right)\left({p}^{\mathrm{2}} −{sp}−\frac{\lambda}{{h}}\right)=\mathrm{0} \\ $$$${h}−\frac{\lambda}{{h}}={s}^{\mathrm{2}} −{A} \\ $$$${s}\left({h}+\frac{\lambda}{{h}}\right)={B} \\ $$$$\frac{{B}^{\mathrm{2}} }{{s}^{\mathrm{2}} }−\left({s}^{\mathrm{2}} −{A}\right)^{\mathrm{2}} =\mathrm{4}\lambda \\ $$$$\left({s}^{\mathrm{2}} −{A}\right)^{\mathrm{3}} +{A}\left({s}^{\mathrm{2}} −{A}\right)^{\mathrm{2}} +\mathrm{4}\lambda\left({s}^{\mathrm{2}} −{A}\right) \\ $$$$\:\:\:\:\:\:\:\:\:+\mathrm{4}\lambda{A}−{B}^{\mathrm{2}} =\mathrm{0} \\ $$$${m}^{\mathrm{3}} +{Am}^{\mathrm{2}} +\mathrm{4}\lambda{m}+\left(\mathrm{4}\lambda{A}−{B}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${let}\:\:\:{m}={w}−\frac{{A}}{\mathrm{3}}\:\:\:\Rightarrow \\ $$$${w}^{\mathrm{3}} +\left(\mathrm{4}\lambda−\frac{{A}^{\mathrm{2}} }{\mathrm{3}}\right){w}+\frac{\mathrm{2}{A}^{\mathrm{3}} }{\mathrm{27}}+\frac{\mathrm{8}\lambda{A}}{\mathrm{3}}−{B}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}\lambda−\frac{{A}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{2}{c}^{\mathrm{10}} −\frac{{c}^{\mathrm{8}} }{\mathrm{4}}−\frac{{c}^{\mathrm{8}} }{\mathrm{12}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{c}^{\mathrm{8}} \left({c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{6}}\right) \\ $$
Question Number 164339 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\:\:\::\:\:\:{cos}^{\:\mathrm{2}} \left({A}\:\right)+\:{cos}^{\:\mathrm{2}} \left({B}\:\right)+\:{cos}^{\:\mathrm{2}} \left(\:{C}\:\right)=\mathrm{1}\:\:. \\ $$$$\:\:\:\:\:\:\:\:{Prove}\:{that}\:\:{A}\overset{\Delta} {{B}C}\:\:\:{is}\:\:\:{right}\:{angled}. \\ $$$$\:\:\:\:\:\:−−−−−−−− \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 164331 Answers: 0 Comments: 2
Question Number 164328 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{solve} \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:{cos}^{\mathrm{2}{n}} \left({x}\right)}{{n}!}\:=\:\sqrt[{\mathrm{4}}]{{e}}\:\:\:\:\:\:\:\:\:\:\:\blacksquare\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$\:\: \\ $$
Question Number 164315 Answers: 0 Comments: 3
Question Number 164312 Answers: 0 Comments: 3
Question Number 164311 Answers: 0 Comments: 0
Pg 544 Pg 545 Pg 546 Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553
Terms of Service
Privacy Policy
Contact: info@tinkutara.com