Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 549
Question Number 164686 Answers: 1 Comments: 0
$$\int\mathrm{36}\boldsymbol{{x}}^{\mathrm{2}} \:\left(\mathrm{2}\boldsymbol{{x}}+\mathrm{3}\right)^{−\mathrm{7}} \:\boldsymbol{{dx}} \\ $$$$\: \\ $$
Question Number 164685 Answers: 1 Comments: 0
$$\int\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} \:\left(\mathrm{1}−\boldsymbol{{x}}\right)^{\mathrm{3}} \:\boldsymbol{{dx}} \\ $$
Question Number 164684 Answers: 1 Comments: 0
$$\int\mathrm{24}\left(\mathrm{2}\boldsymbol{{x}}−\mathrm{1}\right)^{−\mathrm{3}} \:\boldsymbol{{dx}} \\ $$
Question Number 164683 Answers: 1 Comments: 0
$$\int\frac{\boldsymbol{{x}}^{\mathrm{2}} }{\left(\boldsymbol{{x}}+\mathrm{7}\right)^{\mathrm{4}} }\boldsymbol{{dx}} \\ $$
Question Number 164682 Answers: 1 Comments: 0
$$\int\mathrm{27}\boldsymbol{{x}}^{\mathrm{2}} \:\sqrt{\mathrm{3}\boldsymbol{{x}}−\mathrm{2}}\:\boldsymbol{{dx}} \\ $$
Question Number 164681 Answers: 1 Comments: 0
$$\int\:\left(−\mathrm{8}\boldsymbol{{x}}\sqrt{\mathrm{3}−\mathrm{2}\boldsymbol{{x}}}\:\right)\boldsymbol{{dx}} \\ $$
Question Number 164680 Answers: 0 Comments: 0
$${what}\:{is}\:{the}\:{proof}\:{of}\:{stirling}'{s}\:{formula} \\ $$$${without}\:{gamma}\:{function}? \\ $$
Question Number 164675 Answers: 0 Comments: 5
Question Number 164674 Answers: 0 Comments: 0
Question Number 164672 Answers: 1 Comments: 0
Question Number 164671 Answers: 1 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:{solve}\: \\ $$$$\:\:\:\:\:\:{cos}^{\:\mathrm{3}} \left({x}\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}}\: \\ $$$$\:\:\:\:\:\:\:\:\:{adopted}\:{from}\:{youtube}\:... \\ $$$$ \\ $$
Question Number 164669 Answers: 0 Comments: 0
Question Number 164650 Answers: 1 Comments: 0
$$\:\:\sqrt[{\mathrm{3}}]{{x}+\mathrm{9}}\:−\sqrt[{\mathrm{3}}]{{x}−\mathrm{9}}\:=\:\mathrm{3}\: \\ $$$$\:{x}=? \\ $$
Question Number 164653 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{solve} \\ $$$$\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:{tanh}^{\:−\mathrm{1}} \left(\:{x}\:\:\right)}{{x}}{dx}\:=? \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({tanh}^{−\mathrm{1}} \left({x}\right)\right)^{\:\mathrm{2}} }{\mathrm{1}+{x}}\:=\:? \\ $$$$\:\:\:\:\:\:−−−− \\ $$
Question Number 164639 Answers: 1 Comments: 0
Question Number 164628 Answers: 1 Comments: 1
$$\mathrm{60}!=\underline{\boldsymbol{\mathrm{abc}}\ldots\boldsymbol{\mathrm{nm}}\mathrm{000}\ldots\mathrm{0}} \\ $$$$\boldsymbol{\mathrm{m}}=?\:\:\boldsymbol{\mathrm{n}}=? \\ $$
Question Number 164627 Answers: 1 Comments: 0
Question Number 164626 Answers: 1 Comments: 1
Question Number 164623 Answers: 1 Comments: 0
$${Given}\:{a},\:{b}\:\in\:\mathbb{R}. \\ $$$${Show}\:{that}\:: \\ $$$$\left[{a}\right]+\left[{b}\right]\leqslant\left[{a}+{b}\right]\leqslant\left[{a}\right]+\left[{b}\right]+\mathrm{1} \\ $$
Question Number 164622 Answers: 2 Comments: 0
$${Show}\:{that}\:\forall\:{a},\:{b}\:\in\:\mathbb{R}, \\ $$$$\mathrm{1}.\:\mid\mid{x}\mid−\mid{y}\mid\mid\leqslant\mid{x}−{y}\mid \\ $$$$\mathrm{2}.\:\mathrm{1}+\mid{xy}−\mathrm{1}\mid\leqslant\left(\mathrm{1}+\mid{x}−\mathrm{1}\mid\right)\left(\mathrm{1}+\mid{y}−\mathrm{1}\mid\right). \\ $$
Question Number 164615 Answers: 0 Comments: 0
Question Number 164612 Answers: 3 Comments: 0
$${solve}: \\ $$$$\:\mathrm{1}.\:\int\frac{\mathrm{1}}{{sinx}}{dx} \\ $$$$\:\mathrm{2}.\int\frac{\mathrm{1}}{{cosx}}{dx} \\ $$
Question Number 164609 Answers: 1 Comments: 0
$${en}\:{posant}\:{x}={t}−\frac{\mathrm{1}}{{t}} \\ $$$$\underset{\mathrm{0}} {\int}^{+{oo}} \frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$
Question Number 164606 Answers: 2 Comments: 0
$$\:{Min}\:{f}\left({x}\right)=\:\mathrm{cos}\:\mathrm{2}{x}\:+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{2}{x}\:−\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cos}\:{x}−\mathrm{2sin}\:{x} \\ $$$$\:{is}\:... \\ $$
Question Number 164605 Answers: 1 Comments: 0
Question Number 164600 Answers: 3 Comments: 0
Pg 544 Pg 545 Pg 546 Pg 547 Pg 548 Pg 549 Pg 550 Pg 551 Pg 552 Pg 553
Terms of Service
Privacy Policy
Contact: info@tinkutara.com