Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 546

Question Number 164973    Answers: 1   Comments: 0

Question Number 164970    Answers: 0   Comments: 0

⌊x(x^(2+1) /(x/(10−3^x ))) + x(x^(2+2) /(x/(9−3^x ))) + x(x^(2+3) /(x/(8−3^x ))) +x (x^(2+4) /(x/(7−3^x ))) + x(x^(2+5) /(x/(6−3^x ))) ≥ (1/((25)/x^x^(x ((1/(25)))) ))⌋ {Z.A}

$$\:\:\lfloor\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{1}} }{\frac{\boldsymbol{{x}}}{\mathrm{10}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{2}} }{\frac{\boldsymbol{{x}}}{\mathrm{9}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{3}} }{\frac{\boldsymbol{{x}}}{\mathrm{8}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\boldsymbol{{x}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{4}} }{\frac{\boldsymbol{{x}}}{\mathrm{7}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{5}} }{\frac{\boldsymbol{{x}}}{\mathrm{6}−\mathrm{3}^{\boldsymbol{{x}}} }}\:\geqslant\:\frac{\mathrm{1}}{\frac{\mathrm{25}}{\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}\:\left(\frac{\mathrm{1}}{\mathrm{25}}\right)} } }}\rfloor \\ $$$$\:\:\:\left\{\mathrm{Z}.\mathrm{A}\right\} \\ $$$$\: \\ $$

Question Number 164966    Answers: 1   Comments: 0

⌊((5/x) + (4/x) + (3/x) + (2/x) + (1/x)) • ((x/1) − (x/2) − (x/3) − (x/4) − (x/5) )^2 > (1/(15))⌋ {za}

$$\:\:\:\:\:\lfloor\left(\frac{\mathrm{5}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{4}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:\bullet\:\left(\frac{\boldsymbol{{x}}}{\mathrm{1}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{2}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{3}}\:\:−\:\frac{\boldsymbol{{x}}}{\mathrm{4}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{5}}\:\right)^{\mathrm{2}} >\:\frac{\mathrm{1}}{\mathrm{15}}\rfloor \\ $$$$\:\:\:\left\{\mathrm{za}\right\} \\ $$

Question Number 164956    Answers: 1   Comments: 0

a_1 =1 a_2 =−1 and a_n =−a_(n−1) −2a_(n−2) Find a_n

$$\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\mathrm{a}_{\mathrm{2}} =−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{a}_{\mathrm{n}} =−\mathrm{a}_{\mathrm{n}−\mathrm{1}} −\mathrm{2a}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 164955    Answers: 0   Comments: 2

comment creer un tableau de variation a partir de l′application?

$$\mathrm{comment}\:\mathrm{creer}\:\mathrm{un}\:\mathrm{tableau}\:\mathrm{de}\:\mathrm{variation}\:\mathrm{a}\:\mathrm{partir}\:\mathrm{de}\:\mathrm{l}'\mathrm{application}? \\ $$

Question Number 164945    Answers: 2   Comments: 0

If { (( sin ( 3θ ) + cos ( 3θ ) = x)),(( sin( θ ) + cos (θ ) = y)) :} then , find a relationship between x , y indepentent of , θ .

$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\begin{cases}{\:\:{sin}\:\left(\:\mathrm{3}\theta\:\right)\:+\:{cos}\:\left(\:\mathrm{3}\theta\:\right)\:=\:{x}}\\{\:\:\:\:\:{sin}\left(\:\theta\:\right)\:+\:{cos}\:\left(\theta\:\right)\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:{then}\:\:,\:{find}\:\:{a}\:{relationship}\: \\ $$$$\:\:\:\:\:\:\:\:{between}\:\:\:{x}\:\:,\:\:{y}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{indepentent}\:{of}\:,\:\:\:\theta\:. \\ $$

Question Number 164944    Answers: 1   Comments: 0

Ω = ∫_0 ^( ∞) e^( − (√x) ) .ln ((x)^(1/4) )dx =? −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 164941    Answers: 1   Comments: 1

Question Number 164940    Answers: 0   Comments: 1

−−−−−−−−− 1!−2!+3!−4!+5!−…−14!+15!=? −−−−−−−−−−by M.A

$$−−−−−−−−− \\ $$$$\mathrm{1}!−\mathrm{2}!+\mathrm{3}!−\mathrm{4}!+\mathrm{5}!−\ldots−\mathrm{14}!+\mathrm{15}!=? \\ $$$$ \\ $$$$−−−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$

Question Number 164924    Answers: 0   Comments: 1

Question Number 164923    Answers: 2   Comments: 1

Question Number 164927    Answers: 0   Comments: 0

Question Number 164929    Answers: 3   Comments: 0

∫_(−2) ^2 [x]dx=?

$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{x}\right]{dx}=? \\ $$

Question Number 164928    Answers: 0   Comments: 0

Question Number 164918    Answers: 0   Comments: 0

Question Number 164912    Answers: 3   Comments: 1

If x^2 +y^2 = 9 , then max value of ((x^3 +y^3 )/(x+y))

$$\:\:\mathrm{If}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{9}\:,\:\mathrm{then}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} }{\mathrm{x}+\mathrm{y}} \\ $$

Question Number 164926    Answers: 0   Comments: 0

⌊Given positive numbers a,b,c,d⌉ Prove that; ⌊((a^3 +b^3 +c^3 )/(a+b+c)) + ((b^3 +c^3 +d^3 )/(b+c+d)) + ((c^3 +d^3 +a^3 )/(c+d+a)) + ((d^3 +a^3 +b^3 )/(d+a+b)) > a^2 +b^2 +c^2 +d^2 ⌋

$$\:\:\:\:\:\:\:\:\:\:\:\lfloor\boldsymbol{\mathrm{Given}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}},\boldsymbol{{d}}\rceil \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}; \\ $$$$\:\:\:\:\:\:\:\:\lfloor\frac{\boldsymbol{{a}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{3}} +\boldsymbol{{c}}^{\mathrm{3}} }{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}}\:+\:\frac{\boldsymbol{{b}}^{\mathrm{3}} +\boldsymbol{{c}}^{\mathrm{3}} +\boldsymbol{{d}}^{\mathrm{3}} }{\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}}\:+\:\frac{\boldsymbol{{c}}^{\mathrm{3}} +\boldsymbol{{d}}^{\mathrm{3}} +\boldsymbol{{a}}^{\mathrm{3}} }{\boldsymbol{{c}}+\boldsymbol{{d}}+\boldsymbol{{a}}}\:+\:\frac{\boldsymbol{{d}}^{\mathrm{3}} +\boldsymbol{{a}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{3}} }{\boldsymbol{{d}}+\boldsymbol{{a}}+\boldsymbol{{b}}}\:>\:\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} \rfloor \\ $$

Question Number 164904    Answers: 0   Comments: 0

∫_0 ^∞ ((cos^(−1) .(x))/(In ((x) − 3^((x^2 −1)) ))) dx {z.a}

$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}^{−\mathrm{1}} \:.\left(\boldsymbol{{x}}\right)}{\boldsymbol{\mathrm{I}}\mathrm{n}\:\left(\left(\boldsymbol{{x}}\right)\:−\:\mathrm{3}^{\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1}\right)} \right)}\:\boldsymbol{{dx}} \\ $$$$\left\{\boldsymbol{{z}}.\boldsymbol{{a}}\right\} \\ $$

Question Number 164901    Answers: 1   Comments: 0

Question Number 164890    Answers: 0   Comments: 0

Question Number 164879    Answers: 1   Comments: 1

Question Number 164875    Answers: 0   Comments: 0

Solve for natural numbers: 𝛟(n) ∙ 𝛟(n + 1) = 288n 𝛟-Euler′s totient function

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{natural}\:\mathrm{numbers}: \\ $$$$\boldsymbol{\varphi}\left(\boldsymbol{\mathrm{n}}\right)\:\centerdot\:\boldsymbol{\varphi}\left(\boldsymbol{\mathrm{n}}\:+\:\mathrm{1}\right)\:=\:\mathrm{288}\boldsymbol{\mathrm{n}} \\ $$$$\boldsymbol{\varphi}-\mathrm{Euler}'\mathrm{s}\:\mathrm{totient}\:\mathrm{function} \\ $$

Question Number 164874    Answers: 1   Comments: 0

Question Number 164871    Answers: 0   Comments: 0

Question Number 164856    Answers: 0   Comments: 1

Let a,b,c >0; 42abc + 4bca +1cab ≤ 24 Then (1/(ab)) + (2/(bc)) + (3/(ca)) = ?? ^({Z.A})

$$\:\:\:\:\boldsymbol{\mathrm{Let}}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:>\mathrm{0}; \\ $$$$\:\:\:\:\mathrm{42}\boldsymbol{{abc}}\:+\:\mathrm{4}\boldsymbol{{bca}}\:+\mathrm{1}\boldsymbol{{cab}}\:\leqslant\:\mathrm{24} \\ $$$$\:\:\:\:\mathrm{T}\boldsymbol{\mathrm{hen}}\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{ab}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{\mathrm{bc}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{\mathrm{ca}}}\:=\:?? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:^{\left\{{Z}.\mathrm{A}\right\}} \\ $$

Question Number 164854    Answers: 1   Comments: 0

Evaluate the Integral; [∫_0 ^∞ ((x^2 − 1)/(1−x)) dx =??] ^({Z.A})

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Evaluate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{Integral}}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{x}}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\:\boldsymbol{{dx}}\:=??\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:^{\left\{\boldsymbol{{Z}}.\mathrm{A}\right\}} \\ $$

  Pg 541      Pg 542      Pg 543      Pg 544      Pg 545      Pg 546      Pg 547      Pg 548      Pg 549      Pg 550   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com