Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 546
Question Number 164973 Answers: 1 Comments: 0
Question Number 164970 Answers: 0 Comments: 0
$$\:\:\lfloor\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{1}} }{\frac{\boldsymbol{{x}}}{\mathrm{10}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{2}} }{\frac{\boldsymbol{{x}}}{\mathrm{9}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{3}} }{\frac{\boldsymbol{{x}}}{\mathrm{8}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\boldsymbol{{x}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{4}} }{\frac{\boldsymbol{{x}}}{\mathrm{7}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{5}} }{\frac{\boldsymbol{{x}}}{\mathrm{6}−\mathrm{3}^{\boldsymbol{{x}}} }}\:\geqslant\:\frac{\mathrm{1}}{\frac{\mathrm{25}}{\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}\:\left(\frac{\mathrm{1}}{\mathrm{25}}\right)} } }}\rfloor \\ $$$$\:\:\:\left\{\mathrm{Z}.\mathrm{A}\right\} \\ $$$$\: \\ $$
Question Number 164966 Answers: 1 Comments: 0
$$\:\:\:\:\:\lfloor\left(\frac{\mathrm{5}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{4}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:\bullet\:\left(\frac{\boldsymbol{{x}}}{\mathrm{1}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{2}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{3}}\:\:−\:\frac{\boldsymbol{{x}}}{\mathrm{4}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{5}}\:\right)^{\mathrm{2}} >\:\frac{\mathrm{1}}{\mathrm{15}}\rfloor \\ $$$$\:\:\:\left\{\mathrm{za}\right\} \\ $$
Question Number 164956 Answers: 1 Comments: 0
$$\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\mathrm{a}_{\mathrm{2}} =−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{a}_{\mathrm{n}} =−\mathrm{a}_{\mathrm{n}−\mathrm{1}} −\mathrm{2a}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$
Question Number 164955 Answers: 0 Comments: 2
$$\mathrm{comment}\:\mathrm{creer}\:\mathrm{un}\:\mathrm{tableau}\:\mathrm{de}\:\mathrm{variation}\:\mathrm{a}\:\mathrm{partir}\:\mathrm{de}\:\mathrm{l}'\mathrm{application}? \\ $$
Question Number 164945 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\begin{cases}{\:\:{sin}\:\left(\:\mathrm{3}\theta\:\right)\:+\:{cos}\:\left(\:\mathrm{3}\theta\:\right)\:=\:{x}}\\{\:\:\:\:\:{sin}\left(\:\theta\:\right)\:+\:{cos}\:\left(\theta\:\right)\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:{then}\:\:,\:{find}\:\:{a}\:{relationship}\: \\ $$$$\:\:\:\:\:\:\:\:{between}\:\:\:{x}\:\:,\:\:{y}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{indepentent}\:{of}\:,\:\:\:\theta\:. \\ $$
Question Number 164944 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$
Question Number 164941 Answers: 1 Comments: 1
Question Number 164940 Answers: 0 Comments: 1
$$−−−−−−−−− \\ $$$$\mathrm{1}!−\mathrm{2}!+\mathrm{3}!−\mathrm{4}!+\mathrm{5}!−\ldots−\mathrm{14}!+\mathrm{15}!=? \\ $$$$ \\ $$$$−−−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$
Question Number 164924 Answers: 0 Comments: 1
Question Number 164923 Answers: 2 Comments: 1
Question Number 164927 Answers: 0 Comments: 0
Question Number 164929 Answers: 3 Comments: 0
$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{x}\right]{dx}=? \\ $$
Question Number 164928 Answers: 0 Comments: 0
Question Number 164918 Answers: 0 Comments: 0
Question Number 164912 Answers: 3 Comments: 1
$$\:\:\mathrm{If}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{9}\:,\:\mathrm{then}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} }{\mathrm{x}+\mathrm{y}} \\ $$
Question Number 164926 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\lfloor\boldsymbol{\mathrm{Given}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}},\boldsymbol{{d}}\rceil \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}; \\ $$$$\:\:\:\:\:\:\:\:\lfloor\frac{\boldsymbol{{a}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{3}} +\boldsymbol{{c}}^{\mathrm{3}} }{\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}}\:+\:\frac{\boldsymbol{{b}}^{\mathrm{3}} +\boldsymbol{{c}}^{\mathrm{3}} +\boldsymbol{{d}}^{\mathrm{3}} }{\boldsymbol{{b}}+\boldsymbol{{c}}+\boldsymbol{{d}}}\:+\:\frac{\boldsymbol{{c}}^{\mathrm{3}} +\boldsymbol{{d}}^{\mathrm{3}} +\boldsymbol{{a}}^{\mathrm{3}} }{\boldsymbol{{c}}+\boldsymbol{{d}}+\boldsymbol{{a}}}\:+\:\frac{\boldsymbol{{d}}^{\mathrm{3}} +\boldsymbol{{a}}^{\mathrm{3}} +\boldsymbol{{b}}^{\mathrm{3}} }{\boldsymbol{{d}}+\boldsymbol{{a}}+\boldsymbol{{b}}}\:>\:\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} +\boldsymbol{{d}}^{\mathrm{2}} \rfloor \\ $$
Question Number 164904 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}^{−\mathrm{1}} \:.\left(\boldsymbol{{x}}\right)}{\boldsymbol{\mathrm{I}}\mathrm{n}\:\left(\left(\boldsymbol{{x}}\right)\:−\:\mathrm{3}^{\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1}\right)} \right)}\:\boldsymbol{{dx}} \\ $$$$\left\{\boldsymbol{{z}}.\boldsymbol{{a}}\right\} \\ $$
Question Number 164901 Answers: 1 Comments: 0
Question Number 164890 Answers: 0 Comments: 0
Question Number 164879 Answers: 1 Comments: 1
Question Number 164875 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{natural}\:\mathrm{numbers}: \\ $$$$\boldsymbol{\varphi}\left(\boldsymbol{\mathrm{n}}\right)\:\centerdot\:\boldsymbol{\varphi}\left(\boldsymbol{\mathrm{n}}\:+\:\mathrm{1}\right)\:=\:\mathrm{288}\boldsymbol{\mathrm{n}} \\ $$$$\boldsymbol{\varphi}-\mathrm{Euler}'\mathrm{s}\:\mathrm{totient}\:\mathrm{function} \\ $$
Question Number 164874 Answers: 1 Comments: 0
Question Number 164871 Answers: 0 Comments: 0
Question Number 164856 Answers: 0 Comments: 1
$$\:\:\:\:\boldsymbol{\mathrm{Let}}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:>\mathrm{0}; \\ $$$$\:\:\:\:\mathrm{42}\boldsymbol{{abc}}\:+\:\mathrm{4}\boldsymbol{{bca}}\:+\mathrm{1}\boldsymbol{{cab}}\:\leqslant\:\mathrm{24} \\ $$$$\:\:\:\:\mathrm{T}\boldsymbol{\mathrm{hen}}\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{ab}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{\mathrm{bc}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{\mathrm{ca}}}\:=\:?? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:^{\left\{{Z}.\mathrm{A}\right\}} \\ $$
Question Number 164854 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Evaluate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{Integral}}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{x}}^{\mathrm{2}} \:−\:\mathrm{1}}{\mathrm{1}−\boldsymbol{{x}}}\:\boldsymbol{{dx}}\:=??\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:^{\left\{\boldsymbol{{Z}}.\mathrm{A}\right\}} \\ $$
Pg 541 Pg 542 Pg 543 Pg 544 Pg 545 Pg 546 Pg 547 Pg 548 Pg 549 Pg 550
Terms of Service
Privacy Policy
Contact: info@tinkutara.com