Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 539
Question Number 163178 Answers: 1 Comments: 0
Question Number 162715 Answers: 2 Comments: 0
$$\:\:\:\mid\mid{x}−\mathrm{1}\mid−\mathrm{5}\mid\:\geqslant\:\mathrm{2}\:\:{has}\:{solution}\:{set} \\ $$$$\:{is}\:{a}\:\leqslant{x}\leqslant{b}\:{or}\:{x}\leqslant\:{c}\:\cup\:{x}\geqslant{d}\:. \\ $$$$\:{Find}\:\frac{{a}+{d}}{{b}+{c}}\:. \\ $$
Question Number 162675 Answers: 1 Comments: 0
$${y}\:=\:\sqrt{{x}} \\ $$$${Find}\:\:\:\frac{{dy}}{{dx}}\:\:{by}\:{first}\:{principle}. \\ $$
Question Number 162674 Answers: 2 Comments: 0
Question Number 162673 Answers: 1 Comments: 0
Question Number 162672 Answers: 2 Comments: 0
$${Calculate} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} }−\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{7}} {\mathrm{lim}}\frac{\sqrt{{x}+\mathrm{2}}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{20}}}{\:\sqrt[{\mathrm{4}}]{{x}+\mathrm{9}}−\mathrm{2}} \\ $$
Question Number 162651 Answers: 1 Comments: 0
Question Number 162649 Answers: 3 Comments: 0
$$\:\mathrm{sin}\:^{\mathrm{10}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{10}} \left({x}\right)=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\:\mathrm{sin}\:^{\mathrm{12}} \left({x}\right)+\mathrm{cos}\:^{\mathrm{12}} \left({x}\right)=? \\ $$
Question Number 162643 Answers: 3 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}^{\mathrm{4}/\mathrm{3}} \:\left(\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} +\mathrm{1}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{3}−{x}^{\mathrm{2}} }\:\right)\:=? \\ $$
Question Number 162622 Answers: 3 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{12}} \:-\:\mathrm{15x}^{\mathrm{3}} \:+\:\mathrm{14}\:=\:\mathrm{0} \\ $$
Question Number 162618 Answers: 2 Comments: 0
$${Calculate} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{5}^{{x}} +\mathrm{8}^{{x}} \right)^{\frac{\mathrm{1}}{\mathrm{3}{x}}} \\ $$
Question Number 162604 Answers: 1 Comments: 0
$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \boldsymbol{{xtg}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}=? \\ $$
Question Number 162598 Answers: 1 Comments: 0
Question Number 162589 Answers: 1 Comments: 0
Question Number 162585 Answers: 1 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{2n}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\right)^{\mathrm{n}} =? \\ $$
Question Number 162584 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$${ppcm}\left({a},{b}\right)×{pgcd}\left({a},{b}\right)=\mid{ab}\mid \\ $$
Question Number 162575 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}{x}}{dx} \\ $$
Question Number 162561 Answers: 2 Comments: 0
Question Number 162560 Answers: 0 Comments: 1
Question Number 162552 Answers: 1 Comments: 1
$$\boldsymbol{\alpha}_{\mathrm{1}} <\boldsymbol{\alpha}_{\mathrm{2}} <\boldsymbol{\alpha}_{\mathrm{3}} <\ldots<\boldsymbol{\alpha}_{{k}} \\ $$$$\frac{\mathrm{2}^{\mathrm{289}} +\mathrm{1}}{\mathrm{2}^{\mathrm{17}} +\mathrm{1}}=\mathrm{2}^{\boldsymbol{\alpha}_{\mathrm{1}} } +\mathrm{2}^{\boldsymbol{\alpha}_{\mathrm{2}} } +\ldots+\mathrm{2}^{\boldsymbol{\alpha}_{{k}} } \:\:\:\:\:\:\:\boldsymbol{\mathrm{k}}=? \\ $$$$ \\ $$$$\boldsymbol{\alpha}_{\mathrm{1}} ,\:\boldsymbol{\alpha}_{\mathrm{2}} ,\boldsymbol{\alpha}_{\mathrm{3}} ....\boldsymbol{\alpha}_{{k}} \\ $$positive increasing integers
Question Number 162539 Answers: 2 Comments: 0
$${Calculate}\: \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left(\mathrm{3}−{h}\right)−{f}\left(\mathrm{3}\right)}{\mathrm{2}{h}},\:{with}\:{f}'\left(\mathrm{3}\right)=\mathrm{2} \\ $$
Question Number 162535 Answers: 2 Comments: 3
$$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\:\mathrm{ln}\:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\:{x}^{\:\mathrm{4}} \:+\:\mathrm{17}{x}^{\:\mathrm{2}} \:+\:\mathrm{16}}\:{dx}\overset{?} {=}\:\frac{\pi}{\mathrm{60}}\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$ \\ $$
Question Number 162530 Answers: 4 Comments: 10
Question Number 162525 Answers: 2 Comments: 0
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\sqrt{{x}}}{\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}\right)}=? \\ $$
Question Number 162523 Answers: 2 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{7tan}\:{x}−\mathrm{tan}\:\mathrm{7}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 162522 Answers: 1 Comments: 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\boldsymbol{\mathrm{N}}\:\mathrm{which}\:\mathrm{the}\:\mathrm{sphere} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{N} \\ $$$$\mathrm{has}\:\mathrm{an}\:\mathrm{inseribed}\:\mathrm{regular}\:\mathrm{tetrahedron} \\ $$$$\mathrm{whose}\:\mathrm{vertices}\:\mathrm{have}\:\mathrm{integer}\:\mathrm{coordinates} \\ $$
Pg 534 Pg 535 Pg 536 Pg 537 Pg 538 Pg 539 Pg 540 Pg 541 Pg 542 Pg 543
Terms of Service
Privacy Policy
Contact: info@tinkutara.com