Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 539

Question Number 164675    Answers: 0   Comments: 5

Question Number 164674    Answers: 0   Comments: 0

Question Number 164672    Answers: 1   Comments: 0

Question Number 164671    Answers: 1   Comments: 1

solve cos^( 3) (x) + sin^( 2) (x) = (7/8) adopted from youtube ...

$$ \\ $$$$\:\:\:\:\:\:\:\:{solve}\: \\ $$$$\:\:\:\:\:\:{cos}^{\:\mathrm{3}} \left({x}\right)\:+\:{sin}^{\:\mathrm{2}} \left({x}\right)\:=\:\frac{\mathrm{7}}{\mathrm{8}}\: \\ $$$$\:\:\:\:\:\:\:\:\:{adopted}\:{from}\:{youtube}\:... \\ $$$$ \\ $$

Question Number 164669    Answers: 0   Comments: 0

Question Number 164650    Answers: 1   Comments: 0

((x+9))^(1/3) βˆ’((xβˆ’9))^(1/3) = 3 x=?

$$\:\:\sqrt[{\mathrm{3}}]{{x}+\mathrm{9}}\:βˆ’\sqrt[{\mathrm{3}}]{{x}βˆ’\mathrm{9}}\:=\:\mathrm{3}\: \\ $$$$\:{x}=? \\ $$

Question Number 164653    Answers: 2   Comments: 0

solve 𝛗 = ∫_0 ^( 1) ((ln^( 2) ( x ). tanh^( βˆ’1) ( x ))/x)dx =? Ξ©= ∫_0 ^( 1) (( (tanh^(βˆ’1) (x))^( 2) )/(1+x)) = ? βˆ’βˆ’βˆ’βˆ’

$$ \\ $$$$\:\:\:\:\:\:\:\:{solve} \\ $$$$\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:{tanh}^{\:βˆ’\mathrm{1}} \left(\:{x}\:\:\right)}{{x}}{dx}\:=? \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({tanh}^{βˆ’\mathrm{1}} \left({x}\right)\right)^{\:\mathrm{2}} }{\mathrm{1}+{x}}\:=\:? \\ $$$$\:\:\:\:\:\:βˆ’βˆ’βˆ’βˆ’ \\ $$

Question Number 164639    Answers: 1   Comments: 0

Question Number 164628    Answers: 1   Comments: 1

60!=abc…nm000…0 m=? n=?

$$\mathrm{60}!=\underline{\boldsymbol{\mathrm{abc}}\ldots\boldsymbol{\mathrm{nm}}\mathrm{000}\ldots\mathrm{0}} \\ $$$$\boldsymbol{\mathrm{m}}=?\:\:\boldsymbol{\mathrm{n}}=? \\ $$

Question Number 164627    Answers: 1   Comments: 0

Question Number 164626    Answers: 1   Comments: 1

Question Number 164623    Answers: 1   Comments: 0

Given a, b ∈ R. Show that : [a]+[b]≀[a+b]≀[a]+[b]+1

$${Given}\:{a},\:{b}\:\in\:\mathbb{R}. \\ $$$${Show}\:{that}\:: \\ $$$$\left[{a}\right]+\left[{b}\right]\leqslant\left[{a}+{b}\right]\leqslant\left[{a}\right]+\left[{b}\right]+\mathrm{1} \\ $$

Question Number 164622    Answers: 2   Comments: 0

Show that βˆ€ a, b ∈ R, 1. ∣∣xβˆ£βˆ’βˆ£yβˆ£βˆ£β‰€βˆ£xβˆ’y∣ 2. 1+∣xyβˆ’1βˆ£β‰€(1+∣xβˆ’1∣)(1+∣yβˆ’1∣).

$${Show}\:{that}\:\forall\:{a},\:{b}\:\in\:\mathbb{R}, \\ $$$$\mathrm{1}.\:\mid\mid{x}\midβˆ’\mid{y}\mid\mid\leqslant\mid{x}βˆ’{y}\mid \\ $$$$\mathrm{2}.\:\mathrm{1}+\mid{xy}βˆ’\mathrm{1}\mid\leqslant\left(\mathrm{1}+\mid{x}βˆ’\mathrm{1}\mid\right)\left(\mathrm{1}+\mid{y}βˆ’\mathrm{1}\mid\right). \\ $$

Question Number 164615    Answers: 0   Comments: 0

Question Number 164612    Answers: 3   Comments: 0

solve: 1. ∫(1/(sinx))dx 2.∫(1/(cosx))dx

$${solve}: \\ $$$$\:\mathrm{1}.\:\int\frac{\mathrm{1}}{{sinx}}{dx} \\ $$$$\:\mathrm{2}.\int\frac{\mathrm{1}}{{cosx}}{dx} \\ $$

Question Number 164609    Answers: 1   Comments: 0

en posant x=tβˆ’(1/t) ∫^(+oo) _0 ((1+t^2 )/(1+t^4 ))dt

$${en}\:{posant}\:{x}={t}βˆ’\frac{\mathrm{1}}{{t}} \\ $$$$\underset{\mathrm{0}} {\int}^{+{oo}} \frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{4}} }{dt} \\ $$

Question Number 164606    Answers: 2   Comments: 0

Min f(x)= cos 2x +(√3) sin 2x βˆ’2(√3) cos xβˆ’2sin x is ...

$$\:{Min}\:{f}\left({x}\right)=\:\mathrm{cos}\:\mathrm{2}{x}\:+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{2}{x}\:βˆ’\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cos}\:{x}βˆ’\mathrm{2sin}\:{x} \\ $$$$\:{is}\:... \\ $$

Question Number 164605    Answers: 1   Comments: 0

Question Number 164600    Answers: 3   Comments: 0

Question Number 164599    Answers: 0   Comments: 1

180<ΞΈ<270 and 2sinΞΈβˆ’cos ΞΈ=0 faind volue of sin ΞΈΓ—cos ΞΈ=?

$$\mathrm{180}<\theta<\mathrm{270}\:\:\:\:{and} \\ $$$$\mathrm{2}{sin}\thetaβˆ’\mathrm{cos}\:\theta=\mathrm{0} \\ $$$${faind}\:\:\:{volue}\:{of} \\ $$$$\mathrm{sin}\:\thetaΓ—\mathrm{cos}\:\theta=? \\ $$

Question Number 164598    Answers: 0   Comments: 0

Prove that; ∫_(βˆ’βˆž) ^∞ y tan x + y^3 tan x dx = undefined

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}; \\ $$$$\:\:\:\:\:\:\int_{βˆ’\infty} ^{\infty} \:\boldsymbol{{y}}\:\boldsymbol{{tan}}\:\boldsymbol{{x}}\:+\:\boldsymbol{{y}}^{\mathrm{3}} \:\:\boldsymbol{{tan}}\:\:\boldsymbol{{x}}\:\boldsymbol{{dx}}\:=\:\boldsymbol{{undefined}} \\ $$

Question Number 164591    Answers: 1   Comments: 0

pour quelle valeur Ξ± la serie converge Ξ£_(n=2) (ln(n)+Ξ±ln(nβˆ’(1/n))

$${pour}\:{quelle}\:{valeur}\:\alpha\:{la}\:{serie}\:{converge} \\ $$$$\underset{{n}=\mathrm{2}} {\sum}\left({ln}\left({n}\right)+\alpha{ln}\left({n}βˆ’\frac{\mathrm{1}}{{n}}\right)\right. \\ $$

Question Number 164590    Answers: 1   Comments: 0

∫ ((In(x^2 .e^(cos2) ))/x) dx

$$\int\:\frac{\mathrm{In}\left(\mathrm{x}^{\mathrm{2}} .\boldsymbol{{e}}^{\boldsymbol{{cos}}\mathrm{2}} \right)}{\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 164589    Answers: 0   Comments: 0

∫ A.^5 (√(x^3 )) dx

$$\int\:\mathrm{A}.\:^{\mathrm{5}} \sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:}\:\boldsymbol{\mathrm{dx}} \\ $$

Question Number 164588    Answers: 0   Comments: 0

soit K un corps; pour toute permutation Οƒ de S_n , on note P(Οƒ) sa matrice dans la base canonique de K^n . montrer que deux permutations Οƒ_1 et Οƒ_2 sont conjugues dans S_n si et seulement si P(Οƒ_1 ) et P(Οƒ_2 ) sont semblables.

$${soit}\:{K}\:{un}\:{corps};\:{pour}\:{toute}\:{permutation} \\ $$$$\sigma\:{de}\:{S}_{{n}} ,\:{on}\:{note}\:{P}\left(\sigma\right)\:{sa}\:{matrice}\:{dans}\:{la}\:{base} \\ $$$${canonique}\:{de}\:{K}^{{n}} . \\ $$$${montrer}\:{que}\:{deux}\:{permutations}\:\sigma_{\mathrm{1}} \:{et}\:\sigma_{\mathrm{2}} \:{sont} \\ $$$${conjugues}\:{dans}\:{S}_{{n}} \:{si}\:{et}\:{seulement}\:{si}\: \\ $$$${P}\left(\sigma_{\mathrm{1}} \right)\:{et}\:{P}\left(\sigma_{\mathrm{2}} \right)\:{sont}\:{semblables}. \\ $$

Question Number 164585    Answers: 2   Comments: 0

I = ∫_0 ^( 1) (( Li_( 2) ( x ))/(1 + x)) dx = ? βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathcal{I}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Li}_{\:\mathrm{2}} \:\left(\:{x}\:\right)}{\mathrm{1}\:+\:{x}}\:{dx}\:=\:? \\ $$$$\:\:\:\:βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’\: \\ $$

  Pg 534      Pg 535      Pg 536      Pg 537      Pg 538      Pg 539      Pg 540      Pg 541      Pg 542      Pg 543   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com