Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 539
Question Number 164515 Answers: 0 Comments: 3
Question Number 164511 Answers: 1 Comments: 0
$$\mathrm{sin}\centerdot\left(\pi\:\mathrm{sin}\:\mathrm{x}\right)\:-\:\mathrm{cos}\centerdot\left(\pi\:\mathrm{sin}\:\mathrm{x}\right)\:=\:\mathrm{1} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{x}}=? \\ $$
Question Number 164582 Answers: 0 Comments: 0
Question Number 164507 Answers: 1 Comments: 2
Question Number 164497 Answers: 1 Comments: 0
Question Number 164483 Answers: 1 Comments: 1
$$\frac{{cos}\mathrm{25}−{sin}\mathrm{65}}{{sin}\mathrm{20}+{sin}\mathrm{10}}=? \\ $$
Question Number 164488 Answers: 0 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{30}}−\left(\mathrm{cot}\:\mathrm{30}\right)^{\mathrm{4}} −\left(\mathrm{cot}\:\mathrm{30}\right)^{\mathrm{2}} =.... \\ $$$$\left.{a}\left.\right)\mathrm{sin}\:^{\mathrm{2}} \mathrm{30}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}\right)\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{30}} \\ $$$$\left.{c}\left.\right)\mathrm{2sin}\:^{\mathrm{2}} \mathrm{30}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{d}\right)\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{30}} \\ $$
Question Number 164478 Answers: 1 Comments: 0
$${Given}\:\begin{cases}{{u}_{\mathrm{0}} =\alpha\:\in\:\mathbb{C}}\\{{u}_{{n}+\mathrm{1}} =\frac{{u}_{{n}} +\mid{u}_{{n}} \mid}{\mathrm{2}}}\end{cases}\:;\:{n}\in\:\mathbb{N} \\ $$$${where}\:\left({u}_{{n}} \right)\:_{{n}\in\mathbb{N}} \:{is}\:{a}\:{complex}\:{sequence}. \\ $$$${Determinate}\:{the}\:{sequence}\:\left({Im}\left({u}_{{n}} \right)\right)\:_{{n}\in\mathbb{N}} \\ $$$${and}\:{calculate}\:{its}\:{limit}. \\ $$$${NB}:\:{Im}\left({u}_{{n}} \right)\:{is}\:{the}\:{complex}\:{part}\:{of}\:{u}_{{n}.} \\ $$$$ \\ $$
Question Number 164477 Answers: 0 Comments: 0
$${Using}\:{the}\:{definition},\:{show}\:{that}\: \\ $$$${U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{sin}\left({k}\right)}{{k}!}\:{is}\:{a}\:{sequence}\:{of}\:{Cauchy}. \\ $$
Question Number 164475 Answers: 1 Comments: 0
$${Etudiez}\:\:{la}\:{convergence}\:{de}\:{de}\:{la} \\ $$$${suite}\:{U}_{{n}} =\frac{\mathrm{1}+{cos}\left({n}\right)+\mathrm{2}{n}}{{ni}+\sqrt{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}}\:;\:{n}\:\in\:\mathbb{N}. \\ $$$$\left[{study}\:{the}\:{convergence}\:{of}\:{U}_{{n}} \right] \\ $$
Question Number 164474 Answers: 0 Comments: 0
$${E}=\left\{{x}\:\in\:\mathbb{Q}_{+} :{x}^{\mathrm{2}} >\mathrm{3}\right\}.\: \\ $$$${Show}\:{that}\:{E}\:{has}\:{not}\:{lower}\:{bound} \\ $$$${in}\:\mathbb{Q}. \\ $$$$\left[{Montrez}\:{que}\:{E}\:{n}'{admet}\:{pas}\:{de}\:{borne}\right. \\ $$$$\left.{inferieure}\:{dans}\:\mathbb{Q}\right] \\ $$
Question Number 164473 Answers: 1 Comments: 0
$${Show}\:{for}\:{z}_{\mathrm{1}} ;\:{z}_{\mathrm{2}\:} \:\in\:\mathbb{C}\:{that}: \\ $$$$\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mathrm{2}\left(\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \right). \\ $$
Question Number 164462 Answers: 2 Comments: 2
$${Find}\:{x},\:{such}\:{that}\:{f}\left({x}\right)\:{is}\:{minimum}. \\ $$$${f}\left({x}\right)=\left\{\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)\right\}^{\mathrm{2}} \\ $$
Question Number 164445 Answers: 0 Comments: 1
Question Number 164447 Answers: 1 Comments: 0
Question Number 164437 Answers: 1 Comments: 0
$${Find}\:{the}\:{max}.\:{area}\:{of}\:\Delta{le} \\ $$$${witth}\:{sides}\:{a},{b},{c}\:{such}\:{as} \\ $$$$\mathrm{0}<{a}\leqslant\mathrm{1};\mathrm{1}\leqslant{b}\leqslant\mathrm{2};\mathrm{2}\leqslant{c}\leqslant\mathrm{3}\:{is} \\ $$$$\left.{a}\left.\right)\left.\mathrm{1}\left.\:\:\:\:\:\:\:\:{b}\right)\mathrm{1}/\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:{c}\right)\mathrm{2}\:\:\:\:\:\:\:\:{d}\right)\mathrm{3}/\mathrm{2} \\ $$
Question Number 164434 Answers: 1 Comments: 0
Question Number 164429 Answers: 1 Comments: 0
$${If}\:{C}\left(\mathrm{2}{x}\:,\:{x}\right)\:=\:\mathrm{70} \\ $$$${prove}\:{that}\:{x}\:=\:\mathrm{4} \\ $$
Question Number 164426 Answers: 1 Comments: 1
$$\:\:{In}\:\Delta{ABC}\:{if}\:\begin{cases}{\mathrm{cot}\:{A}.\mathrm{cot}\:{C}\:=\:\frac{\mathrm{1}}{\mathrm{2}}}\\{\mathrm{cot}\:{B}.\mathrm{cot}\:{C}\:=\:\frac{\mathrm{1}}{\mathrm{18}}}\end{cases} \\ $$$$\:{then}\:\mathrm{tan}\:\:{C}\:=\:? \\ $$
Question Number 164425 Answers: 1 Comments: 0
$$\mathrm{What}\:\mathrm{it}'\mathrm{s}\:?? \\ $$$$\mathrm{5}×\mathrm{55}×\mathrm{555}×\mathrm{5555}×\mathrm{55555}.............\infty= \\ $$
Question Number 164419 Answers: 1 Comments: 0
$${please}\:{help}\:{me} \\ $$$${prouve}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnt}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$
Question Number 164418 Answers: 2 Comments: 2
Question Number 164416 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}<\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\left(\mathrm{1}\:+\:\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}^{\mathrm{2}} }} \centerdot\:\left(\mathrm{1}\:+\:\frac{\mathrm{c}}{\mathrm{b}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{c}}^{\mathrm{2}} }} \centerdot\:\left(\mathrm{1}\:+\:\frac{\mathrm{a}}{\mathrm{c}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{2}} }} \geqslant\:\mathrm{8} \\ $$
Question Number 164417 Answers: 1 Comments: 0
Question Number 164405 Answers: 0 Comments: 0
$$\boldsymbol{{let}}\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}}\:>\:\mathrm{0}\:;\:\boldsymbol{{a}}\:+\:\boldsymbol{{b}}\:+\:\boldsymbol{{c}}\:=\:\mathrm{3} \\ $$$$\boldsymbol{{prove}}\:\boldsymbol{{that}};\:\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} \:+\:\boldsymbol{{bc}}\:+\:\boldsymbol{{c}}^{\mathrm{2}} }\:\:+\:\:\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\boldsymbol{{c}}^{\mathrm{2}} \:+\:\boldsymbol{{ac}}\:+\:\boldsymbol{{a}}^{\mathrm{2}} \:}\:\:+\:\:\frac{\boldsymbol{{c}}^{\mathrm{2}} }{\boldsymbol{{b}}^{\mathrm{2}} \:+\boldsymbol{{ba}}\:+\:\boldsymbol{{a}}^{\mathrm{2}} }\:\:\mathrm{6}\:\:\geqslant\:\:\mathrm{2}\boldsymbol{{abc}}\:\:+\:\:\frac{\mathrm{5}}{\mathrm{3}}\:\:\left(\boldsymbol{{a}}^{\mathrm{2}} \:+\:\boldsymbol{{b}}^{\mathrm{2}} \:+\:\boldsymbol{{c}}^{\mathrm{2}} \:\right)\:\:\geqslant\:\:\mathrm{7} \\ $$$$\:^{\left\{\boldsymbol{\mathrm{Z}}.\mathrm{A}\right\}} \\ $$
Question Number 164396 Answers: 2 Comments: 1
$${If}\:\:{f}\left({x}\right)={f}\left({x}−\mathrm{1}\right)+{x}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$${and}\:\:{f}\left(\mathrm{0}\right)=\mathrm{17}\:\:,\:\:{find}\:{f}\left(\mathrm{17}\right). \\ $$
Pg 534 Pg 535 Pg 536 Pg 537 Pg 538 Pg 539 Pg 540 Pg 541 Pg 542 Pg 543
Terms of Service
Privacy Policy
Contact: info@tinkutara.com