Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 537
Question Number 163043 Answers: 0 Comments: 0
$$\underset{\mathrm{x}\rightarrow−\infty} {\mathrm{lim}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}^{\mathrm{n}} }=? \\ $$
Question Number 163042 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{n}}\int_{−\infty} ^{+\infty} \frac{\mathrm{cos}\:\mathrm{x}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }\mathrm{dx}=? \\ $$
Question Number 163041 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{n}}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{n}} }{\:\sqrt{\mathrm{n}}\mathrm{x}^{\mathrm{2}} }\mathrm{dx}−\sqrt{\pi}\right)=? \\ $$
Question Number 163040 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{n}!}{\mathrm{n}^{\mathrm{n}} }\left(\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}^{\mathrm{k}} }{\mathrm{k}!}−\underset{\mathrm{k}=\mathrm{n}+\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{n}^{\mathrm{k}} }{\mathrm{k}!}\right)=? \\ $$
Question Number 163039 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\centerdot\mathrm{sin}^{\mathrm{2n}} \left(\mathrm{2}\pi\mathrm{x}\right)\mathrm{dx}=? \\ $$
Question Number 163072 Answers: 1 Comments: 0
$$\int\frac{\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{sin}}\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}\mathrm{5}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{sin}}\mathrm{7}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{cosx}}+\boldsymbol{\mathrm{cos}}\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{cos}}\mathrm{5}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{cos}}\mathrm{7}\boldsymbol{\mathrm{x}}}\:\boldsymbol{\mathrm{dx}} \\ $$
Question Number 163033 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{x}\:−\:{sin}\:\left({x}\:\right)}{{x}^{\:\mathrm{3}} }{dx} \\ $$$$−−−\:{solution}−−− \\ $$$$\:\:\:\:\:\Omega\overset{\mathscr{I}.\mathscr{B}.\mathscr{P}} {=}\:\left[\:\frac{−\mathrm{1}}{\mathrm{2}\:{x}^{\:\mathrm{2}} }\:\left({x}−{sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{cos}\:\left({x}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{2}{sin}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\:\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\overset{\frac{{x}}{\mathrm{2}}\:=\:\alpha} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\:\mathrm{2}} \left(\:\alpha\right)}{\alpha^{\:\mathrm{2}} }\:{d}\alpha\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{−\mathrm{1}}{\alpha}\:{sin}^{\:\mathrm{2}} \left(\alpha\right)\right]_{\mathrm{0}} ^{\infty} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left(\mathrm{2}\alpha\right)}{\alpha}{d}\alpha \\ $$$$\:\:\:\:\:\:\:\:\overset{\mathrm{2}\alpha=\varphi} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left(\varphi\:\right)}{\varphi}\:{d}\varphi\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−\:\:\:\:\:\Omega=\:\frac{\pi}{\mathrm{4}}\:\:−−− \\ $$$$ \\ $$$$ \\ $$
Question Number 163024 Answers: 0 Comments: 2
$${calcul}\:{en}\:{fonction}\:{de}\:{n} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\left(_{{k}} ^{\mathrm{2}{n}} \right)^{{n}−\mathrm{2}{k}} \\ $$
Question Number 163020 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{cos}}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \left(\boldsymbol{\mathrm{x}}\right)+\boldsymbol{\mathrm{sin}}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \left(\boldsymbol{\mathrm{x}}\right)=\frac{\mathrm{4}^{\boldsymbol{\mathrm{n}}} +\mathrm{1}}{\mathrm{5}^{\boldsymbol{\mathrm{n}}} } \\ $$$$\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}} \\ $$
Question Number 163014 Answers: 2 Comments: 0
$${given}\:\frac{{a}}{{b}}=\frac{{c}}{{d}},\:{find}\:{an}\:{expression} \\ $$$${for}\:\:\frac{{a}}{{a}+{b}} \\ $$
Question Number 163028 Answers: 1 Comments: 0
Question Number 163008 Answers: 2 Comments: 0
$$\:{Calculate}\: \\ $$$$\:\:\:\int\:\frac{\left(\mathrm{2}−\mathrm{4sin}\:{x}\:\mathrm{cos}\:{x}\right)\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}\right)}{\mathrm{sin}\:^{\mathrm{4}} \mathrm{2}{x}+\mathrm{64}\:\mathrm{cos}\:^{\mathrm{4}} \mathrm{2}{x}}\:{dx}\: \\ $$$$ \\ $$
Question Number 163002 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:{i}:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\:\right)^{\:{n}} }{\left({n}\:+\frac{\mathrm{1}}{\mathrm{2}}\right){cosh}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:{ii}:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}\left(\:\pi\:{x}\:\right)}{{x}^{\:{x}} \left(\:\mathrm{1}−{x}\:\right)^{\:\mathrm{1}−{x}} }\:\frac{{dx}}{\mathrm{1}+{x}}\:=\frac{\pi}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:−−− \\ $$
Question Number 163000 Answers: 1 Comments: 0
Question Number 162999 Answers: 0 Comments: 0
Question Number 162995 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{a}_{\boldsymbol{\mathrm{k}}} \:>\:\mathrm{0}\:\:;\:\:\mathrm{k}\:=\:\overline {\mathrm{1},\mathrm{5}} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{exists}\:\:\boldsymbol{\mathrm{i}},\boldsymbol{\mathrm{j}}\in\overline {\mathrm{1},\mathrm{5}}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\mathrm{0}\:\leqslant\:\frac{\mathrm{a}_{\boldsymbol{\mathrm{j}}} \:-\:\mathrm{a}_{\boldsymbol{\mathrm{i}}} }{\mathrm{1}\:+\:\mathrm{a}_{\boldsymbol{\mathrm{i}}} \mathrm{a}_{\boldsymbol{\mathrm{j}}} }\:\leqslant\:\sqrt{\mathrm{2}}\:-\:\mathrm{1} \\ $$
Question Number 162994 Answers: 0 Comments: 0
Question Number 162993 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\int}}\:\mathrm{xcot}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{cos}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$
Question Number 162974 Answers: 0 Comments: 0
Question Number 162973 Answers: 0 Comments: 0
Question Number 162972 Answers: 0 Comments: 0
Question Number 162971 Answers: 0 Comments: 0
Question Number 162960 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{A}\:\in\:\mathrm{M}_{\:{n}×{n}} \:\:,\:\:\:\mathrm{A}^{\:\mathrm{3}} =\:\overset{−} {\mathrm{O}}\:\: \\ $$$$\:\:\:\:\:\mathrm{Find}\:,\:\:\:\:\:\:\:\:\left(\:\mathrm{A}−\mathrm{2I}\:\right)^{\:−\mathrm{1}} =? \\ $$$$ \\ $$
Question Number 162959 Answers: 1 Comments: 5
$${solve}\:{the}\:{differential}\:{equation}\:{y}\:=\:{x}\:+\:{p}^{\mathrm{3}} \\ $$
Question Number 162952 Answers: 0 Comments: 0
Question Number 162951 Answers: 1 Comments: 2
$$\mathrm{4men}\:\mathrm{clear}\:\mathrm{a}\:\mathrm{farm}\:\mathrm{for}\:\mathrm{8}\:\mathrm{days}\:\mathrm{and}\:\mathrm{are}\:\mathrm{paid}\:\mathrm{24\$} \\ $$$$\mathrm{How}\:\mathrm{long}\:\mathrm{will}\:\mathrm{6}\:\mathrm{men}\:\mathrm{take}\:\mathrm{to}\:\mathrm{clear}\:\mathrm{the}\:\mathrm{same}\:\mathrm{farm} \\ $$$$\mathrm{if}\:\mathrm{they}\:\mathrm{are}\:\mathrm{paid}\:\mathrm{360\$}\:? \\ $$
Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537 Pg 538 Pg 539 Pg 540 Pg 541
Terms of Service
Privacy Policy
Contact: info@tinkutara.com