x^4 +bx^2 +cx+d=0
let cx=m+px^2 +x^4
⇒ 2x^4 +(b+p)x^2 +m+d=0
x^2 =−(((b+p)/4))±(√((((b+p)/4))^2 −(((m+d)/2))))
(p−b)x^2 −2cx+m−d=0
x=(c/(p−b))±(√(((c/(p−b)))^2 −(((m−d)/(p−b)))))
⇒
(((b^2 −p^2 ))/4)±(√(((b^2 −p^2 )^2 −8(p−b)^2 (m+d))/(16)))
+((2c^2 )/(b−p))∓(√((4c^4 −4c^2 (p−b)(m−d))/((p−b)^2 )))
+m−d=0
Just if m=d ⇒
(((b^2 −p^2 ))/4)±(√(((b^2 −p^2 )^2 −16d(p−b))/(16)))
+((4c^2 )/(b−p))=0
⇒
(((b^2 −p^2 )/4)+((4c^2 )/(b−p)))^2 +d(p−b)=(((b^2 −p^2 )^2 )/(16))
⇒ ((16c^4 )/((b−p)^2 ))+(d+2c^2 )(b+p)=0
let b−p=z
z^2 (2b−z)=−((16c^4 )/(2c^2 +d))
z^3 −2bz^2 −k=0 (k>0)
if b=−1 , d=0, c→−c
z^3 +2z^2 −8c^2 =0
let z=((2c)/t)
8c^3 +8c^2 t−8c^2 t^3 =0
⇒ t^3 −t=c
back to square one.
|