Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 535
Question Number 166373 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}\:\: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\:}{{x}^{\:\mathrm{2}} }\:{dx}\:=\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:−−−\:\:{solution}\:\left({technical}\:{method}\right)\:−−− \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right){d}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\left[\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\frac{{xln}\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}−{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:=\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}+{x}}\:{dx}\: \\ $$$$\:\:\:\:\:\:\:=\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}}{dx}\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){dx}}{\mathrm{1}+{x}} \\ $$$$\:\:\:\:\:\:=\:−\mathrm{2}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:−\mathrm{4}\:\left(\:−\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\:\:\:\:\:\therefore\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 166371 Answers: 0 Comments: 2
Question Number 166372 Answers: 3 Comments: 0
Question Number 166360 Answers: 1 Comments: 0
$$\frac{\mathrm{sin}\:\mathrm{10}{x}}{{sin}\:\mathrm{2}{x}}−\frac{\mathrm{cos}\:\mathrm{10}{x}}{\mathrm{cos}\:\mathrm{2}{x}}=? \\ $$
Question Number 166358 Answers: 1 Comments: 0
Question Number 166350 Answers: 1 Comments: 1
Question Number 166331 Answers: 2 Comments: 1
$${prove}\:{that} \\ $$$$\frac{{df}^{−\mathrm{1}} \left({a}\right)}{{dx}}×\frac{{df}\left({f}^{−\mathrm{1}} \left({a}\right)\right)}{{dx}}=\mathrm{1} \\ $$
Question Number 166321 Answers: 1 Comments: 0
Question Number 166320 Answers: 1 Comments: 0
$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\ $$
Question Number 166319 Answers: 1 Comments: 2
Question Number 166318 Answers: 0 Comments: 0
Question Number 166346 Answers: 1 Comments: 1
$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$
Question Number 166307 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 166296 Answers: 0 Comments: 2
$$\left(\mathrm{cos}\:{x}\right)^{\mathrm{2022}} −\left(\mathrm{sin}\:{x}\right)^{\mathrm{2022}} =\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 166294 Answers: 0 Comments: 5
$$\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{1}} ^{{x}} \:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} +\mathrm{3}}} \\ $$$$\:\:\:\left({f}^{−\mathrm{1}} \left(\mathrm{0}\right)\right)'=? \\ $$
Question Number 166291 Answers: 1 Comments: 0
$${calculer}\:{la}\:{somme} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}{x}^{{n}} \\ $$
Question Number 166284 Answers: 0 Comments: 1
Question Number 166281 Answers: 1 Comments: 0
Question Number 166280 Answers: 1 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{−\mathrm{2}} \right)\:\mathrm{dx} \\ $$
Question Number 166279 Answers: 0 Comments: 0
$${if}\:{y}\:=\:{x}^{{x}^{{x}^{{x}} } } \:{find}\:{y}^{'} \:? \\ $$
Question Number 166273 Answers: 2 Comments: 1
Question Number 166263 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\int_{\:−\frac{\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\mathrm{dx}}{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\sqrt{\mathrm{9}+\mathrm{7}\:\mathrm{tan}\:\mid\mathrm{x}\mid}}\:\mathrm{dx}\:=? \\ $$
Question Number 166301 Answers: 2 Comments: 0
$$\int\frac{{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} +\sqrt{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }}}{dx} \\ $$
Question Number 166261 Answers: 1 Comments: 1
$${If}\:{four}\:{men}\:{can}\:{dig}\:{a}\:{piece}\:{of}\:{land}\:{in}\:\mathrm{2}{days}\:{at}\:{eight}\:{hours}\:{everyday}.{How}\:{many}\:{days}\:{can}\:{two}\:{men}\:{dig}\:{in}\:{every}\:{six}\:{hours}\:{perday}? \\ $$
Question Number 166254 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{H}_{\:{n}} }{{n}.\:\left({n}+\mathrm{1}\:\right)}\:\:\overset{?} {=}\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}} \\ $$$$\:\:\:\:\:−−−−+ \\ $$
Question Number 166252 Answers: 1 Comments: 1
Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537 Pg 538 Pg 539
Terms of Service
Privacy Policy
Contact: info@tinkutara.com