Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 534
Question Number 165354 Answers: 0 Comments: 0
Question Number 165349 Answers: 1 Comments: 0
Question Number 165339 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:#\:{Advanced}\:\:\:{Calculus}\:#\:\:\: \\ $$$$\:\:\:\:\:\mathrm{L}{et}\:,\:\:{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{Q}\:\:{is}\:\:{a}\:\:{continuous} \\ $$$$\:\:\:\:\:\:{function}\:\:.\:{prove}\:{that}\:\:''\:{f}\:''\:{is}\:{a} \\ $$$$\:\:\:\:\:\:\:{constant}\:{function}\:.\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\:\ast\:{Adopted}\:{from}\:{mathematical}\:{analysis}\:{book}\:\:\ast\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−−−−−−− \\ $$$$ \\ $$
Question Number 165329 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:{prove}\:\:\:\:\:\:\:\:\:\:\left(\:{n}\in\:\mathbb{N}\:\right) \\ $$$$\:\:\:\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\:\mathrm{3}} \:+\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\:\left({n}+\mathrm{2}\:\right)^{\:\mathrm{3}} \\ $$$$ \\ $$
Question Number 165328 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathscr{N}{ice}\:\:\:\mathscr{I}{ntegral} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} \right)}{{x}^{\:\mathrm{2}} }\:{dx}\:\:=\frac{\pi\:+\:\sqrt{\mathrm{3}}\:{ln}\left(\mathrm{7}\:+\mathrm{4}\sqrt{\mathrm{3}}\:\right)}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n} \\ $$$$\:\:\:\:\:\:−−−−−−−−−\:\:\: \\ $$
Question Number 165322 Answers: 1 Comments: 2
$${who}\:{can}\:{prove}\:{that}\:\mathrm{2}^{{n}} −\mathrm{1}{produces} \\ $$$${a}\:{prime}\:{number}\:{when}\:\:{n}\:\:{is}\:{a}\: \\ $$$${prime}\:{number} \\ $$
Question Number 165321 Answers: 2 Comments: 0
Question Number 165320 Answers: 1 Comments: 0
$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:{cos}\:\left(\mathrm{2}{x}\:\right).{e}^{\:\lfloor\:{sin}\left({x}\right)+\:{cos}\left({x}\right)\:\rfloor} {dx} \\ $$$$\:\:\:\lfloor\:{x}\:\rfloor=\:{max}\:\left\{\:{m}\:\in\:\mathbb{Z}\:\mid\:\:{m}\:\leqslant\:{x}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:−−−− \\ $$
Question Number 165314 Answers: 0 Comments: 2
$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}+.....+{sin}^{\mathrm{2}} \mathrm{90}=? \\ $$
Question Number 165301 Answers: 1 Comments: 0
Question Number 165296 Answers: 2 Comments: 1
Question Number 165307 Answers: 0 Comments: 0
Question Number 165291 Answers: 1 Comments: 0
Question Number 165309 Answers: 0 Comments: 0
$$\:\frac{\mathrm{6}}{\mathrm{6}+\sqrt{\mathrm{6}}}\:+\:\frac{\mathrm{6}}{\mathrm{6}^{\mathrm{2}} +\sqrt{\mathrm{6}}}\:+\frac{\mathrm{6}}{\mathrm{6}^{\mathrm{3}} +\sqrt{\mathrm{6}}}\:+...+\frac{\mathrm{6}}{\mathrm{6}^{\mathrm{1000}} +\sqrt{\mathrm{6}}}\:=? \\ $$
Question Number 165262 Answers: 2 Comments: 0
$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{sum}}\:\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\boldsymbol{{n}}} \:+\:\boldsymbol{{i}}\:\left(\:\frac{\mathrm{1}}{\mathrm{3}}\:\right)^{\boldsymbol{{n}}} \: \\ $$
Question Number 165255 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{nice}}\:\boldsymbol{\mathrm{integral}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{ln}}\left(\underset{\boldsymbol{\mathrm{m}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{m}}} \right)\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$−−−−−−−−−−−−−\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{MATH}}.\boldsymbol{\mathrm{AMIN}} \\ $$
Question Number 165243 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\lfloor\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{{x}}???\rfloor \\ $$$$\:\:\:\lfloor\mathrm{5}\boldsymbol{{x}}\:+\:\frac{\mathrm{5}\boldsymbol{{x}}}{\left(\mathrm{5}\:+\:\mathrm{5}\right)^{\mathrm{5}} }\:×\:\left(−\mathrm{5}\boldsymbol{{x}}\right)\:\boldsymbol{\div}\:\mathrm{555}\boldsymbol{{x}}\:−\mathrm{55}\boldsymbol{{x}}\:×\frac{\mathrm{5}\boldsymbol{\div}\mathrm{5}}{\mathrm{5}}\:\:+\:\boldsymbol{{x}}\:=\:\mathrm{555555555555555}\rfloor \\ $$$$\:^{\mathrm{proof}:\mathrm{z}.\mathrm{a}} \\ $$
Question Number 165240 Answers: 1 Comments: 0
$$\:{soit}\:{la}\:{serie}\:{de}\:{fonction}\:\underset{{n}=\mathrm{2}\:\:\:} {\sum}\frac{{x}^{{n}} }{{nx}+{ln}\left({n}\right)} \\ $$$${etudie}\:{la}\:{convergence}\:{simple}\:{sur}\:\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$
Question Number 165234 Answers: 0 Comments: 1
Question Number 165253 Answers: 3 Comments: 0
Question Number 165232 Answers: 1 Comments: 1
Question Number 165250 Answers: 0 Comments: 1
Question Number 165229 Answers: 0 Comments: 1
$$\underset{{i}=\mathrm{1}} {\overset{{n}=\infty} {\sum}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{xyn}^{{x}} }{{nx}_{\mathrm{1}} }{xz}\int\frac{{xn}^{{n}} {x}}{{nx}^{{n}} {y}}{dn} \\ $$$$\sqrt{{c}^{{n}} +{n}_{\mathrm{1}} } \\ $$$$\int\frac{{xn}^{{n}!} }{{n}^{{n}} {xn}^{{x}} }{dn} \\ $$
Question Number 165226 Answers: 1 Comments: 0
$${make}\:{x}\:{the}\:{subject}\:{of}\:{the}\:{formula}; \\ $$$${a}^{{x}} +{bx}+{c}=\mathrm{0} \\ $$
Question Number 165217 Answers: 2 Comments: 5
Question Number 165218 Answers: 1 Comments: 1
$$\mathrm{Question}\:\mathrm{by}\:\boldsymbol{\mathrm{M}}.\boldsymbol{\mathrm{N}}\:\boldsymbol{\mathrm{July}} \\ $$$$\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{x}^{\mathrm{8}} \right)}{\mathrm{x}}\mathrm{dx} \\ $$$$\Phi\:\overset{\mathrm{x}=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} } {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}}\mathrm{dx} \\ $$$$\Phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{x}^{\mathrm{6}} }\right)}{\mathrm{x}}\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}}\mathrm{dx}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{6}} \right)}{\mathrm{x}}\mathrm{dx} \\ $$$$\Phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{A}\:−\:\mathrm{B}\right) \\ $$$$\mathrm{A}\:\overset{\mathrm{x}=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} } {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{Li}}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$\mathrm{B}\:\overset{\mathrm{x}=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{6}}} } {=}\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{6}}} }\mathrm{dx} \\ $$$$\mathrm{B}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\boldsymbol{\mathrm{Li}}_{\mathrm{2}} \left(\mathrm{1}\right)\: \\ $$$$\Phi\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{Li}}_{\mathrm{2}} \left(\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{6}}\boldsymbol{\mathrm{Li}}_{\mathrm{2}} \left(\mathrm{1}\right)\right)\:=\:\frac{\mathrm{1}}{\mathrm{6}}\boldsymbol{\mathrm{Li}}_{\mathrm{2}} \left(\mathrm{1}\right) \\ $$$$\boldsymbol{\Phi}\:=\:\frac{\boldsymbol{\zeta}\left(\mathrm{2}\right)}{\mathrm{3}}\:\blacktriangle\blacktriangle\blacktriangle \\ $$
Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537 Pg 538
Terms of Service
Privacy Policy
Contact: info@tinkutara.com