Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 534
Question Number 163522 Answers: 3 Comments: 0
Question Number 163510 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f} \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\mathrm{1}}{\:\sqrt{{sin}^{\:\mathrm{5}} \left({x}\right).{cos}\left({x}\right)}\:+\sqrt{{cos}^{\:\mathrm{5}} \left({x}\right).{sin}\left({x}\right)}}{dx}\:= \\ $$$$\:\:\:{find}\:{the}\:{value}\:{of}\:\::\:\Gamma^{\:\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}\:\right).\:\boldsymbol{\phi} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 163508 Answers: 0 Comments: 0
$${etudier}\:{la}\:{continuite}\:{de}\:\left[\:{x}\:\right]\:ā\:\sqrt{{x}\:ā\:\left[\:{x}\:\right]} \\ $$
Question Number 163497 Answers: 1 Comments: 1
Question Number 163496 Answers: 1 Comments: 0
$$\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{256}\boldsymbol{{cos}}^{\mathrm{5}} \left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\boldsymbol{{sin}}^{\mathrm{11}} \left(\frac{\boldsymbol{{x}}}{\mathrm{2}}\right)\boldsymbol{{dx}} \\ $$
Question Number 163490 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \:\frac{\boldsymbol{{x}}^{\mathrm{3}} }{\boldsymbol{{e}}^{\boldsymbol{{x}}} \:ā\mathrm{1}}\:\boldsymbol{{dx}} \\ $$
Question Number 163487 Answers: 1 Comments: 0
$$ \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{sin}^{\:\mathrm{2}} \left(\:\mathrm{ln}\left({x}\:\right)\right).\:\mathrm{ln}\:\left({x}\right)}{\:\sqrt{{x}}}\:{dx}=? \\ $$$$\:\:\:\:āāāāā \\ $$
Question Number 163484 Answers: 0 Comments: 0
$${pour}\:{tout}\:{couple}\:\left({a},{b}\right)\epsilon{R}^{\mathrm{2}} ,{prouver}\:{que} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{p}} \left({lnt}\right)^{{q}} {dt}\:{converge}\:{puis}\:{calculer} \\ $$
Question Number 163483 Answers: 4 Comments: 0
Question Number 163481 Answers: 1 Comments: 0
Question Number 163473 Answers: 0 Comments: 2
Question Number 163472 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{3}} \:\frac{\boldsymbol{\mathrm{xdx}}}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:+\:\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{x}}\:\mathrm{2}}\:= \\ $$
Question Number 163470 Answers: 0 Comments: 0
Question Number 163469 Answers: 1 Comments: 1
Question Number 163468 Answers: 0 Comments: 0
Question Number 163467 Answers: 1 Comments: 0
Question Number 163463 Answers: 1 Comments: 0
$${nature}\:{de}\:{la}\:{serie} \\ $$$$\underset{{n}=\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}}\right) \\ $$
Question Number 163457 Answers: 0 Comments: 1
$$\mathrm{let}\:\:\boldsymbol{\mathrm{a}}>\mathrm{0}\:\:\mathrm{and}\:\:\boldsymbol{\lambda}>\mathrm{0}\:\:\mathrm{fixed} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\:\left(\mathrm{0};\infty\right)\:\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{2a}^{\mathrm{2}} \mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}\lambda}\:-\:\frac{\mathrm{2}\lambda}{\mathrm{x}}\right)\:=\:\mathrm{a}^{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\lambda}}} \:\:+\:\:\mathrm{a}^{\frac{\mathrm{4}\boldsymbol{\lambda}}{\boldsymbol{\mathrm{x}}}} \\ $$
Question Number 163452 Answers: 1 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{3}^{\boldsymbol{\mathrm{x}}\:\sqrt{\boldsymbol{\mathrm{x}}}} \:\:+\:\:\mathrm{3}^{\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{\mathrm{x}}}}} \:\:=\:\mathrm{12} \\ $$
Question Number 163451 Answers: 0 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt{\mathrm{1}\:-\:\mathrm{x}}\:=\:\mathrm{1}\:-\:\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{2x}\:\sqrt{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{2}} } \\ $$
Question Number 163443 Answers: 0 Comments: 7
$$\mathrm{p}\:\leqslant\:\mathrm{n}\: \\ $$$$\mathrm{find}\:\:\frac{\mathrm{A}_{\mathrm{n}} ^{\mathrm{p}} }{\mathrm{A}_{\mathrm{n}ā\mathrm{1}} ^{\mathrm{p}} }. \\ $$
Question Number 163441 Answers: 0 Comments: 0
$$\int\frac{{x}+\mathrm{3}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} }{dx}=\int\frac{{x}+\mathrm{1}+\mathrm{3}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} }{dx}=\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }{dx}+\mathrm{3}\int\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)^{\mathrm{4}} }{dx} \\ $$
Question Number 163439 Answers: 0 Comments: 0
Question Number 163437 Answers: 1 Comments: 2
Question Number 163434 Answers: 0 Comments: 0
Question Number 163433 Answers: 0 Comments: 0
Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537 Pg 538
Terms of Service
Privacy Policy
Contact: info@tinkutara.com