Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 534
Question Number 166058 Answers: 1 Comments: 0
Question Number 166053 Answers: 1 Comments: 1
$$\:\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{in}}\:\:\mathbb{R}\overset{\:} {:} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\sqrt{\mathrm{2}}} \:\:+\:\:\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{6}\:\:\:\:\:\left(\boldsymbol{\mathrm{How}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{solve}}?\right) \\ $$
Question Number 166049 Answers: 0 Comments: 0
$${n}\epsilon\:{R}/\left\{\mathrm{0},\mathrm{1}\right\}\:{montrer}\:{que} \\ $$$$\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\:\frac{{x}^{{k}} }{{nx}+{ln}\left({k}\right)}>=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 166043 Answers: 0 Comments: 5
$$\boldsymbol{{is}}\:\mathrm{811}\:\boldsymbol{{prime}}\:\boldsymbol{{number}}\:\boldsymbol{{or}}\:\boldsymbol{{no}}\:? \\ $$
Question Number 166036 Answers: 2 Comments: 2
Question Number 166033 Answers: 1 Comments: 1
Question Number 166009 Answers: 1 Comments: 4
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{70}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{64}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\mathrm{2002}}\\{\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)=?}\end{cases}\: \\ $$$$\left({Use}\:\boldsymbol{{Newton}}-\boldsymbol{{Identities}}\right. \\ $$$$\left.{or}\:{otherwise}\right) \\ $$
Question Number 166007 Answers: 1 Comments: 1
Question Number 166006 Answers: 0 Comments: 0
$${chek}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:{cos}\left({n}\right)\:{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$
Question Number 166017 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\:\mathrm{it}\:! \\ $$$$\:\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)}\:−\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−{t}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \:{t}\:−\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$
Question Number 166015 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:{integral}\:{and}\:{find}\:{valeur} \\ $$$${t}−>\:\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$
Question Number 166012 Answers: 1 Comments: 1
Question Number 166013 Answers: 1 Comments: 0
Question Number 165995 Answers: 1 Comments: 0
$$\begin{cases}{{sinx}+{siny}=\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{2}^{\mathrm{sin}\:{x}} +\mathrm{2}^{\mathrm{sin}\:{y}} =\mathrm{2}+\sqrt{\mathrm{2}}}\end{cases}\:\:\:\:\:\:\:{faind}\:\:\:{x}=? \\ $$
Question Number 165984 Answers: 1 Comments: 1
Question Number 165969 Answers: 0 Comments: 3
$$ \\ $$
Question Number 165965 Answers: 2 Comments: 0
Question Number 165962 Answers: 0 Comments: 0
Question Number 165955 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{C}\:=\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2x}}\:=? \\ $$
Question Number 165942 Answers: 1 Comments: 5
Question Number 165949 Answers: 2 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{5}{x}−\mathrm{2}}{{a}}\:\:\wedge{f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+{b}}{\mathrm{5}} \\ $$$${faind}\:\:\:{a}×{b}=? \\ $$
Question Number 165950 Answers: 1 Comments: 0
$${y}=\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{100}} \\ $$$$\frac{{d}^{\mathrm{99}} {y}}{{dx}^{\mathrm{99}} }=?\wedge\frac{{d}^{\mathrm{85}} {y}}{{dx}^{\mathrm{85}} }=? \\ $$
Question Number 165900 Answers: 1 Comments: 5
Question Number 165881 Answers: 3 Comments: 0
$$\begin{cases}{\sqrt{\frac{{x}}{{y}}}−\sqrt{\frac{{y}}{{x}}}=\frac{\mathrm{3}}{\mathrm{2}}}\\{{x}+{y}+{xy}=\mathrm{9}}\end{cases} \\ $$
Question Number 165879 Answers: 2 Comments: 0
Question Number 165876 Answers: 0 Comments: 3
$${solve}: \\ $$$$\:\:{sin}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {y}+\mathrm{1}={sinx}+{siny}+{sinxsiny} \\ $$
Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537 Pg 538
Terms of Service
Privacy Policy
Contact: info@tinkutara.com