Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 534

Question Number 165018    Answers: 0   Comments: 0

y = Γ(m+n) Find (dy/dn)

$${y}\:=\:\Gamma\left({m}+{n}\right)\: \\ $$$${Find}\:\frac{{dy}}{{dn}} \\ $$

Question Number 165017    Answers: 0   Comments: 0

Question Number 165015    Answers: 2   Comments: 2

Question Number 164996    Answers: 1   Comments: 0

Question Number 164995    Answers: 1   Comments: 0

Question Number 164993    Answers: 1   Comments: 0

solve by series ∫_0 ^( ∞) ((sinx)/x) dx

$${solve}\:{by}\:{series}\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{sinx}}{{x}}\:{dx} \\ $$

Question Number 164992    Answers: 0   Comments: 0

Question Number 164991    Answers: 2   Comments: 1

Solve by resideo theorem ∫_(−∞) ^( ∞) (z^2 /(z^4 +1)) dz

$$\boldsymbol{{Solve}}\:\boldsymbol{{by}}\:\boldsymbol{{resideo}}\:\boldsymbol{{theorem}}\:\int_{−\infty} ^{\:\infty} \:\frac{\boldsymbol{{z}}^{\mathrm{2}} }{\boldsymbol{{z}}^{\mathrm{4}} +\mathrm{1}}\:\boldsymbol{{dz}} \\ $$

Question Number 164985    Answers: 2   Comments: 0

Question Number 164982    Answers: 0   Comments: 0

Prove, that (a/b) : (c/d) = (a/b) ∙ (d/c)

$$\mathrm{Prove},\:\mathrm{that}\:\frac{{a}}{{b}}\::\:\frac{{c}}{{d}}\:=\:\frac{{a}}{{b}}\:\centerdot\:\frac{{d}}{{c}} \\ $$

Question Number 164984    Answers: 0   Comments: 0

Question Number 164974    Answers: 1   Comments: 0

∫_0 ^( 1) (( ln( 1− x ).ln(x ) )/x^( (3/2)) )dx=^? π^( 2) −8ln(2 ) −−− m.n −−−

$$ \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}\left(\:\mathrm{1}−\:{x}\:\right).\mathrm{ln}\left({x}\:\right)\:\:}{{x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} }{dx}\overset{?} {=}\pi^{\:\mathrm{2}} −\mathrm{8ln}\left(\mathrm{2}\:\right)\: \\ $$$$\:\:\:\:\:−−−\:\:{m}.{n}\:−−− \\ $$$$ \\ $$

Question Number 164973    Answers: 1   Comments: 0

Question Number 164970    Answers: 0   Comments: 0

⌊x(x^(2+1) /(x/(10−3^x ))) + x(x^(2+2) /(x/(9−3^x ))) + x(x^(2+3) /(x/(8−3^x ))) +x (x^(2+4) /(x/(7−3^x ))) + x(x^(2+5) /(x/(6−3^x ))) ≥ (1/((25)/x^x^(x ((1/(25)))) ))⌋ {Z.A}

$$\:\:\lfloor\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{1}} }{\frac{\boldsymbol{{x}}}{\mathrm{10}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{2}} }{\frac{\boldsymbol{{x}}}{\mathrm{9}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{3}} }{\frac{\boldsymbol{{x}}}{\mathrm{8}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\boldsymbol{{x}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{4}} }{\frac{\boldsymbol{{x}}}{\mathrm{7}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{5}} }{\frac{\boldsymbol{{x}}}{\mathrm{6}−\mathrm{3}^{\boldsymbol{{x}}} }}\:\geqslant\:\frac{\mathrm{1}}{\frac{\mathrm{25}}{\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}\:\left(\frac{\mathrm{1}}{\mathrm{25}}\right)} } }}\rfloor \\ $$$$\:\:\:\left\{\mathrm{Z}.\mathrm{A}\right\} \\ $$$$\: \\ $$

Question Number 164966    Answers: 1   Comments: 0

⌊((5/x) + (4/x) + (3/x) + (2/x) + (1/x)) • ((x/1) − (x/2) − (x/3) − (x/4) − (x/5) )^2 > (1/(15))⌋ {za}

$$\:\:\:\:\:\lfloor\left(\frac{\mathrm{5}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{4}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:\bullet\:\left(\frac{\boldsymbol{{x}}}{\mathrm{1}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{2}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{3}}\:\:−\:\frac{\boldsymbol{{x}}}{\mathrm{4}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{5}}\:\right)^{\mathrm{2}} >\:\frac{\mathrm{1}}{\mathrm{15}}\rfloor \\ $$$$\:\:\:\left\{\mathrm{za}\right\} \\ $$

Question Number 164956    Answers: 1   Comments: 0

a_1 =1 a_2 =−1 and a_n =−a_(n−1) −2a_(n−2) Find a_n

$$\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\mathrm{a}_{\mathrm{2}} =−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{a}_{\mathrm{n}} =−\mathrm{a}_{\mathrm{n}−\mathrm{1}} −\mathrm{2a}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Question Number 164955    Answers: 0   Comments: 2

comment creer un tableau de variation a partir de l′application?

$$\mathrm{comment}\:\mathrm{creer}\:\mathrm{un}\:\mathrm{tableau}\:\mathrm{de}\:\mathrm{variation}\:\mathrm{a}\:\mathrm{partir}\:\mathrm{de}\:\mathrm{l}'\mathrm{application}? \\ $$

Question Number 164945    Answers: 2   Comments: 0

If { (( sin ( 3θ ) + cos ( 3θ ) = x)),(( sin( θ ) + cos (θ ) = y)) :} then , find a relationship between x , y indepentent of , θ .

$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\begin{cases}{\:\:{sin}\:\left(\:\mathrm{3}\theta\:\right)\:+\:{cos}\:\left(\:\mathrm{3}\theta\:\right)\:=\:{x}}\\{\:\:\:\:\:{sin}\left(\:\theta\:\right)\:+\:{cos}\:\left(\theta\:\right)\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:{then}\:\:,\:{find}\:\:{a}\:{relationship}\: \\ $$$$\:\:\:\:\:\:\:\:{between}\:\:\:{x}\:\:,\:\:{y}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{indepentent}\:{of}\:,\:\:\:\theta\:. \\ $$

Question Number 164944    Answers: 1   Comments: 0

Ω = ∫_0 ^( ∞) e^( − (√x) ) .ln ((x)^(1/4) )dx =? −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 164941    Answers: 1   Comments: 1

Question Number 164940    Answers: 0   Comments: 1

−−−−−−−−− 1!−2!+3!−4!+5!−…−14!+15!=? −−−−−−−−−−by M.A

$$−−−−−−−−− \\ $$$$\mathrm{1}!−\mathrm{2}!+\mathrm{3}!−\mathrm{4}!+\mathrm{5}!−\ldots−\mathrm{14}!+\mathrm{15}!=? \\ $$$$ \\ $$$$−−−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$

Question Number 164924    Answers: 0   Comments: 1

Question Number 164923    Answers: 2   Comments: 1

Question Number 164927    Answers: 0   Comments: 0

Question Number 164929    Answers: 3   Comments: 0

∫_(−2) ^2 [x]dx=?

$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{x}\right]{dx}=? \\ $$

Question Number 164928    Answers: 0   Comments: 0

  Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536      Pg 537      Pg 538   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com