Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 534
Question Number 165018 Answers: 0 Comments: 0
$${y}\:=\:\Gamma\left({m}+{n}\right)\: \\ $$$${Find}\:\frac{{dy}}{{dn}} \\ $$
Question Number 165017 Answers: 0 Comments: 0
Question Number 165015 Answers: 2 Comments: 2
Question Number 164996 Answers: 1 Comments: 0
Question Number 164995 Answers: 1 Comments: 0
Question Number 164993 Answers: 1 Comments: 0
$${solve}\:{by}\:{series}\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{sinx}}{{x}}\:{dx} \\ $$
Question Number 164992 Answers: 0 Comments: 0
Question Number 164991 Answers: 2 Comments: 1
$$\boldsymbol{{Solve}}\:\boldsymbol{{by}}\:\boldsymbol{{resideo}}\:\boldsymbol{{theorem}}\:\int_{−\infty} ^{\:\infty} \:\frac{\boldsymbol{{z}}^{\mathrm{2}} }{\boldsymbol{{z}}^{\mathrm{4}} +\mathrm{1}}\:\boldsymbol{{dz}} \\ $$
Question Number 164985 Answers: 2 Comments: 0
Question Number 164982 Answers: 0 Comments: 0
$$\mathrm{Prove},\:\mathrm{that}\:\frac{{a}}{{b}}\::\:\frac{{c}}{{d}}\:=\:\frac{{a}}{{b}}\:\centerdot\:\frac{{d}}{{c}} \\ $$
Question Number 164984 Answers: 0 Comments: 0
Question Number 164974 Answers: 1 Comments: 0
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}\left(\:\mathrm{1}−\:{x}\:\right).\mathrm{ln}\left({x}\:\right)\:\:}{{x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} }{dx}\overset{?} {=}\pi^{\:\mathrm{2}} −\mathrm{8ln}\left(\mathrm{2}\:\right)\: \\ $$$$\:\:\:\:\:−−−\:\:{m}.{n}\:−−− \\ $$$$ \\ $$
Question Number 164973 Answers: 1 Comments: 0
Question Number 164970 Answers: 0 Comments: 0
$$\:\:\lfloor\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{1}} }{\frac{\boldsymbol{{x}}}{\mathrm{10}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{2}} }{\frac{\boldsymbol{{x}}}{\mathrm{9}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{3}} }{\frac{\boldsymbol{{x}}}{\mathrm{8}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\boldsymbol{{x}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{4}} }{\frac{\boldsymbol{{x}}}{\mathrm{7}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{5}} }{\frac{\boldsymbol{{x}}}{\mathrm{6}−\mathrm{3}^{\boldsymbol{{x}}} }}\:\geqslant\:\frac{\mathrm{1}}{\frac{\mathrm{25}}{\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}\:\left(\frac{\mathrm{1}}{\mathrm{25}}\right)} } }}\rfloor \\ $$$$\:\:\:\left\{\mathrm{Z}.\mathrm{A}\right\} \\ $$$$\: \\ $$
Question Number 164966 Answers: 1 Comments: 0
$$\:\:\:\:\:\lfloor\left(\frac{\mathrm{5}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{4}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:\bullet\:\left(\frac{\boldsymbol{{x}}}{\mathrm{1}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{2}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{3}}\:\:−\:\frac{\boldsymbol{{x}}}{\mathrm{4}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{5}}\:\right)^{\mathrm{2}} >\:\frac{\mathrm{1}}{\mathrm{15}}\rfloor \\ $$$$\:\:\:\left\{\mathrm{za}\right\} \\ $$
Question Number 164956 Answers: 1 Comments: 0
$$\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\mathrm{a}_{\mathrm{2}} =−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{a}_{\mathrm{n}} =−\mathrm{a}_{\mathrm{n}−\mathrm{1}} −\mathrm{2a}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$
Question Number 164955 Answers: 0 Comments: 2
$$\mathrm{comment}\:\mathrm{creer}\:\mathrm{un}\:\mathrm{tableau}\:\mathrm{de}\:\mathrm{variation}\:\mathrm{a}\:\mathrm{partir}\:\mathrm{de}\:\mathrm{l}'\mathrm{application}? \\ $$
Question Number 164945 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\begin{cases}{\:\:{sin}\:\left(\:\mathrm{3}\theta\:\right)\:+\:{cos}\:\left(\:\mathrm{3}\theta\:\right)\:=\:{x}}\\{\:\:\:\:\:{sin}\left(\:\theta\:\right)\:+\:{cos}\:\left(\theta\:\right)\:=\:{y}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:{then}\:\:,\:{find}\:\:{a}\:{relationship}\: \\ $$$$\:\:\:\:\:\:\:\:{between}\:\:\:{x}\:\:,\:\:{y}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{indepentent}\:{of}\:,\:\:\:\theta\:. \\ $$
Question Number 164944 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \:\:{e}^{\:−\:\sqrt{{x}}\:} .{ln}\:\left(\sqrt[{\mathrm{4}}]{{x}}\:\right){dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$
Question Number 164941 Answers: 1 Comments: 1
Question Number 164940 Answers: 0 Comments: 1
$$−−−−−−−−− \\ $$$$\mathrm{1}!−\mathrm{2}!+\mathrm{3}!−\mathrm{4}!+\mathrm{5}!−\ldots−\mathrm{14}!+\mathrm{15}!=? \\ $$$$ \\ $$$$−−−−−−−−−−\boldsymbol{{by}}\:\boldsymbol{{M}}.\boldsymbol{{A}} \\ $$
Question Number 164924 Answers: 0 Comments: 1
Question Number 164923 Answers: 2 Comments: 1
Question Number 164927 Answers: 0 Comments: 0
Question Number 164929 Answers: 3 Comments: 0
$$\underset{−\mathrm{2}} {\overset{\mathrm{2}} {\int}}\left[{x}\right]{dx}=? \\ $$
Question Number 164928 Answers: 0 Comments: 0
Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537 Pg 538
Terms of Service
Privacy Policy
Contact: info@tinkutara.com