Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 534

Question Number 166177    Answers: 1   Comments: 0

help me please A cone 9 cm high and 8 cm in base diameter is filled with ice. a) vanilla for 2/5 of the height, b) chocolate for the remaining part 1. Calculate the volume of ice it contains. 2. Calculate the volume of the vanilla ice cream and the volume of the chocolate. By what fractions must the total volume of ice be multiplied to obtain these two volumes? The different volumes will be rounded to the nearest cm³.

$$ \\ $$help me please A cone 9 cm high and 8 cm in base diameter is filled with ice. a) vanilla for 2/5 of the height, b) chocolate for the remaining part 1. Calculate the volume of ice it contains. 2. Calculate the volume of the vanilla ice cream and the volume of the chocolate. By what fractions must the total volume of ice be multiplied to obtain these two volumes? The different volumes will be rounded to the nearest cm³.

Question Number 166176    Answers: 0   Comments: 0

Question Number 166170    Answers: 2   Comments: 0

tan(a+b)=(1/(17)) , tan(a−b)=((11)/(13)) tan2a=? tan2b=?

$${tan}\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{17}}\:\:\:,\:\:\:{tan}\left({a}−{b}\right)=\frac{\mathrm{11}}{\mathrm{13}} \\ $$$${tan}\mathrm{2}{a}=?\:\:\:\:\:\:{tan}\mathrm{2}{b}=? \\ $$

Question Number 166169    Answers: 1   Comments: 0

sin^7 (x)+(1/(sin^3 (x)))=cos^7 (x)+(1/(cos^3 (x)))

$$\:\:\mathrm{sin}^{\mathrm{7}} \left(\mathrm{x}\right)+\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{x}\right)}=\mathrm{cos}\:^{\mathrm{7}} \left(\mathrm{x}\right)+\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{x}\right)} \\ $$$$ \\ $$

Question Number 166168    Answers: 0   Comments: 0

prove Σ_(r=−∞) ^∞ (1/(x + (r+(1/2))π)) = tan(x) (Σ_(r=−∞) ^∞ (1/(x + r)))(Σ_(r=−∞) ^∞ (1/(x + r))) = −(π^2 /4) ( r = odd) (r = even)

$${prove} \\ $$$$\underset{{r}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}\:+\:\left({r}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\:{tan}\left({x}\right) \\ $$$$\left(\underset{{r}=−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}\:+\:{r}}\right)\left(\underset{{r}=−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}\:+\:{r}}\right)\:=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\left(\:{r}\:=\:{odd}\right)\:\:\:\:\:\:\:\:\left({r}\:=\:{even}\right) \\ $$

Question Number 166167    Answers: 0   Comments: 0

Question Number 166163    Answers: 0   Comments: 0

Question Number 166215    Answers: 1   Comments: 0

Question Number 166260    Answers: 1   Comments: 0

∫_0 ^(π/2) ln(sinx+cosx)dx=? −−−−−−−−−−−−by M.A

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$−−−−−−−−−−−−\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{M}}.\boldsymbol{\mathrm{A}} \\ $$

Question Number 166160    Answers: 3   Comments: 0

Σ_(n=1) ^∞ Σ_(m=1) ^∞ (1/(m^2 n+mn^2 +2mn))=?

$$\:\:\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{m}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{m}^{\mathrm{2}} \mathrm{n}+\mathrm{mn}^{\mathrm{2}} +\mathrm{2mn}}=? \\ $$

Question Number 166143    Answers: 1   Comments: 0

Question Number 166141    Answers: 2   Comments: 0

∫_0 ^x (t^2 /( (√(a+2t^2 ))))dt

$$\int_{\mathrm{0}} ^{\boldsymbol{\mathrm{x}}} \frac{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }{\:\sqrt{\boldsymbol{\mathrm{a}}+\mathrm{2}\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}}\: \\ $$

Question Number 166137    Answers: 2   Comments: 0

Question Number 166135    Answers: 1   Comments: 1

find the domain of f(x) = (1/([x]−1))

$${find}\:{the}\:{domain}\:{of}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left[{x}\right]−\mathrm{1}} \\ $$

Question Number 166134    Answers: 1   Comments: 0

Question Number 166127    Answers: 0   Comments: 0

Question Number 166125    Answers: 0   Comments: 0

Question Number 166120    Answers: 1   Comments: 2

Question Number 166113    Answers: 2   Comments: 2

prove that 1!=1

$${prove}\:{that}\:\mathrm{1}!=\mathrm{1} \\ $$

Question Number 166112    Answers: 1   Comments: 1

prove that 0!=1

$${prove}\:{that}\:\mathrm{0}!=\mathrm{1} \\ $$

Question Number 166111    Answers: 1   Comments: 0

Question Number 166110    Answers: 1   Comments: 0

Prove that ((( n)),(( 0)) )^2 + ((( n)),(( 1)) )^2 + ((( n)),(( 2)) )^2 + …+ ((( n)),(( n)) )^2 = ((( 2n)),(( n)) )

$$\mathrm{Prove}\:\:\mathrm{that} \\ $$$$\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{0}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{1}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{2}}\end{pmatrix}^{\mathrm{2}} \:+\:\ldots+\:\begin{pmatrix}{\:{n}}\\{\:{n}}\end{pmatrix}^{\mathrm{2}} \:\:=\:\:\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:{n}}\end{pmatrix} \\ $$

Question Number 166104    Answers: 1   Comments: 0

Question Number 166102    Answers: 1   Comments: 0

Question Number 166241    Answers: 2   Comments: 0

x^5 −1=0 please how do i find for all the values of x?

$$\:\boldsymbol{{x}}^{\mathrm{5}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\boldsymbol{{please}}\:\boldsymbol{{how}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{find}}\:\boldsymbol{{for}}\:\boldsymbol{{all}}\:\boldsymbol{{the}} \\ $$$$\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}? \\ $$

Question Number 166093    Answers: 2   Comments: 3

  Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536      Pg 537      Pg 538   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com