Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 533
Question Number 156779 Answers: 2 Comments: 0
$$\int\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Question Number 156761 Answers: 2 Comments: 0
$${prove}\:{that} \\ $$$$\int\frac{{a}\:+\:{b}\:\mathrm{sin}\:{x}}{\left({b}\:+\:{a}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} }{dx}=\frac{−\mathrm{cos}\:{x}}{{b}\:+\:{a}\:\mathrm{sin}\:{x}} \\ $$
Question Number 156807 Answers: 1 Comments: 3
$${f}\left({x}\right)={arctg}\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:\:{and}\:\alpha={f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+\ldots+{f}\left(\mathrm{21}\right) \\ $$$${find}\:\:{tg}\left(\alpha\right)=? \\ $$
Question Number 156806 Answers: 1 Comments: 0
Question Number 156754 Answers: 1 Comments: 0
Question Number 156744 Answers: 2 Comments: 0
$$\mathrm{y}``+\mathrm{y}'=\mathrm{e}^{\mathrm{x}} +\mathrm{3x} \\ $$$$ \\ $$
Question Number 156743 Answers: 2 Comments: 0
Question Number 156739 Answers: 0 Comments: 1
Question Number 156734 Answers: 1 Comments: 1
Question Number 156729 Answers: 1 Comments: 0
Question Number 156727 Answers: 1 Comments: 0
Question Number 156710 Answers: 1 Comments: 4
Question Number 156709 Answers: 1 Comments: 0
$$\boldsymbol{{solve}}\:\sqrt[{\frac{\mathrm{1}}{\boldsymbol{{x}}}}]{\boldsymbol{{x}}^{\mathrm{3}} }\:=\:\mathrm{27} \\ $$
Question Number 156695 Answers: 1 Comments: 0
$$\int{sin}\left({ln}\left({x}\right)\right){dx}=? \\ $$
Question Number 156691 Answers: 1 Comments: 0
$${Show}\:{that} \\ $$$$\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} {y}_{{k}} \right)^{\mathrm{2}} \leqslant\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} ^{\mathrm{2}} \right)×\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{y}_{{k}} ^{\mathrm{2}} \right){t} \\ $$
Question Number 156689 Answers: 0 Comments: 0
Question Number 156684 Answers: 2 Comments: 0
$${solve}\:{the}\:{D}.{E}\: \\ $$$$\left[\mathrm{1}+{e}^{\frac{{x}}{{y}}} \right]{dx}+{e}^{\frac{{x}}{{y}}} \left[\mathrm{1}−\frac{{x}}{{y}}\right]{dy}=\mathrm{0} \\ $$$${any}\:{one}\:{can}\:{help}\:{pls} \\ $$
Question Number 156683 Answers: 1 Comments: 3
Question Number 156677 Answers: 1 Comments: 3
Question Number 156676 Answers: 3 Comments: 1
Question Number 156671 Answers: 2 Comments: 0
Question Number 156663 Answers: 0 Comments: 2
$${calcul}\:\int_{\mathrm{0}} ^{\mathrm{10}} {e}^{{x}−{E}\left({x}\right)} {dx}\:\left({E}\:{la}\:{partie}\:{entiere}\right) \\ $$$${besoin}\:{d}'{aide} \\ $$
Question Number 156662 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{I}}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{2}\:\mathrm{ln}\:\mathrm{x}\:-\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{2}}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{x}}\:\mathrm{dx}\:=\:? \\ $$
Question Number 156661 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{1}\leqslant\mathrm{x}\:\:;\:\:\mathrm{y}\leqslant\mathrm{2}\:\:;\:\:\mathrm{3}\leqslant\mathrm{z}\:\:;\:\:\mathrm{t}\leqslant\mathrm{4}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{1}}{\mathrm{xz}+\mathrm{yt}+\mathrm{3}}\:+\:\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}\:\leqslant\:\frac{\mathrm{3}+\mathrm{xz}+\mathrm{yt}}{\mathrm{9}+\mathrm{z}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} }\:+\:\frac{\mathrm{11}}{\mathrm{12}} \\ $$
Question Number 156660 Answers: 0 Comments: 0
Question Number 156652 Answers: 1 Comments: 0
$$\mathrm{Sirs},\:\mathrm{please}\:\mathrm{give}\:\mathrm{me}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{ineqality}. \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:>\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:\geqslant\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:<\:\:\:\:\mathrm{0} \\ $$$$\left(\mathrm{4}\right)\:\:\:\:\:\:\mathrm{ax}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{bx}\:\:\:+\:\:\:\mathrm{c}\:\:\:\:\leqslant\:\:\:\:\mathrm{0} \\ $$
Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537
Terms of Service
Privacy Policy
Contact: info@tinkutara.com