Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 533

Question Number 160551    Answers: 1   Comments: 2

∫_0 ^1 arctan x∙ln(1+x)dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{arctan}\:\mathrm{x}\centerdot\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=? \\ $$

Question Number 160550    Answers: 1   Comments: 0

if x;y∈(0;(π/2)) then: (1/((1/(sinx + siny)) + (1/(cosx + cosy)))) ≤ ((√2)/2)

$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{sin}\boldsymbol{\mathrm{x}}\:+\:\mathrm{sin}\boldsymbol{\mathrm{y}}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cos}\boldsymbol{\mathrm{y}}}}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Question Number 160547    Answers: 1   Comments: 0

solve Ω=∫_0 ^( ∞) (( tan^( −1) ( x ))/((1+ x^( 2) )(√( x)))) dx= ? −−−−−−−−

$$\:\:{solve} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \:\right)\sqrt{\:{x}}}\:{dx}=\:? \\ $$$$−−−−−−−− \\ $$

Question Number 160545    Answers: 0   Comments: 0

Σ_(k=1) ^n (n/(n^2 +k)) (1/n)Σ_(k=1 ) ^n cos((1/( (√(n+k))))) convergente?

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{k}}\: \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}\:} {\overset{{n}} {\sum}}{cos}\left(\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}\right) \\ $$$${convergente}? \\ $$$$ \\ $$

Question Number 160544    Answers: 0   Comments: 2

Question Number 160543    Answers: 0   Comments: 0

lim_( x→ 6) (( Γ ( sin( (π/x)))−Γ ((3/x) ))/(sin( πx )))= ?

$$ \\ $$$$\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{6}} \frac{\:\Gamma\:\left(\:{sin}\left(\:\frac{\pi}{{x}}\right)\right)−\Gamma\:\left(\frac{\mathrm{3}}{{x}}\:\right)}{{sin}\left(\:\pi{x}\:\right)}=\:? \\ $$$$ \\ $$

Question Number 160539    Answers: 1   Comments: 0

Prove by recurrence that (1/(n!))≤(1/2^(n−1) ), ∀n≥1.

$${Prove}\:{by}\:{recurrence}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} },\:\forall{n}\geqslant\mathrm{1}. \\ $$

Question Number 160530    Answers: 2   Comments: 0

Question Number 160529    Answers: 2   Comments: 0

Resolve u_n −3u_(n−1) =12((3/4))^n and u_n =2u_(n−1) +5cos (n(Π/3)), u_o =1

$${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$

Question Number 160528    Answers: 0   Comments: 0

(2cosh(x)cos(y))dx+(sinh(x)sin(y))dy=0

$$\left(\mathrm{2}\boldsymbol{\mathrm{cosh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dx}}+\left(\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dy}}=\mathrm{0} \\ $$

Question Number 160526    Answers: 1   Comments: 0

Montre que Sup(A−B)=Sup(A)−Inf(B) Avec A−B={a−b ; a∈ A , b∈ B}

$${Montre}\:{que}\:{Sup}\left({A}−{B}\right)={Sup}\left({A}\right)−{Inf}\left({B}\right) \\ $$$${Avec}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in\:{A}\:,\:{b}\in\:{B}\right\} \\ $$

Question Number 160522    Answers: 1   Comments: 0

Question Number 160521    Answers: 0   Comments: 0

(y^2 +4y)(√(x+2))=(2x+1)(y+1) (((2x+1)/y))^2 +x=2y^2 +10y+3

$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}\right)\sqrt{{x}+\mathrm{2}}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{y}}\right)^{\mathrm{2}} +{x}=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{3} \\ $$

Question Number 160520    Answers: 1   Comments: 0

Given data : 1,3,3,5,5,5,5,8,9,10,10,12 find the value of quartile 1^(st)

$$\:\mathrm{Given}\:\mathrm{data}\::\:\mathrm{1},\mathrm{3},\mathrm{3},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{8},\mathrm{9},\mathrm{10},\mathrm{10},\mathrm{12} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{quartile}\:\mathrm{1}^{\mathrm{st}} \\ $$

Question Number 160516    Answers: 1   Comments: 0

Question Number 160508    Answers: 0   Comments: 0

f(x)=27x^3 +5x^2 −2 lim_(x→∞) ((f^(−1) (27x)−f^(−1) (x))/( (x)^(1/3) ))=?

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{27x}^{\mathrm{3}} +\mathrm{5x}^{\mathrm{2}} −\mathrm{2} \\ $$$$\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{27x}\right)−\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}=? \\ $$

Question Number 160507    Answers: 0   Comments: 0

Question Number 160506    Answers: 0   Comments: 0

Question Number 160504    Answers: 1   Comments: 2

Question Number 160496    Answers: 2   Comments: 0

Question Number 160493    Answers: 1   Comments: 0

montrer a l aide de binome de newton que: Σ_(k=o) ^r (^n _k )(_(r−k) ^m )=(_( r) ^(m+n) )

$${montrer}\:{a}\:{l}\:{aide}\:{de}\:{binome}\:{de}\:{newton}\:{que}:\: \\ $$$$\underset{{k}={o}} {\overset{{r}} {\sum}}\left(\underset{{k}} {\:}^{{n}} \right)\left(_{{r}−{k}} ^{{m}} \right)=\left(_{\:\:\:\:\:{r}} ^{{m}+{n}} \right)\: \\ $$

Question Number 160491    Answers: 0   Comments: 1

Question Number 160487    Answers: 3   Comments: 0

Question Number 160482    Answers: 2   Comments: 1

Question Number 160473    Answers: 1   Comments: 0

Question Number 160466    Answers: 0   Comments: 0

  Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536      Pg 537   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com