Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 533
Question Number 160551 Answers: 1 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{arctan}\:\mathrm{x}\centerdot\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx}=? \\ $$
Question Number 160550 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y}\in\left(\mathrm{0};\frac{\pi}{\mathrm{2}}\right)\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{sin}\boldsymbol{\mathrm{x}}\:+\:\mathrm{sin}\boldsymbol{\mathrm{y}}}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cos}\boldsymbol{\mathrm{y}}}}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Question Number 160547 Answers: 1 Comments: 0
$$\:\:{solve} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \left(\:{x}\:\right)}{\left(\mathrm{1}+\:{x}^{\:\mathrm{2}} \:\right)\sqrt{\:{x}}}\:{dx}=\:? \\ $$$$−−−−−−−− \\ $$
Question Number 160545 Answers: 0 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{n}^{\mathrm{2}} +{k}}\: \\ $$$$\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}\:} {\overset{{n}} {\sum}}{cos}\left(\frac{\mathrm{1}}{\:\sqrt{{n}+{k}}}\right) \\ $$$${convergente}? \\ $$$$ \\ $$
Question Number 160544 Answers: 0 Comments: 2
Question Number 160543 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{lim}_{\:{x}\rightarrow\:\mathrm{6}} \frac{\:\Gamma\:\left(\:{sin}\left(\:\frac{\pi}{{x}}\right)\right)−\Gamma\:\left(\frac{\mathrm{3}}{{x}}\:\right)}{{sin}\left(\:\pi{x}\:\right)}=\:? \\ $$$$ \\ $$
Question Number 160539 Answers: 1 Comments: 0
$${Prove}\:{by}\:{recurrence}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} },\:\forall{n}\geqslant\mathrm{1}. \\ $$
Question Number 160530 Answers: 2 Comments: 0
Question Number 160529 Answers: 2 Comments: 0
$${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$
Question Number 160528 Answers: 0 Comments: 0
$$\left(\mathrm{2}\boldsymbol{\mathrm{cosh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dx}}+\left(\boldsymbol{\mathrm{sinh}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{y}}\right)\right)\boldsymbol{\mathrm{dy}}=\mathrm{0} \\ $$
Question Number 160526 Answers: 1 Comments: 0
$${Montre}\:{que}\:{Sup}\left({A}−{B}\right)={Sup}\left({A}\right)−{Inf}\left({B}\right) \\ $$$${Avec}\:{A}−{B}=\left\{{a}−{b}\:;\:{a}\in\:{A}\:,\:{b}\in\:{B}\right\} \\ $$
Question Number 160522 Answers: 1 Comments: 0
Question Number 160521 Answers: 0 Comments: 0
$$\left({y}^{\mathrm{2}} +\mathrm{4}{y}\right)\sqrt{{x}+\mathrm{2}}=\left(\mathrm{2}{x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right) \\ $$$$\left(\frac{\mathrm{2}{x}+\mathrm{1}}{{y}}\right)^{\mathrm{2}} +{x}=\mathrm{2}{y}^{\mathrm{2}} +\mathrm{10}{y}+\mathrm{3} \\ $$
Question Number 160520 Answers: 1 Comments: 0
$$\:\mathrm{Given}\:\mathrm{data}\::\:\mathrm{1},\mathrm{3},\mathrm{3},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{8},\mathrm{9},\mathrm{10},\mathrm{10},\mathrm{12} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{quartile}\:\mathrm{1}^{\mathrm{st}} \\ $$
Question Number 160516 Answers: 1 Comments: 0
Question Number 160508 Answers: 0 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{27x}^{\mathrm{3}} +\mathrm{5x}^{\mathrm{2}} −\mathrm{2} \\ $$$$\underset{\mathrm{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{27x}\right)−\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}=? \\ $$
Question Number 160507 Answers: 0 Comments: 0
Question Number 160506 Answers: 0 Comments: 0
Question Number 160504 Answers: 1 Comments: 2
Question Number 160496 Answers: 2 Comments: 0
Question Number 160493 Answers: 1 Comments: 0
$${montrer}\:{a}\:{l}\:{aide}\:{de}\:{binome}\:{de}\:{newton}\:{que}:\: \\ $$$$\underset{{k}={o}} {\overset{{r}} {\sum}}\left(\underset{{k}} {\:}^{{n}} \right)\left(_{{r}−{k}} ^{{m}} \right)=\left(_{\:\:\:\:\:{r}} ^{{m}+{n}} \right)\: \\ $$
Question Number 160491 Answers: 0 Comments: 1
Question Number 160487 Answers: 3 Comments: 0
Question Number 160482 Answers: 2 Comments: 1
Question Number 160473 Answers: 1 Comments: 0
Question Number 160466 Answers: 0 Comments: 0
Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536 Pg 537
Terms of Service
Privacy Policy
Contact: info@tinkutara.com