Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 532
Question Number 165692 Answers: 1 Comments: 0
$${why}\:{we}\:{use}\:{the}\:{current}\:{as}\:{conventional}\:{in} \\ $$$${a}\:{circuit}? \\ $$
Question Number 165691 Answers: 1 Comments: 0
$${why}\:{can}'{t}\:{birds}\:{catch}\:{by}\:{the}\:{AC}\:{current}? \\ $$
Question Number 165637 Answers: 1 Comments: 0
$$\mathrm{37}{tanx}\:=\mathrm{11}{tan}\mathrm{3}{x} \\ $$$${solve}\:{it} \\ $$
Question Number 165620 Answers: 1 Comments: 0
$${solve} \\ $$$${z}^{\mathrm{7}} =−\mathrm{4} \\ $$
Question Number 165617 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{focal}\:{length}\:{formula}\:{for}\: \\ $$$${combined}\:{lenses}?\:{if}\:{lenses}\:{more}\:{than}\: \\ $$$${tow}? \\ $$
Question Number 165616 Answers: 2 Comments: 1
Question Number 165615 Answers: 1 Comments: 0
$$\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{dx}}{\:\sqrt{{x}}\:\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{4}}]{{x}}\right)}=? \\ $$
Question Number 165641 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Given}\:\mathrm{that}\:\:{y}\:=\:\frac{\mathrm{1}}{{x}}\: \\ $$$$\left({a}\right)\:\mathrm{Show}\:\mathrm{that}\:\:{y}^{\left({n}\right)} \:=\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{n}!}{{x}^{{n}+\mathrm{1}} } \\ $$$$\left({b}\right)\:\mathrm{Find}\:\mathrm{an}\:\mathrm{expression}\:\mathrm{for}\:{y}^{\left({n}−\mathrm{1}\right)} +\:{y}^{\left({n}\right)} \\ $$$$ \\ $$
Question Number 165608 Answers: 0 Comments: 0
$$\mathrm{Reupload}\:\:\mathrm{unanswered}\:\:\mathrm{question}. \\ $$$$\mathrm{sec}^{\mathrm{2}} \mathrm{1}°\:+\:\mathrm{sec}^{\mathrm{2}} \:\mathrm{2}°\:+\:\mathrm{sec}^{\mathrm{2}} \:\mathrm{3}°\:+\:\ldots+\:\mathrm{sec}^{\mathrm{2}} \:\mathrm{89}°\:\:=\:\:? \\ $$
Question Number 165600 Answers: 0 Comments: 19
Question Number 165599 Answers: 1 Comments: 0
Question Number 165597 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:{prove}\:{that} \\ $$$$\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\psi^{\:\left(\mathrm{1}\right)} \left({n}\right)}{{n}^{\:\mathrm{2}} }\:=\frac{\mathrm{7}}{\mathrm{4}}\:\zeta\:\left(\mathrm{4}\right)\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$
Question Number 165581 Answers: 2 Comments: 0
$$ \\ $$$$\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\:{sin}\left({x}\right)+{t}\:{cos}\left({x}\right)\right)^{\:\mathrm{2}} {dx} \\ $$$${find}\:\:{the}\:\:{value}\:{of}\:{the}\:{extermum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:\:\:\varphi\:\left({t}\right). \\ $$
Question Number 165574 Answers: 0 Comments: 0
Question Number 165570 Answers: 2 Comments: 0
Question Number 165568 Answers: 0 Comments: 0
Question Number 165567 Answers: 0 Comments: 0
Question Number 165576 Answers: 2 Comments: 0
$${Given}\:{f}:\:{E}\rightarrow{F}\:;\:{g}:\:{F}\rightarrow{G}\:. \\ $$$${E};\:{F}\:\:{and}\:{G}\:{are}\:{sets}. \\ $$$${Show}\:{that}\:{if}\:{f}\:{and}\:{g}\:{are}\:{bijectives} \\ $$$${then}\:{g}\circ{f}\:{is}\:{bijective}\:{and}\: \\ $$$$\left({g}\circ{f}\right)^{−\mathrm{1}} ={f}^{−\mathrm{1}} \circ{g}^{−\mathrm{1}} \\ $$
Question Number 165565 Answers: 2 Comments: 0
Question Number 165561 Answers: 2 Comments: 0
$${I}=\int\frac{{dx}}{{x}^{\mathrm{8}} +{x}^{\mathrm{6}} } \\ $$$${J}=\int\frac{\mathrm{1}−{x}^{\mathrm{7}} }{{x}\left(\mathrm{1}+{x}^{\mathrm{7}} \right)}{dx} \\ $$$${Calculate}\:{I}\:{and}\:{J} \\ $$
Question Number 165562 Answers: 1 Comments: 0
$$\:\:\left(\mathrm{6}{x}+\mathrm{5}\right)^{\mathrm{2}} =\frac{\mathrm{35}}{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{2}} \\ $$
Question Number 165558 Answers: 1 Comments: 0
$${Prove}\:{that} \\ $$$$\:\:\boldsymbol{{sec}}\frac{\mathrm{2}\boldsymbol{\pi}}{\mathrm{7}}\:+\boldsymbol{{sec}}\frac{\mathrm{4}\boldsymbol{\pi}}{\mathrm{7}}+\boldsymbol{{sec}}\frac{\mathrm{8}\boldsymbol{\pi}}{\mathrm{7}}\:=−\mathrm{4} \\ $$
Question Number 165552 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:{f}\left({x}\right)=\:\frac{\:{x}\:+{m}}{\mid{x}\mid\:+\:\mathrm{6}}\:\:{and}\:\:{f}\:{is} \\ $$$$\:{strictly}\:\:{monoton}\:.{find}\:{the}\:{value}\left({s}\right) \\ $$$$\:\:{of}\:\:\:{m}\:\:\:.\:\:{m}\in\mathbb{Z} \\ $$
Question Number 165550 Answers: 1 Comments: 0
Question Number 165545 Answers: 1 Comments: 3
$$\mathrm{If} \\ $$$$\mathrm{13x}^{\mathrm{2}} +\mathrm{5y}^{\mathrm{2}} +\mathrm{9z}^{\mathrm{2}} +\mathrm{1}=\mathrm{4x}-\mathrm{6xy}-\mathrm{12yz} \\ $$$$\mathrm{Find} \\ $$$$\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{xy}+\mathrm{xz}+\mathrm{yz}\right)=? \\ $$
Question Number 165531 Answers: 1 Comments: 1
Pg 527 Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536
Terms of Service
Privacy Policy
Contact: info@tinkutara.com