Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 532

Question Number 166241    Answers: 2   Comments: 0

x^5 −1=0 please how do i find for all the values of x?

$$\:\boldsymbol{{x}}^{\mathrm{5}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\boldsymbol{{please}}\:\boldsymbol{{how}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{find}}\:\boldsymbol{{for}}\:\boldsymbol{{all}}\:\boldsymbol{{the}} \\ $$$$\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}? \\ $$

Question Number 166093    Answers: 2   Comments: 3

Question Number 166089    Answers: 0   Comments: 3

Question Number 166088    Answers: 0   Comments: 0

Question Number 166087    Answers: 1   Comments: 1

Question Number 166084    Answers: 0   Comments: 0

Question Number 166077    Answers: 0   Comments: 0

find ∫ ((cosx)/(1+cos(x)^(tanx) ))

$${find}\:\int\:\frac{{cosx}}{\mathrm{1}+{cos}\left({x}\right)^{{tanx}} } \\ $$

Question Number 166082    Answers: 1   Comments: 0

prove Ω = ∫_0 ^( 1) (( (1−x )^( 2) .ln^( 3) (1−x ))/x) dx = ((51)/8) −(π^( 4) /(15)) ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left(\mathrm{1}−{x}\:\right)^{\:\mathrm{2}} .{ln}^{\:\mathrm{3}} \left(\mathrm{1}−{x}\:\right)}{{x}}\:{dx}\:=\:\frac{\mathrm{51}}{\mathrm{8}}\:−\frac{\pi^{\:\mathrm{4}} }{\mathrm{15}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 166075    Answers: 0   Comments: 1

find the domain and range of the relation {(x,y):∣x∣+y≥2} by draw its graph

$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{relation}\:\left\{\left(\mathrm{x},\mathrm{y}\right):\mid\mathrm{x}\mid+\mathrm{y}\geq\mathrm{2}\right\}\:\mathrm{by}\:\mathrm{draw}\:\mathrm{its}\:\mathrm{graph} \\ $$

Question Number 166070    Answers: 0   Comments: 1

Question Number 166067    Answers: 0   Comments: 2

Question Number 166180    Answers: 0   Comments: 0

prove that 𝛗=∫_0 ^( 1) (( ln^( 2) (1−x ))/x^( 2) ) dx = 2 ζ (2) −−−proof−−− 𝛗= [((−1)/x) ln^( 2) (1−x) ]_0 ^1 −∫_0 ^( 1) ((2ln(1−x))/(x(1−x)))dx =−lim_( ξ→1^− ) (1/ξ)ln^( 2) (1−ξ)−2{ ∫_0 ^( 1) ((ln(1−x))/(1−x))dx+∫_0 ^( 1) ((ln(1−x))/x)dx} = −lim_( ξ→1^− ) {(1/ξ)ln^( 2) (1−ξ)+ln^( 2) (1 −ξ)}+2 ζ(2) =lim_(ξ→1^− ) (((ξ−1)/ξ))ln^( 2) (1−ξ) +2ζ(2) =_(ξ→1^− , δ→0^( +) ) ^(1−ξ= δ) [lim_( δ→0^( +) ) (((−δ)/(1−δ)))ln^2 (δ)=0] +2ζ(2) ■ m.n ∴ 𝛗 = 2 ζ(2)

$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that} \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\mathrm{2}\:\zeta\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:−−−{proof}−−− \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\left[\frac{−\mathrm{1}}{{x}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)\:\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{2}{ln}\left(\mathrm{1}−{x}\right)}{{x}\left(\mathrm{1}−{x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:=−{lim}_{\:\xi\rightarrow\mathrm{1}^{−} } \frac{\mathrm{1}}{\xi}{ln}^{\:\mathrm{2}} \left(\mathrm{1}−\xi\right)−\mathrm{2}\left\{\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}{dx}+\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{{x}}{dx}\right\} \\ $$$$\:\:\:\:\:\:\:=\:−{lim}_{\:\xi\rightarrow\mathrm{1}^{−} } \left\{\frac{\mathrm{1}}{\xi}{ln}^{\:\mathrm{2}} \left(\mathrm{1}−\xi\right)+{ln}^{\:\mathrm{2}} \left(\mathrm{1}\:−\xi\right)\right\}+\mathrm{2}\:\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:={lim}_{\xi\rightarrow\mathrm{1}^{−} } \left(\frac{\xi−\mathrm{1}}{\xi}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}−\xi\right)\:+\mathrm{2}\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\underset{\xi\rightarrow\mathrm{1}^{−} \:,\:\delta\rightarrow\mathrm{0}^{\:+} } {\overset{\mathrm{1}−\xi=\:\delta} {=}}\left[{lim}_{\:\delta\rightarrow\mathrm{0}^{\:+} } \left(\frac{−\delta}{\mathrm{1}−\delta}\right){ln}^{\mathrm{2}} \left(\delta\right)=\mathrm{0}\right]\:+\mathrm{2}\zeta\left(\mathrm{2}\right)\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\:\therefore\:\:\:\boldsymbol{\phi}\:=\:\mathrm{2}\:\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 166063    Answers: 0   Comments: 2

Question Number 166058    Answers: 1   Comments: 0

Question Number 166053    Answers: 1   Comments: 1

Find x in R:^ x^(√2) + x = 6 (How to solve?)

$$\:\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{in}}\:\:\mathbb{R}\overset{\:} {:} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\sqrt{\mathrm{2}}} \:\:+\:\:\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{6}\:\:\:\:\:\left(\boldsymbol{\mathrm{How}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{solve}}?\right) \\ $$

Question Number 166049    Answers: 0   Comments: 0

nε R/{0,1} montrer que Σ_(k=n) ^(2n) (x^k /(nx+ln(k)))>=(1/4)

$${n}\epsilon\:{R}/\left\{\mathrm{0},\mathrm{1}\right\}\:{montrer}\:{que} \\ $$$$\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\:\frac{{x}^{{k}} }{{nx}+{ln}\left({k}\right)}>=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Question Number 166043    Answers: 0   Comments: 5

is 811 prime number or no ?

$$\boldsymbol{{is}}\:\mathrm{811}\:\boldsymbol{{prime}}\:\boldsymbol{{number}}\:\boldsymbol{{or}}\:\boldsymbol{{no}}\:? \\ $$

Question Number 166036    Answers: 2   Comments: 2

Question Number 166033    Answers: 1   Comments: 1

Question Number 166009    Answers: 1   Comments: 4

{ ((x^2 +y^2 +z^2 =70)),((x^3 +y^3 +z^3 =64)),((x^4 +y^4 +z^4 =2002)),(((x+y)(y+z)(z+x)=?)) :} (Use Newton-Identities or otherwise)

$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{70}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{64}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\mathrm{2002}}\\{\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)=?}\end{cases}\: \\ $$$$\left({Use}\:\boldsymbol{{Newton}}-\boldsymbol{{Identities}}\right. \\ $$$$\left.{or}\:{otherwise}\right) \\ $$

Question Number 166007    Answers: 1   Comments: 1

Question Number 166006    Answers: 0   Comments: 0

chek the series Σ_(n=1) ^∞ cos(n) sin^2 ((1/n)) is converge or diverge ?

$${chek}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:{cos}\left({n}\right)\:{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$

Question Number 166017    Answers: 0   Comments: 0

Solve it ! 2 tan^(−1) (√((1−t)(1+t))) − tan^(−1) (1−t) = tan^(−1) t − tan^(−1) (√(1−t^2 ))

$$\mathrm{Solve}\:\:\mathrm{it}\:! \\ $$$$\:\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)}\:−\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−{t}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \:{t}\:−\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$

Question Number 166015    Answers: 0   Comments: 0

study the convergence of integral and find valeur t−> (t/((1+t^2 )^2 ))dt

$${study}\:{the}\:{convergence}\:{of}\:{integral}\:{and}\:{find}\:{valeur} \\ $$$${t}−>\:\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$

Question Number 166012    Answers: 1   Comments: 1

Question Number 166013    Answers: 1   Comments: 0

  Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com