Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 532

Question Number 165879    Answers: 2   Comments: 0

Question Number 165876    Answers: 0   Comments: 3

solve: sin^2 x+sin^2 y+1=sinx+siny+sinxsiny

$${solve}: \\ $$$$\:\:{sin}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {y}+\mathrm{1}={sinx}+{siny}+{sinxsiny} \\ $$

Question Number 165872    Answers: 1   Comments: 0

State the domain of thefunction f(×)=(√(9−x^2 ))+3

$$\mathrm{State}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{thefunction} \\ $$$$\mathrm{f}\left(×\right)=\sqrt{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }+\mathrm{3} \\ $$

Question Number 165870    Answers: 1   Comments: 0

f(x^2 − 3) = (√(x − 5)), f((√(21))) = ?

$$\: \\ $$$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{3}\right)\:=\:\sqrt{\boldsymbol{\mathrm{x}}\:−\:\mathrm{5}},\:\:\boldsymbol{\mathrm{f}}\left(\sqrt{\mathrm{21}}\right)\:=\:? \\ $$$$\: \\ $$

Question Number 165867    Answers: 1   Comments: 1

2 × x! = ((96)/(2 + 1 − 1)) How much the x is?

$$\mathrm{2}\:×\:{x}!\:=\:\frac{\mathrm{96}}{\mathrm{2}\:+\:\mathrm{1}\:−\:\mathrm{1}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$

Question Number 165868    Answers: 3   Comments: 0

lim_(x→(π/2)) ((cos x)/(sin x−((sin x+cos x))^(1/3) )) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}}\:=? \\ $$

Question Number 165854    Answers: 0   Comments: 12

Question Number 165853    Answers: 1   Comments: 0

Question Number 165851    Answers: 2   Comments: 0

2(cos(45))^4 = (1/2) × (𝛕/(x × 2)) + 1 − (2/2) How much the x is?

$$\mathrm{2}\left(\mathrm{cos}\left(\mathrm{45}\right)\right)^{\mathrm{4}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{\boldsymbol{\tau}}{{x}\:×\:\mathrm{2}}\:+\:\mathrm{1}\:−\:\frac{\mathrm{2}}{\mathrm{2}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$

Question Number 165848    Answers: 1   Comments: 0

f((1/x))+f(1−x)=x f(x)=?

$$\:{f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$$$\:\:{f}\left({x}\right)=? \\ $$

Question Number 165849    Answers: 0   Comments: 1

solve the differential equation (dy/dx)+(y/(x−1))=(1/(x+1))

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+\frac{{y}}{{x}−\mathrm{1}}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$

Question Number 165834    Answers: 0   Comments: 0

l′expression de f(x) Σ_(n=o) ^(+oo) (((−1)^n )/(2n+1))x^n xε]o,1[

$${l}'{expression}\:{de}\:{f}\left({x}\right) \\ $$$$\left.\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{{n}} \:\:\:\:{x}\epsilon\right]{o},\mathrm{1}\left[\right. \\ $$

Question Number 165831    Answers: 1   Comments: 1

Find the integer part of the number: ((2015 ∙ 2016 ∙ 2017))^(1/3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{2015}\:\centerdot\:\mathrm{2016}\:\centerdot\:\mathrm{2017}} \\ $$

Question Number 165830    Answers: 2   Comments: 0

(√(8a + (√(8a + (√(8a + ...)))))) - (√(a (√(a (√(a ...)))))) = 0 (a) 9 (b) 3 (c) 6 (d) 1 (e)12

$$\sqrt{\mathrm{8a}\:+\:\sqrt{\mathrm{8a}\:+\:\sqrt{\mathrm{8a}\:+\:...}}}\:-\:\sqrt{\mathrm{a}\:\sqrt{\mathrm{a}\:\sqrt{\mathrm{a}\:...}}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{9}\:\:\left(\mathrm{b}\right)\:\mathrm{3}\:\:\left(\mathrm{c}\right)\:\mathrm{6}\:\:\left(\mathrm{d}\right)\:\mathrm{1}\:\:\left(\mathrm{e}\right)\mathrm{12} \\ $$

Question Number 165829    Answers: 1   Comments: 0

Compare it: p = (1/2^2 ) + (1/3^2 ) + ... + (1/(100^2 )) and q = 0,99 (a)p=q (b)p<q (c)p>q (d)p^2 +q^2 =0 (e) (√q) = (√p) - 2

$$\mathrm{Compare}\:\mathrm{it}: \\ $$$$\mathrm{p}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:...\:+\:\frac{\mathrm{1}}{\mathrm{100}^{\mathrm{2}} }\:\:\mathrm{and}\:\:\mathrm{q}\:=\:\mathrm{0},\mathrm{99} \\ $$$$\left(\mathrm{a}\right)\mathrm{p}=\mathrm{q}\:\:\left(\mathrm{b}\right)\mathrm{p}<\mathrm{q}\:\:\left(\mathrm{c}\right)\mathrm{p}>\mathrm{q}\:\:\left(\mathrm{d}\right)\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{e}\right)\:\sqrt{\mathrm{q}}\:=\:\sqrt{\mathrm{p}}\:-\:\mathrm{2} \\ $$

Question Number 165818    Answers: 1   Comments: 0

A uniform sphere of weight W rest between a smooth vertical plane and a smooth plane inclined at an angle θ with the vertical plane. Find the reaction at the contact surfaces.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{weight}\:{W} \\ $$$$\mathrm{rest}\:\mathrm{between}\:\mathrm{a}\:\mathrm{smooth}\:\:\mathrm{vertical} \\ $$$$\mathrm{plane}\:\mathrm{and}\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{plane}\:\mathrm{inclined} \\ $$$$\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:\mathrm{vertical} \\ $$$$\mathrm{plane}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{reaction}\:\mathrm{at}\:\mathrm{the}\: \\ $$$$\mathrm{contact}\:\mathrm{surfaces}.\: \\ $$

Question Number 165816    Answers: 1   Comments: 0

The GCF of two numbers is 8 and theirLCM is 360.if one of the number is72 find the other number.

$$\mathrm{The}\:\mathrm{GCF}\:\mathrm{of}\:\mathrm{two}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{8}\:\mathrm{and}\: \\ $$$$\mathrm{theirLCM}\:\mathrm{is}\:\mathrm{360}.\mathrm{if}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}\: \\ $$$$\mathrm{is72}\:\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{number}. \\ $$

Question Number 165815    Answers: 1   Comments: 0

deteminer l′expression de g(x) g(x)=Σ_(n=1) ^(+oo) (((−1)^n )/n)x^n

$${deteminer}\:{l}'{expression}\:{de}\:{g}\left({x}\right) \\ $$$${g}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{x}^{{n}} \\ $$

Question Number 165808    Answers: 1   Comments: 0

Which of the following is an even function? A. f_1 (x)= ((sin x)/(3^x +3^(−x) )) B. f_2 (x)= ((cos x)/(3^x +3^(−x) )) C. f_3 (x)=log_(10) (x+(√(x^2 +1))) D. f_4 (x)= (x^2 /(10^x −1))

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{function}? \\ $$$$\mathrm{A}.\:{f}_{\mathrm{1}} \left({x}\right)=\:\frac{\mathrm{sin}\:{x}}{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }\:\:\:\:\:\:\:\:\:\mathrm{B}.\:{f}_{\mathrm{2}} \left({x}\right)=\:\frac{\mathrm{cos}\:{x}}{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} } \\ $$$$\mathrm{C}.\:{f}_{\mathrm{3}} \left({x}\right)=\mathrm{log}_{\mathrm{10}} \left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\mathrm{D}.\:{f}_{\mathrm{4}} \left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{\mathrm{10}^{{x}} −\mathrm{1}} \\ $$

Question Number 165805    Answers: 1   Comments: 0

If function f(x)=log_(x/2) log_(1/3) log _4 x exist, find the domain of f .

$$\mathrm{If}\:\:\mathrm{function}\:{f}\left({x}\right)=\mathrm{log}_{\frac{{x}}{\mathrm{2}}} \mathrm{log}_{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{log}\:_{\mathrm{4}} \:{x}\:\mathrm{exist}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}\:. \\ $$

Question Number 165804    Answers: 1   Comments: 0

Question Number 165799    Answers: 2   Comments: 0

(4.2)^x =100

$$\left(\mathrm{4}.\mathrm{2}\right)^{{x}} =\mathrm{100} \\ $$$$ \\ $$$$ \\ $$

Question Number 165795    Answers: 2   Comments: 0

Question Number 165794    Answers: 2   Comments: 0

∫(t/e^(−2t) )dt

$$\int\frac{{t}}{{e}^{−\mathrm{2}{t}} }{dt} \\ $$

Question Number 165791    Answers: 2   Comments: 0

Question Number 165787    Answers: 2   Comments: 0

find ∫cos^3 x dx ?

$${find}\:\:\int{cos}^{\mathrm{3}} {x}\:{dx}\:? \\ $$

  Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com