Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 532
Question Number 165550 Answers: 1 Comments: 0
Question Number 165545 Answers: 1 Comments: 3
$$\mathrm{If} \\ $$$$\mathrm{13x}^{\mathrm{2}} +\mathrm{5y}^{\mathrm{2}} +\mathrm{9z}^{\mathrm{2}} +\mathrm{1}=\mathrm{4x}-\mathrm{6xy}-\mathrm{12yz} \\ $$$$\mathrm{Find} \\ $$$$\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{xy}+\mathrm{xz}+\mathrm{yz}\right)=? \\ $$
Question Number 165531 Answers: 1 Comments: 1
Question Number 165528 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}}{dx} \\ $$
Question Number 165525 Answers: 0 Comments: 1
Question Number 165511 Answers: 0 Comments: 4
$$\:\boldsymbol{{how}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{find}}\:\boldsymbol{{an}}\:\boldsymbol{{irrational}} \\ $$$$\boldsymbol{{number}}\:\boldsymbol{{between}}\:\:\mathrm{0}.\mathrm{124}\:\:\boldsymbol{{and}} \\ $$$$\mathrm{0}.\mathrm{125} \\ $$
Question Number 165505 Answers: 1 Comments: 0
Question Number 165503 Answers: 1 Comments: 0
$${y}'\left({x}\right)=\frac{{xln}\left({y}\left({x}\right)\right)}{{ln}\left({x}\right){y}\left({x}\right)}\:,\:{y}\left({x}\right)=???. \\ $$
Question Number 165493 Answers: 2 Comments: 0
$${calcul}\:{la}\:{somme}\:{de}\:{cette}\:{serie}\:{entiere} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{+{oo}} {\sum}}\frac{\mathrm{2}{n}+\mathrm{3}}{\mathrm{2}{n}+\mathrm{1}}{x}^{{n}} \\ $$
Question Number 165483 Answers: 2 Comments: 1
Question Number 165480 Answers: 1 Comments: 0
$${Find}\:\:{the}\:\:{value}\:\:{of}\:\:{integers}\:\:{x},\:{y}\:\:{which}\:\:{satisfy}\: \\ $$$$\:\:\:\:\mathrm{9}\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:+\:\mathrm{6}{xy}\:\:=\:\mathrm{2001} \\ $$
Question Number 165461 Answers: 0 Comments: 0
$${show}\:{that}\:{argth}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right) \\ $$$$\left.{for}\:{x}\:\in\:\right]−\mathrm{1};\mathrm{1}\left[\right. \\ $$
Question Number 165471 Answers: 0 Comments: 1
$$\:\begin{cases}{{h}\left(\mathrm{3}{x}\right)=\left(\frac{\mathrm{2}−{x}}{{x}+\mathrm{1}}−{f}\left({x}^{\mathrm{3}} \right)\right)^{\mathrm{2}} }\\{{f}\left(\mathrm{1}\right)={f}\:'\left(\mathrm{1}\right)=\mathrm{2}}\end{cases} \\ $$$$\:{h}\:'\left(\mathrm{3}\right)=? \\ $$
Question Number 165457 Answers: 1 Comments: 19
Question Number 165514 Answers: 1 Comments: 0
Question Number 165512 Answers: 0 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}}{\boldsymbol{\mathrm{e}}^{\left(\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}\right)\pi} +\mathrm{1}}\overset{?} {=}\frac{\mathrm{1}}{\mathrm{24}} \\ $$$$−−−−−−−−−−−−−−\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{Mr}}.\:\boldsymbol{\mathrm{Levent}} \\ $$
Question Number 165442 Answers: 1 Comments: 0
Question Number 165441 Answers: 1 Comments: 0
Question Number 165435 Answers: 1 Comments: 0
Question Number 165433 Answers: 1 Comments: 0
Question Number 165431 Answers: 2 Comments: 0
Question Number 165428 Answers: 1 Comments: 0
Question Number 165424 Answers: 0 Comments: 1
Question Number 165422 Answers: 0 Comments: 0
Question Number 165426 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:{prove}\:\:{that} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\zeta\:\left(\mathrm{0}\:\right)=\:\frac{−\mathrm{1}}{\mathrm{2}}\:\:\: \\ $$$$ \\ $$
Question Number 165419 Answers: 1 Comments: 0
Pg 527 Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536
Terms of Service
Privacy Policy
Contact: info@tinkutara.com