Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 532
Question Number 166601 Answers: 0 Comments: 0
$${What}\:{is}\:{the}\:{condition}\:{that}\: \\ $$$${a}\:\boldsymbol{{palindrome}}-\boldsymbol{{number}} \\ $$$$\:{is}\:\boldsymbol{{divisible}}\:\boldsymbol{{by}}\:\mathrm{11}? \\ $$
Question Number 166597 Answers: 0 Comments: 0
Question Number 166596 Answers: 0 Comments: 0
Question Number 166592 Answers: 1 Comments: 0
Question Number 166585 Answers: 1 Comments: 0
$${if}\:{y}\:=\:\left({sinx}\right)^{{e}^{{x}} } \:{find}\:\frac{{d}\:\left(\:{e}^{{sin}^{−\mathrm{1}} {y}} \right)}{{d}\:\left({lnx}\right)} \\ $$
Question Number 166584 Answers: 1 Comments: 1
Question Number 166583 Answers: 1 Comments: 0
Question Number 166580 Answers: 1 Comments: 0
Question Number 166573 Answers: 1 Comments: 1
Question Number 166572 Answers: 2 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{2n}} {\sum}}\mathrm{2}^{−\mathrm{k}} \mathrm{cos}\:\sqrt{\frac{\mathrm{k}}{\mathrm{n}}}=? \\ $$
Question Number 166570 Answers: 1 Comments: 0
Question Number 166569 Answers: 0 Comments: 0
Question Number 166555 Answers: 0 Comments: 0
Question Number 166554 Answers: 0 Comments: 0
$$\:\:\:\int_{−\infty} ^{\infty} \mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\right)\:\mathrm{cos}\:\left(\pi\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx}=? \\ $$
Question Number 166560 Answers: 1 Comments: 0
Question Number 166552 Answers: 0 Comments: 0
$$\:\:\:\:\int_{−\infty} ^{\infty} \mathrm{cos}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\pi\mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\right)\:\mathrm{sin}\:\left(\pi\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx}\:=? \\ $$
Question Number 166542 Answers: 1 Comments: 0
Question Number 166541 Answers: 1 Comments: 0
$${fin}\:\int\:{sec}^{\mathrm{3}} {x}\:{dx}\:{with}\:{out}\:{using}\:{the}\:{bart}\:? \\ $$
Question Number 166539 Answers: 0 Comments: 2
$${solve}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{6}{x}^{\mathrm{2}} +{y}\: \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}={y}^{\mathrm{2}} \\ $$
Question Number 166531 Answers: 0 Comments: 2
Question Number 166530 Answers: 1 Comments: 0
Question Number 166526 Answers: 1 Comments: 0
Question Number 166522 Answers: 1 Comments: 1
Question Number 166520 Answers: 2 Comments: 2
Question Number 166516 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\:\mathrm{the}\:\:\mathrm{formula}\:\:\mathrm{of}\:\:\mathrm{this}\:\:\mathrm{expression} \\ $$$$\:\:\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\left({n}−{k}\right)!\left({n}+{k}\right)!}\: \\ $$
Question Number 166515 Answers: 1 Comments: 0
$$\:\:\:\:{Given}\:{a}\:{function}\: \\ $$$$\:\:\:\left({x}+\mathrm{1}\right){f}\left(−{x}\right)+\frac{\mathrm{1}−{x}}{\mathrm{4}{x}}\:{f}\left(\frac{\mathrm{1}}{{x}}\right)=\frac{\mathrm{100}\left({x}^{\mathrm{2}} +\mathrm{4}\right)}{{x}} \\ $$$$\:{x}\neq\mathrm{0}\:,\:{x}\neq\mathrm{1} \\ $$$$\:{Find}\:{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+{f}\left(\mathrm{4}\right)+...+{f}\left(\mathrm{400}\right) \\ $$
Pg 527 Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533 Pg 534 Pg 535 Pg 536
Terms of Service
Privacy Policy
Contact: info@tinkutara.com