Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 532

Question Number 165183    Answers: 0   Comments: 1

Question Number 165178    Answers: 2   Comments: 0

x∈R ⇒ ∣ log _2 ((x/2))∣^3 +∣log _2 (2x)∣^3 =28

$$\:\:{x}\in{R}\:\Rightarrow\:\mid\:\mathrm{log}\:_{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\mid^{\mathrm{3}} +\mid\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{2}{x}\right)\mid^{\mathrm{3}} =\mathrm{28} \\ $$

Question Number 165170    Answers: 2   Comments: 3

Question Number 165168    Answers: 1   Comments: 0

Question Number 165164    Answers: 1   Comments: 0

Question Number 165162    Answers: 0   Comments: 0

f(x)=2x^2 +5x. Montrer que f est lipschitzienne sur R.

$${f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}. \\ $$$${Montrer}\:{que}\:{f}\:{est}\:{lipschitzienne} \\ $$$${sur}\:\mathbb{R}. \\ $$

Question Number 165161    Answers: 0   Comments: 0

f(x)=2x^2 +5x. Montrez que f est uniformement continue sur R.

$${f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}. \\ $$$${Montrez}\:{que}\:{f}\:{est}\:{uniformement}\:{continue}\: \\ $$$${sur}\:\mathbb{R}. \\ $$

Question Number 165160    Answers: 1   Comments: 0

f(x+f(x))=3f(x) and f(−1)=7 faind f(27)=?

$${f}\left({x}+{f}\left({x}\right)\right)=\mathrm{3}{f}\left({x}\right)\:\:\:{and}\:{f}\left(−\mathrm{1}\right)=\mathrm{7} \\ $$$${faind}\:\:{f}\left(\mathrm{27}\right)=? \\ $$

Question Number 165150    Answers: 1   Comments: 1

Question Number 165142    Answers: 0   Comments: 2

Question Number 165136    Answers: 3   Comments: 0

Question Number 165271    Answers: 1   Comments: 0

Let , f : [ 0 , 1 ] → R is a continuous function , prove that : lim_( n→ ∞) ∫_0 ^( 1) (( n f(x))/(1+ n^2 x^( 2) )) dx = (π/2) f (0 ) −−− proof −−− S_( n) = [∫_(0 ) ^( (1/( (√n)))) (( n. f(x))/(1 + n^( 2) x^( 2) )) dx =Ω_( n) ]+[ ∫_(1/( (√n))) ^( 1) ((n.f (x))/(1 + n^( 2) x^( 2) )) dx = Φ_( n) ] Ω_( n) =_(∃ t_( n) ∈ ( 0 , (1/( (√n) )) )) ^(MeanValueTheorem( first)) f (t_( n) )∫_(0 ) ^( (1/( (√n)))) (( n)/(1 + n^( 2) x^( 2) ))dx = f ( t_( n) ) ( tan^( −1) ( (√n) )) lim_( n→∞) (Ω_( n) ) = (π/2) f (lim_( n→∞) ( t_( n) ) ) = (π/2) f (0 ) Φ_( n) = ∫_(1/( (√n))) ^( 1) (( n. f(x) )/(1 + n^( 2) x^( 2) )) dx ⇒_(∃ M >0) ^(f is bounded) ∣ Φ_( n) ∣ ≤ M.∫_(1/( (√n))) ^( 1) (n/(1+ n^( 2) x^( 2) )) dx ⇒ ∣ Φ_( n) ∣ ≤ M . ( tan^( −1) ( n )− tan^( −1) ( (√n) )) lim_( n→ ∞) ∣ Φ_( n) ∣ = 0 ⇒ lim_( n→∞) Φ_( n) =0 ∴ lim_( n→ ∞) ( S_( n) ) = (π/2) f (0 ) ■ m.n

$$ \\ $$$$\:\:\:\:\:\mathrm{L}{et}\:,\:\:\:{f}\::\:\left[\:\mathrm{0}\:,\:\mathrm{1}\:\right]\:\rightarrow\:\mathbb{R}\:\:{is}\:{a}\:{continuous}\: \\ $$$$\:\:\:\:{function}\:,\:{prove}\:{that}\::\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{n}\:{f}\left({x}\right)}{\mathrm{1}+\:{n}^{\mathrm{2}} \:{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right) \\ $$$$\:\:\:\:\:−−−\:{proof}\:−−− \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{S}_{\:{n}} \:=\:\left[\int_{\mathrm{0}\:} ^{\:\frac{\mathrm{1}}{\:\sqrt{{n}}}} \:\frac{\:{n}.\:{f}\left({x}\right)}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx}\:=\Omega_{\:{n}} \right]+\left[\:\int_{\frac{\mathrm{1}}{\:\sqrt{{n}}}} ^{\:\mathrm{1}} \:\frac{{n}.{f}\:\left({x}\right)}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx}\:=\:\Phi_{\:{n}} \:\right] \\ $$$$\:\:\:\:\:\:\Omega_{\:{n}} \:\underset{\exists\:{t}_{\:{n}} \in\:\left(\:\mathrm{0}\:,\:\frac{\mathrm{1}}{\:\sqrt{{n}}\:}\:\right)} {\overset{\mathrm{M}{ean}\mathrm{V}{alue}\mathrm{T}{heorem}\left(\:{first}\right)} {=}}\:\:{f}\:\left({t}_{\:{n}} \:\right)\int_{\mathrm{0}\:} ^{\:\frac{\mathrm{1}}{\:\sqrt{{n}}}} \:\frac{\:{n}}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:{f}\:\left(\:{t}_{\:{n}} \right)\:\left(\:{tan}^{\:−\mathrm{1}} \left(\:\sqrt{{n}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\infty} \:\left(\Omega_{\:{n}} \:\right)\:\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left({lim}_{\:{n}\rightarrow\infty} \left(\:{t}_{\:{n}} \right)\:\right)\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right)\: \\ $$$$\:\:\:\:\:\:\:\:\Phi_{\:{n}} =\:\int_{\frac{\mathrm{1}}{\:\sqrt{{n}}}} ^{\:\mathrm{1}} \frac{\:{n}.\:{f}\left({x}\right)\:}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx}\:\:\underset{\exists\:\mathrm{M}\:>\mathrm{0}} {\overset{{f}\:\:{is}\:{bounded}} {\Rightarrow}}\:\mid\:\Phi_{\:{n}} \:\mid\:\leqslant\:\mathrm{M}.\int_{\frac{\mathrm{1}}{\:\sqrt{{n}}}} ^{\:\mathrm{1}} \frac{{n}}{\mathrm{1}+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\mid\:\Phi_{\:{n}} \mid\:\leqslant\:\mathrm{M}\:.\:\left(\:{tan}^{\:−\mathrm{1}} \left(\:{n}\:\right)−\:{tan}^{\:−\mathrm{1}} \left(\:\sqrt{{n}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\mid\:\Phi_{\:{n}} \mid\:=\:\mathrm{0}\:\:\Rightarrow\:{lim}_{\:{n}\rightarrow\infty} \:\Phi_{\:{n}} \:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\left(\:\:\mathrm{S}_{\:{n}} \:\right)\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right)\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\: \\ $$

Question Number 165270    Answers: 2   Comments: 0

Question Number 165157    Answers: 2   Comments: 1

Σ_(k=6) ^(n+6) (k−4)=((an^2 +bn+c)/2) a+b+c=?

$$\underset{{k}=\mathrm{6}} {\overset{{n}+\mathrm{6}} {\sum}}\left({k}−\mathrm{4}\right)=\frac{{an}^{\mathrm{2}} +{bn}+{c}}{\mathrm{2}} \\ $$$${a}+{b}+{c}=? \\ $$

Question Number 165273    Answers: 1   Comments: 0

lim_( n→ ∞) ∫_0 ^( 1) (( n . e^( 1− x^( 2) ) )/( 1 + n^( 2) x^( 2) )) dx =? −−−−−−

$$ \\ $$$$\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:{n}\:.\:{e}^{\:\mathrm{1}−\:{x}^{\:\mathrm{2}} } }{\:\mathrm{1}\:+\:{n}^{\:\mathrm{2}} \:{x}^{\:\mathrm{2}} }\:{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−− \\ $$

Question Number 165272    Answers: 2   Comments: 0

Question Number 165153    Answers: 3   Comments: 0

f(x)=3e^(2x) f^(−1) (x)=?

$${f}\left({x}\right)=\mathrm{3}{e}^{\mathrm{2}{x}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 165152    Answers: 1   Comments: 0

prove Ω=∫_0 ^( 1) (( x − x^( 2) )/((1+x )ln(x))) dx = ln((4/π) ) −−−−−

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}\:−\:{x}^{\:\mathrm{2}} }{\left(\mathrm{1}+{x}\:\right){ln}\left({x}\right)}\:{dx}\:=\:{ln}\left(\frac{\mathrm{4}}{\pi}\:\right) \\ $$$$\:\:\:−−−−− \\ $$

Question Number 165122    Answers: 1   Comments: 3

Question Number 165119    Answers: 0   Comments: 1

Question Number 165107    Answers: 1   Comments: 8

does it also happen to you? when i try to refresh with “↻”, it shows following message:

$${does}\:{it}\:{also}\:{happen}\:{to}\:{you}? \\ $$$${when}\:{i}\:{try}\:{to}\:{refresh}\:{with}\:``\circlearrowright'',\:{it} \\ $$$${shows}\:{following}\:{message}: \\ $$

Question Number 165099    Answers: 2   Comments: 1

the rest of the division euclidienne of 10^(99) by 13×17 is?

$$\:{the}\:{rest}\:{of}\:{the}\:{division}\:{euclidienne}\:{of} \\ $$$$\mathrm{10}^{\mathrm{99}} \:\:{by}\:\:\mathrm{13}×\mathrm{17}\:{is}? \\ $$

Question Number 165098    Answers: 2   Comments: 0

Question Number 165097    Answers: 1   Comments: 0

Question Number 165094    Answers: 0   Comments: 0

Question Number 165093    Answers: 1   Comments: 2

x^(lim) →3(2x+3x−4) FAILED TO CALCULATE

$$\overset{{lim}} {{x}}\rightarrow\mathrm{3}\left(\mathrm{2}{x}+\mathrm{3}{x}−\mathrm{4}\right) \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$

  Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com