Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 532

Question Number 166160    Answers: 3   Comments: 0

Σ_(n=1) ^∞ Σ_(m=1) ^∞ (1/(m^2 n+mn^2 +2mn))=?

$$\:\:\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{m}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{m}^{\mathrm{2}} \mathrm{n}+\mathrm{mn}^{\mathrm{2}} +\mathrm{2mn}}=? \\ $$

Question Number 166143    Answers: 1   Comments: 0

Question Number 166141    Answers: 2   Comments: 0

∫_0 ^x (t^2 /( (√(a+2t^2 ))))dt

$$\int_{\mathrm{0}} ^{\boldsymbol{\mathrm{x}}} \frac{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }{\:\sqrt{\boldsymbol{\mathrm{a}}+\mathrm{2}\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}}\: \\ $$

Question Number 166137    Answers: 2   Comments: 0

Question Number 166135    Answers: 1   Comments: 1

find the domain of f(x) = (1/([x]−1))

$${find}\:{the}\:{domain}\:{of}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left[{x}\right]−\mathrm{1}} \\ $$

Question Number 166134    Answers: 1   Comments: 0

Question Number 166127    Answers: 0   Comments: 0

Question Number 166125    Answers: 0   Comments: 0

Question Number 166120    Answers: 1   Comments: 2

Question Number 166113    Answers: 2   Comments: 2

prove that 1!=1

$${prove}\:{that}\:\mathrm{1}!=\mathrm{1} \\ $$

Question Number 166112    Answers: 1   Comments: 1

prove that 0!=1

$${prove}\:{that}\:\mathrm{0}!=\mathrm{1} \\ $$

Question Number 166111    Answers: 1   Comments: 0

Question Number 166110    Answers: 1   Comments: 0

Prove that ((( n)),(( 0)) )^2 + ((( n)),(( 1)) )^2 + ((( n)),(( 2)) )^2 + …+ ((( n)),(( n)) )^2 = ((( 2n)),(( n)) )

$$\mathrm{Prove}\:\:\mathrm{that} \\ $$$$\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{0}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{1}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{2}}\end{pmatrix}^{\mathrm{2}} \:+\:\ldots+\:\begin{pmatrix}{\:{n}}\\{\:{n}}\end{pmatrix}^{\mathrm{2}} \:\:=\:\:\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:{n}}\end{pmatrix} \\ $$

Question Number 166104    Answers: 1   Comments: 0

Question Number 166102    Answers: 1   Comments: 0

Question Number 166241    Answers: 2   Comments: 0

x^5 −1=0 please how do i find for all the values of x?

$$\:\boldsymbol{{x}}^{\mathrm{5}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\boldsymbol{{please}}\:\boldsymbol{{how}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{find}}\:\boldsymbol{{for}}\:\boldsymbol{{all}}\:\boldsymbol{{the}} \\ $$$$\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}? \\ $$

Question Number 166093    Answers: 2   Comments: 3

Question Number 166089    Answers: 0   Comments: 3

Question Number 166088    Answers: 0   Comments: 0

Question Number 166087    Answers: 1   Comments: 1

Question Number 166084    Answers: 0   Comments: 0

Question Number 166077    Answers: 0   Comments: 0

find ∫ ((cosx)/(1+cos(x)^(tanx) ))

$${find}\:\int\:\frac{{cosx}}{\mathrm{1}+{cos}\left({x}\right)^{{tanx}} } \\ $$

Question Number 166082    Answers: 1   Comments: 0

prove Ω = ∫_0 ^( 1) (( (1−x )^( 2) .ln^( 3) (1−x ))/x) dx = ((51)/8) −(π^( 4) /(15)) ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left(\mathrm{1}−{x}\:\right)^{\:\mathrm{2}} .{ln}^{\:\mathrm{3}} \left(\mathrm{1}−{x}\:\right)}{{x}}\:{dx}\:=\:\frac{\mathrm{51}}{\mathrm{8}}\:−\frac{\pi^{\:\mathrm{4}} }{\mathrm{15}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 166075    Answers: 0   Comments: 1

find the domain and range of the relation {(x,y):∣x∣+y≥2} by draw its graph

$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{relation}\:\left\{\left(\mathrm{x},\mathrm{y}\right):\mid\mathrm{x}\mid+\mathrm{y}\geq\mathrm{2}\right\}\:\mathrm{by}\:\mathrm{draw}\:\mathrm{its}\:\mathrm{graph} \\ $$

Question Number 166070    Answers: 0   Comments: 1

Question Number 166067    Answers: 0   Comments: 2

  Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com