Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 529
Question Number 163958 Answers: 0 Comments: 0
Question Number 163957 Answers: 1 Comments: 0
Question Number 163956 Answers: 0 Comments: 0
Question Number 163955 Answers: 0 Comments: 0
Question Number 163942 Answers: 1 Comments: 0
$${f}\left(\mathrm{2}{x}\right)−\mathrm{2}\left[\:{f}\left({x}\right)\:\right]^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 163939 Answers: 0 Comments: 0
$$\mathrm{An}\:\mathrm{old}\:\mathrm{unsolved}\:\mathrm{question}#\mathrm{1132} \\ $$$$\mathrm{let}\:\mathrm{S}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\right\},\:\mathrm{if}\:\mathrm{A},\mathrm{B},\mathrm{C}\:\mathrm{is}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{A}\cap\mathrm{B}\cap\mathrm{C}=\varnothing \\ $$$$\mathrm{A}\cap\mathrm{B}\neq\varnothing \\ $$$$\mathrm{A}\cap\mathrm{C}\neq\varnothing \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{be}\:\mathrm{choose}\:\mathrm{A},\mathrm{B}\:\mathrm{and} \\ $$$$\mathrm{C} \\ $$
Question Number 163938 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\left(−\mathrm{3}{x}\right)−\mathrm{cos}\:\left(\mathrm{3}{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \left({x}\sqrt{\mathrm{5}}\:\right)}=? \\ $$
Question Number 163936 Answers: 1 Comments: 0
$$\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$
Question Number 163934 Answers: 0 Comments: 0
$${Let}\:{y}\left({x}\right)\:{be}\:{the}\:{solution}\:{of}\: \\ $$$$\:\:{x}^{\mathrm{2}} \:{y}''\left({x}\right)−\mathrm{2}{y}\left({x}\right)=\mathrm{0}\:\rightarrow\begin{cases}{{y}\left(\mathrm{1}\right)=\mathrm{1}}\\{{y}\left(\mathrm{2}\right)=\mathrm{1}}\end{cases} \\ $$$$\:{y}\left(\mathrm{3}\right)=? \\ $$
Question Number 163931 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{{x}^{{x}} } }{{x}}=? \\ $$$${pleas}\:\:{help} \\ $$
Question Number 163928 Answers: 1 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{100}!} }{\mathrm{100}!}+{x}^{\mathrm{100}} +\mathrm{1} \\ $$$${find}\:\:\:\frac{{d}^{\mathrm{100}!} {f}\left({x}\right)}{{dx}^{\mathrm{100}!} }=? \\ $$
Question Number 163926 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left.\begin{matrix}{\mathrm{sin}\:\theta=\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \theta}\\{\mathrm{csc}\:^{\mathrm{2}} \theta−\mathrm{tan}\:^{\mathrm{2}} \theta\:=?\:}\end{matrix}\right\} \\ $$
Question Number 163921 Answers: 2 Comments: 0
Question Number 163914 Answers: 0 Comments: 0
Question Number 163913 Answers: 0 Comments: 0
Question Number 163912 Answers: 0 Comments: 1
Question Number 163906 Answers: 1 Comments: 0
$$\begin{cases}{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{x}\:+\:\mathrm{6}\:=\:\mathrm{8y}}\\{\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{y}\:+\:\mathrm{6}\:=\:\mathrm{8z}}\\{\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{z}\:+\:\mathrm{6}\:=\:\mathrm{8x}}\end{cases}\:\:\:\Rightarrow\:\:\:\mathrm{x};\mathrm{y};\mathrm{z}\:=\:? \\ $$
Question Number 163905 Answers: 0 Comments: 0
Question Number 163903 Answers: 0 Comments: 0
$${prouve}\: \\ $$$${a}/{bc}\:,{si}\:\left({a},{b}\right)=\mathrm{1},{alors} \\ $$$${a}/{c} \\ $$
Question Number 163902 Answers: 1 Comments: 0
$$\sqrt{\mathrm{x}!^{\boldsymbol{\mathrm{x}}!} }\:\:+\:\:\mathrm{2}^{\boldsymbol{\mathrm{x}}!} \:\:=\:\mathrm{x}!^{\mathrm{3}} \:\:+\:\:\mathrm{10x}!\:\:+\:\:\mathrm{4} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 163899 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{cos}\left(\mathrm{ax}\right)}{\:\sqrt{\mathrm{x}}\:\centerdot\:\sqrt{\mathrm{1}\:-\:\mathrm{x}}}\:\mathrm{dx} \\ $$
Question Number 163897 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\mathrm{x}^{\mathrm{3}} \:=\:\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{x}\:\neq\:\mathrm{1} \\ $$$$\mathrm{simplificar}\:\:\left(\frac{\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{5}} }\right)^{\mathrm{3}} \\ $$
Question Number 163891 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{1}\right)\:=\:\mathrm{x}^{\mathrm{5}} \:+\:\mathrm{4x}\:+\:\mathrm{2} \\ $$$$\mathrm{find}\:\:\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:? \\ $$
Question Number 163888 Answers: 1 Comments: 1
$${prove}\int\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}\:=\:\int\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 163886 Answers: 1 Comments: 2
$${Evaluate}\:{the}\:{following}\:{by}\:{using}\: \\ $$$$\:{integration}\:{by}\:{parts}\:{formula}: \\ $$$$\int{xsin}^{−\mathrm{1}} \left({x}\right){dx} \\ $$
Question Number 163885 Answers: 0 Comments: 0
$${preuve} \\ $$$$\left.{a}\right){HH}^{−\mathrm{1}} ={H} \\ $$$$\left.{b}\right){HH}={H} \\ $$$$\left.{c}\right){H}^{−\mathrm{1}} ={H} \\ $$
Pg 524 Pg 525 Pg 526 Pg 527 Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533
Terms of Service
Privacy Policy
Contact: info@tinkutara.com