Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 529
Question Number 166033 Answers: 1 Comments: 1
Question Number 166009 Answers: 1 Comments: 4
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{70}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{64}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\mathrm{2002}}\\{\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)=?}\end{cases}\: \\ $$$$\left({Use}\:\boldsymbol{{Newton}}-\boldsymbol{{Identities}}\right. \\ $$$$\left.{or}\:{otherwise}\right) \\ $$
Question Number 166007 Answers: 1 Comments: 1
Question Number 166006 Answers: 0 Comments: 0
$${chek}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:{cos}\left({n}\right)\:{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$
Question Number 166017 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\:\mathrm{it}\:! \\ $$$$\:\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)}\:−\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}−{t}\right)\:=\:\mathrm{tan}^{−\mathrm{1}} \:{t}\:−\:\mathrm{tan}^{−\mathrm{1}} \:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$
Question Number 166015 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:{integral}\:{and}\:{find}\:{valeur} \\ $$$${t}−>\:\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$
Question Number 166012 Answers: 1 Comments: 1
Question Number 166013 Answers: 1 Comments: 0
Question Number 165995 Answers: 1 Comments: 0
$$\begin{cases}{{sinx}+{siny}=\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{2}^{\mathrm{sin}\:{x}} +\mathrm{2}^{\mathrm{sin}\:{y}} =\mathrm{2}+\sqrt{\mathrm{2}}}\end{cases}\:\:\:\:\:\:\:{faind}\:\:\:{x}=? \\ $$
Question Number 165984 Answers: 1 Comments: 1
Question Number 165969 Answers: 0 Comments: 3
$$ \\ $$
Question Number 165965 Answers: 2 Comments: 0
Question Number 165962 Answers: 0 Comments: 0
Question Number 165955 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{C}\:=\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2x}}\:=? \\ $$
Question Number 165942 Answers: 1 Comments: 5
Question Number 165949 Answers: 2 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{5}{x}−\mathrm{2}}{{a}}\:\:\wedge{f}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+{b}}{\mathrm{5}} \\ $$$${faind}\:\:\:{a}×{b}=? \\ $$
Question Number 165950 Answers: 1 Comments: 0
$${y}=\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{100}} \\ $$$$\frac{{d}^{\mathrm{99}} {y}}{{dx}^{\mathrm{99}} }=?\wedge\frac{{d}^{\mathrm{85}} {y}}{{dx}^{\mathrm{85}} }=? \\ $$
Question Number 165900 Answers: 1 Comments: 5
Question Number 165881 Answers: 3 Comments: 0
$$\begin{cases}{\sqrt{\frac{{x}}{{y}}}−\sqrt{\frac{{y}}{{x}}}=\frac{\mathrm{3}}{\mathrm{2}}}\\{{x}+{y}+{xy}=\mathrm{9}}\end{cases} \\ $$
Question Number 165879 Answers: 2 Comments: 0
Question Number 165876 Answers: 0 Comments: 3
$${solve}: \\ $$$$\:\:{sin}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {y}+\mathrm{1}={sinx}+{siny}+{sinxsiny} \\ $$
Question Number 165872 Answers: 1 Comments: 0
$$\mathrm{State}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{thefunction} \\ $$$$\mathrm{f}\left(×\right)=\sqrt{\mathrm{9}−\mathrm{x}^{\mathrm{2}} }+\mathrm{3} \\ $$
Question Number 165870 Answers: 1 Comments: 0
$$\: \\ $$$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:−\:\mathrm{3}\right)\:=\:\sqrt{\boldsymbol{\mathrm{x}}\:−\:\mathrm{5}},\:\:\boldsymbol{\mathrm{f}}\left(\sqrt{\mathrm{21}}\right)\:=\:? \\ $$$$\: \\ $$
Question Number 165867 Answers: 1 Comments: 1
$$\mathrm{2}\:×\:{x}!\:=\:\frac{\mathrm{96}}{\mathrm{2}\:+\:\mathrm{1}\:−\:\mathrm{1}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$
Question Number 165868 Answers: 3 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{x}−\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}}\:=? \\ $$
Question Number 165854 Answers: 0 Comments: 12
Pg 524 Pg 525 Pg 526 Pg 527 Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533
Terms of Service
Privacy Policy
Contact: info@tinkutara.com