Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 529

Question Number 166491    Answers: 0   Comments: 4

Question Number 166488    Answers: 1   Comments: 0

B=∫ (√((sin 2x−1)/(cos 2x−1))) dx =?

$$\:\:\:\mathrm{B}=\int\:\sqrt{\frac{\mathrm{sin}\:\mathrm{2x}−\mathrm{1}}{\mathrm{cos}\:\mathrm{2x}−\mathrm{1}}}\:\mathrm{dx}\:=? \\ $$

Question Number 166481    Answers: 2   Comments: 1

Question Number 166480    Answers: 0   Comments: 0

Question Number 166475    Answers: 2   Comments: 5

Find out n∈N such that n^2 +n is divisible by 30.

$$\mathcal{F}{ind}\:{out}\:{n}\in\mathbb{N} \\ $$$$\:{such}\:{that} \\ $$$${n}^{\mathrm{2}} +{n}\:{is}\:{divisible}\:{by}\:\mathrm{30}. \\ $$

Question Number 166468    Answers: 2   Comments: 0

1+3(√2)x−18x^2 =6x(√(1−9x^2 )) solve in R

$$\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}−\mathrm{18}{x}^{\mathrm{2}} =\mathrm{6}{x}\sqrt{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} } \\ $$$${solve}\:\:{in}\:{R} \\ $$

Question Number 166465    Answers: 1   Comments: 1

Question Number 166449    Answers: 1   Comments: 3

C = ∫ ((1−tan^2 x)/(1+sec^2 x)) dx =?

$$\:\:\:\mathrm{C}\:=\:\int\:\frac{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 166448    Answers: 0   Comments: 2

montrer q ∀nεN n^2 +n est divisible par 30

$${montrer}\:{q}\:\:\forall{n}\epsilon{N} \\ $$$${n}^{\mathrm{2}} +{n}\:{est}\:{divisible}\:{par}\:\mathrm{30} \\ $$

Question Number 166443    Answers: 2   Comments: 1

fog_((3)) =10 f(3)=4 g(x)=?

$${fog}_{\left(\mathrm{3}\right)} =\mathrm{10} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{4} \\ $$$${g}\left({x}\right)=? \\ $$

Question Number 166442    Answers: 2   Comments: 0

Question Number 166440    Answers: 0   Comments: 1

Question Number 166437    Answers: 1   Comments: 0

calculate Ω=∫_0 ^( 1) (( ln(1−x ).ln(1+ x ))/x^( 2) ) dx=? −−−−−−−

$$ \\ $$$$\:\:\:\:\:\:{calculate}\: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:{ln}\left(\mathrm{1}−{x}\:\right).{ln}\left(\mathrm{1}+\:{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$$$\:\:\:\:\:\:−−−−−−− \\ $$

Question Number 166436    Answers: 2   Comments: 0

Show that : Σ_(n=1) ^∞ (((−1)^( n) H_( n) )/n^( 2) ) = −(5/8) ζ (3 ) ■ m.n −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\mathrm{S}{how}\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\:{n}} \:{H}_{\:{n}} }{{n}^{\:\mathrm{2}} }\:\:=\:−\frac{\mathrm{5}}{\mathrm{8}}\:\zeta\:\left(\mathrm{3}\:\right)\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 166435    Answers: 2   Comments: 0

Equation : Solve in R ⌊x⌋ +⌊2x ⌋ +⌊ 3x ⌋=1 −−−−−−−−−

$$ \\ $$$$\:\:\:\:\mathscr{E}{quation}\:: \\ $$$$\:\:\:\:\:{Solve}\:{in}\:\:\mathbb{R}\: \\ $$$$\:\:\:\lfloor{x}\rfloor\:+\lfloor\mathrm{2}{x}\:\rfloor\:+\lfloor\:\mathrm{3}{x}\:\rfloor=\mathrm{1} \\ $$$$\:\:\:\:\:\:−−−−−−−−− \\ $$

Question Number 166431    Answers: 1   Comments: 0

2(2^x /(16,0)) = 5,7^2 − 0,49 + 0 How much the x is?

$$\mathrm{2}\frac{\mathrm{2}^{{x}} }{\mathrm{16},\mathrm{0}}\:=\:\mathrm{5},\mathrm{7}^{\mathrm{2}} \:−\:\mathrm{0},\mathrm{49}\:+\:\mathrm{0} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$

Question Number 166424    Answers: 1   Comments: 3

Question Number 166419    Answers: 1   Comments: 1

Question Number 166417    Answers: 1   Comments: 0

Question Number 166403    Answers: 1   Comments: 1

fog_((3)) =10 f(3)=4 g(x)=?

$${fog}_{\left(\mathrm{3}\right)} =\mathrm{10} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{4} \\ $$$${g}\left({x}\right)=? \\ $$

Question Number 166402    Answers: 1   Comments: 0

f(x)=x^3 +x^2 +13 g(x)=(√5) gof_((x)) =?

$${f}\left({x}\right)={x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{13} \\ $$$${g}\left({x}\right)=\sqrt{\mathrm{5}} \\ $$$${gof}_{\left({x}\right)} =? \\ $$

Question Number 166400    Answers: 0   Comments: 0

Find all pairs of positive integers (a,b) such that (a^2 /(2ab^2 − b^3 +1)) ∈ Z^+

$$\mathrm{Find}\:\:\mathrm{all}\:\:\mathrm{pairs}\:\:\mathrm{of}\:\:\mathrm{positive}\:\:\mathrm{integers}\:\left({a},{b}\right)\:\:\mathrm{such}\:\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}{ab}^{\mathrm{2}} \:−\:{b}^{\mathrm{3}} +\mathrm{1}}\:\:\in\:\:\mathbb{Z}^{+} \\ $$

Question Number 166398    Answers: 1   Comments: 0

(1/(x+(1/(y+(1/z)))))=((16)/(37)) then faind volve of x+y+z=?

$$\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{y}+\frac{\mathrm{1}}{{z}}}}=\frac{\mathrm{16}}{\mathrm{37}} \\ $$$${then}\:{faind}\:{volve}\:{of}\:\:\:\:{x}+{y}+{z}=? \\ $$

Question Number 166392    Answers: 2   Comments: 0

Question Number 166391    Answers: 2   Comments: 0

solve in R (√(x.⌊x⌋)) − (√(⌊x⌋)) = 1 −−−−−−−

$$ \\ $$$$\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$\:\:\:\sqrt{{x}.\lfloor{x}\rfloor}\:−\:\sqrt{\lfloor{x}\rfloor}\:=\:\mathrm{1} \\ $$$$\:\:−−−−−−− \\ $$

Question Number 166379    Answers: 1   Comments: 0

soit{_(u_1 =4) ^(u_o =1) ∀nεN montrer par reccurence que: U_(n+2) =2U_(n+1) −U_n

$${soit}\left\{_{{u}_{\mathrm{1}} =\mathrm{4}} ^{{u}_{{o}} =\mathrm{1}} \:\:\forall{n}\epsilon{N}\right. \\ $$$${montrer}\:{par}\:{reccurence}\:\:{que}: \\ $$$${U}_{{n}+\mathrm{2}} =\mathrm{2}{U}_{{n}+\mathrm{1}} −{U}_{{n}} \\ $$

  Pg 524      Pg 525      Pg 526      Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com