Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 529
Question Number 165068 Answers: 0 Comments: 1
Question Number 165063 Answers: 1 Comments: 1
$$\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{x}^{{tanx}} −{cosx}}{{x}^{{sinx}} −{e}^{{x}} } \\ $$
Question Number 165057 Answers: 1 Comments: 1
Question Number 165054 Answers: 1 Comments: 0
Question Number 165060 Answers: 1 Comments: 0
$${x}−\frac{\mathrm{1}}{{x}}=\mathrm{4}\:\:{then}\:{x}^{\mathrm{2}} −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=? \\ $$
Question Number 165044 Answers: 0 Comments: 2
$$\mathrm{If}\:{n}\:=\:{j}\:+\:{k},\:\mathrm{prove}\:\mathrm{or}\:\mathrm{disprove} \\ $$$$\frac{{d}^{{n}} }{{dx}^{{n}} }{f}\left({x}\right)\:=\:\frac{{d}^{{j}} }{{dx}^{{j}} }\left(\frac{{d}^{{k}} }{{dx}^{{k}} }{f}\left({x}\right)\right)\:=\:\frac{{d}^{{k}} }{{dx}^{{k}} }\left(\frac{{d}^{{j}} }{{dx}^{{j}} }{f}\left({x}\right)\right) \\ $$
Question Number 165010 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\psi\:^{\left(\mathrm{2}\right)} \left(\:\mathrm{1}+\:{n}\:\right)}{\:{n}}\:=\:? \\ $$$$\:\:\:\:\:\:−−−\:{m}.{n}\:−−− \\ $$$$\:\:\:\: \\ $$
Question Number 165006 Answers: 0 Comments: 1
Question Number 165024 Answers: 1 Comments: 7
Question Number 165021 Answers: 2 Comments: 0
$${fog}=\mathrm{6}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3} \\ $$$${gof}=\mathrm{12}{x}^{\mathrm{2}} −\mathrm{14}{x}+\mathrm{6} \\ $$$${f}\left(\mathrm{2}\right)=? \\ $$
Question Number 165019 Answers: 0 Comments: 0
Question Number 165018 Answers: 0 Comments: 0
$${y}\:=\:\Gamma\left({m}+{n}\right)\: \\ $$$${Find}\:\frac{{dy}}{{dn}} \\ $$
Question Number 165017 Answers: 0 Comments: 0
Question Number 165015 Answers: 2 Comments: 2
Question Number 164996 Answers: 1 Comments: 0
Question Number 164995 Answers: 1 Comments: 0
Question Number 164993 Answers: 1 Comments: 0
$${solve}\:{by}\:{series}\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{sinx}}{{x}}\:{dx} \\ $$
Question Number 164992 Answers: 0 Comments: 0
Question Number 164991 Answers: 2 Comments: 1
$$\boldsymbol{{Solve}}\:\boldsymbol{{by}}\:\boldsymbol{{resideo}}\:\boldsymbol{{theorem}}\:\int_{−\infty} ^{\:\infty} \:\frac{\boldsymbol{{z}}^{\mathrm{2}} }{\boldsymbol{{z}}^{\mathrm{4}} +\mathrm{1}}\:\boldsymbol{{dz}} \\ $$
Question Number 164985 Answers: 2 Comments: 0
Question Number 164982 Answers: 0 Comments: 0
$$\mathrm{Prove},\:\mathrm{that}\:\frac{{a}}{{b}}\::\:\frac{{c}}{{d}}\:=\:\frac{{a}}{{b}}\:\centerdot\:\frac{{d}}{{c}} \\ $$
Question Number 164984 Answers: 0 Comments: 0
Question Number 164974 Answers: 1 Comments: 0
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{ln}\left(\:\mathrm{1}−\:{x}\:\right).\mathrm{ln}\left({x}\:\right)\:\:}{{x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} }{dx}\overset{?} {=}\pi^{\:\mathrm{2}} −\mathrm{8ln}\left(\mathrm{2}\:\right)\: \\ $$$$\:\:\:\:\:−−−\:\:{m}.{n}\:−−− \\ $$$$ \\ $$
Question Number 164973 Answers: 1 Comments: 0
Question Number 164970 Answers: 0 Comments: 0
$$\:\:\lfloor\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{1}} }{\frac{\boldsymbol{{x}}}{\mathrm{10}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{2}} }{\frac{\boldsymbol{{x}}}{\mathrm{9}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{3}} }{\frac{\boldsymbol{{x}}}{\mathrm{8}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\boldsymbol{{x}}\:\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{4}} }{\frac{\boldsymbol{{x}}}{\mathrm{7}−\mathrm{3}^{\boldsymbol{{x}}} }}\:+\:\boldsymbol{{x}}\frac{\boldsymbol{{x}}^{\mathrm{2}+\mathrm{5}} }{\frac{\boldsymbol{{x}}}{\mathrm{6}−\mathrm{3}^{\boldsymbol{{x}}} }}\:\geqslant\:\frac{\mathrm{1}}{\frac{\mathrm{25}}{\boldsymbol{{x}}^{\boldsymbol{{x}}^{\boldsymbol{{x}}\:\left(\frac{\mathrm{1}}{\mathrm{25}}\right)} } }}\rfloor \\ $$$$\:\:\:\left\{\mathrm{Z}.\mathrm{A}\right\} \\ $$$$\: \\ $$
Question Number 164966 Answers: 1 Comments: 0
$$\:\:\:\:\:\lfloor\left(\frac{\mathrm{5}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{4}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{3}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{{x}}}\:+\:\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:\bullet\:\left(\frac{\boldsymbol{{x}}}{\mathrm{1}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{2}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{3}}\:\:−\:\frac{\boldsymbol{{x}}}{\mathrm{4}}\:−\:\frac{\boldsymbol{{x}}}{\mathrm{5}}\:\right)^{\mathrm{2}} >\:\frac{\mathrm{1}}{\mathrm{15}}\rfloor \\ $$$$\:\:\:\left\{\mathrm{za}\right\} \\ $$
Pg 524 Pg 525 Pg 526 Pg 527 Pg 528 Pg 529 Pg 530 Pg 531 Pg 532 Pg 533
Terms of Service
Privacy Policy
Contact: info@tinkutara.com