Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 525
Question Number 164364 Answers: 0 Comments: 0
$$\boldsymbol{{Lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\left(\boldsymbol{{e}}^{\boldsymbol{{tan}}\left(\boldsymbol{{x}}\right)} \right) \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{\mathrm{A}}\right\} \\ $$
Question Number 164347 Answers: 0 Comments: 4
Question Number 164345 Answers: 2 Comments: 1
Question Number 164341 Answers: 0 Comments: 1
$$\:\:{x}^{\mathrm{4}} ={x}^{\mathrm{2}} +{cx} \\ $$$$\left({x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ={cx}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${let}\:\:\:\:{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}={t}\:\:\:\Rightarrow \\ $$$$\left({t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} \left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${now}\:\:{let}\:\:\:{t}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}={z}\:\:\:\Rightarrow \\ $$$$\left({z}^{\mathrm{2}} −\frac{{c}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} ={c}^{\mathrm{4}} \left({z}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$${z}^{\mathrm{2}} −\frac{{c}^{\mathrm{2}} }{\mathrm{2}}={p}\:\:\Rightarrow\:\:\left({p}^{\mathrm{2}} −\frac{{c}^{\mathrm{4}} }{\mathrm{4}}\right)^{\mathrm{2}} ={c}^{\mathrm{8}} \left({p}+\frac{{c}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:\:{p}^{\mathrm{4}} −\frac{{c}^{\mathrm{4}} {p}^{\mathrm{2}} }{\mathrm{2}}−{c}^{\mathrm{8}} {p}+\frac{{c}^{\mathrm{8}} }{\mathrm{16}}−\frac{{c}^{\mathrm{10}} }{\mathrm{2}}=\mathrm{0} \\ $$$${p}^{\mathrm{4}} −{Ap}^{\mathrm{2}} −{Bp}−\lambda=\mathrm{0} \\ $$$$\left({p}^{\mathrm{2}} +{sp}+{h}\right)\left({p}^{\mathrm{2}} −{sp}−\frac{\lambda}{{h}}\right)=\mathrm{0} \\ $$$${h}−\frac{\lambda}{{h}}={s}^{\mathrm{2}} −{A} \\ $$$${s}\left({h}+\frac{\lambda}{{h}}\right)={B} \\ $$$$\frac{{B}^{\mathrm{2}} }{{s}^{\mathrm{2}} }−\left({s}^{\mathrm{2}} −{A}\right)^{\mathrm{2}} =\mathrm{4}\lambda \\ $$$$\left({s}^{\mathrm{2}} −{A}\right)^{\mathrm{3}} +{A}\left({s}^{\mathrm{2}} −{A}\right)^{\mathrm{2}} +\mathrm{4}\lambda\left({s}^{\mathrm{2}} −{A}\right) \\ $$$$\:\:\:\:\:\:\:\:\:+\mathrm{4}\lambda{A}−{B}^{\mathrm{2}} =\mathrm{0} \\ $$$${m}^{\mathrm{3}} +{Am}^{\mathrm{2}} +\mathrm{4}\lambda{m}+\left(\mathrm{4}\lambda{A}−{B}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${let}\:\:\:{m}={w}−\frac{{A}}{\mathrm{3}}\:\:\:\Rightarrow \\ $$$${w}^{\mathrm{3}} +\left(\mathrm{4}\lambda−\frac{{A}^{\mathrm{2}} }{\mathrm{3}}\right){w}+\frac{\mathrm{2}{A}^{\mathrm{3}} }{\mathrm{27}}+\frac{\mathrm{8}\lambda{A}}{\mathrm{3}}−{B}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}\lambda−\frac{{A}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{2}{c}^{\mathrm{10}} −\frac{{c}^{\mathrm{8}} }{\mathrm{4}}−\frac{{c}^{\mathrm{8}} }{\mathrm{12}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{c}^{\mathrm{8}} \left({c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{6}}\right) \\ $$
Question Number 164339 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\:\:\::\:\:\:{cos}^{\:\mathrm{2}} \left({A}\:\right)+\:{cos}^{\:\mathrm{2}} \left({B}\:\right)+\:{cos}^{\:\mathrm{2}} \left(\:{C}\:\right)=\mathrm{1}\:\:. \\ $$$$\:\:\:\:\:\:\:\:{Prove}\:{that}\:\:{A}\overset{\Delta} {{B}C}\:\:\:{is}\:\:\:{right}\:{angled}. \\ $$$$\:\:\:\:\:\:−−−−−−−− \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 164331 Answers: 0 Comments: 2
Question Number 164328 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{solve} \\ $$$$\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:{cos}^{\mathrm{2}{n}} \left({x}\right)}{{n}!}\:=\:\sqrt[{\mathrm{4}}]{{e}}\:\:\:\:\:\:\:\:\:\:\:\blacksquare\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$\:\: \\ $$
Question Number 164315 Answers: 0 Comments: 3
Question Number 164312 Answers: 0 Comments: 3
Question Number 164311 Answers: 0 Comments: 0
Question Number 164310 Answers: 1 Comments: 0
Question Number 164305 Answers: 2 Comments: 1
Question Number 164299 Answers: 1 Comments: 0
$${if}\:\underset{{n}\:{times}} {{f}\left({f}\left({f}\left(...{f}\left({x}\right)...\right)\right)\right)}=\mathrm{2}{x}+\mathrm{1},\: \\ $$$${find}\:{f}\left(\mathrm{1}\right)=? \\ $$
Question Number 164300 Answers: 1 Comments: 0
$$\mathrm{Question} \\ $$$$\mathrm{a}.\mathrm{which}\:\mathrm{numbers}\:\mathrm{have}\:\mathrm{an}\:\mathrm{odd}\:\mathrm{number} \\ $$$$\:\:\:\:\:\mathrm{of}\:\mathrm{divisors} \\ $$$$\mathrm{b}.\:\:\mathrm{Is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{number}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{13} \\ $$$$\:\:\:\:\:\:\mathrm{divisors} \\ $$$$\mathrm{c}.\:\:\mathrm{Generalize} \\ $$
Question Number 164290 Answers: 2 Comments: 0
Question Number 164279 Answers: 3 Comments: 0
$${x}^{{n}} ={n}^{{x}} \:\:\:{x}=? \\ $$
Question Number 164272 Answers: 1 Comments: 0
Question Number 164269 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{Solve}}\:\boldsymbol{{the}}\:\boldsymbol{{inequality}}; \\ $$$$\:\:\left(\boldsymbol{{x}}+\mathrm{3}\right)\left[\left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{2}} −\boldsymbol{{x}}\left(\boldsymbol{{x}}+\frac{\mathrm{3}}{\mathrm{4}}\right)\right]+\mathrm{6}+\frac{\mathrm{7}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{29}\boldsymbol{{x}}}{\mathrm{4}}>\mathrm{0} \\ $$$$\left\{\boldsymbol{{Z}}.\boldsymbol{{A}}\right\} \\ $$
Question Number 164264 Answers: 0 Comments: 0
Question Number 164266 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\:\left({x}−\mathrm{2}\right)\:−\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{5}}\:\:=\:\:? \\ $$
Question Number 164256 Answers: 1 Comments: 0
Question Number 164242 Answers: 0 Comments: 0
Question Number 164240 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{ln}\:\left(\mathrm{n}\right)\:=\:? \\ $$
Question Number 164237 Answers: 1 Comments: 0
Question Number 164236 Answers: 2 Comments: 1
Question Number 164231 Answers: 0 Comments: 0
$$\int_{−\infty} ^{\infty} \:−\frac{\mathrm{1}}{\mathrm{3}}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\frac{\frac{\:^{\mathrm{4}} \boldsymbol{\mathrm{log}}\:\mathrm{3}.^{\mathrm{4}} \boldsymbol{\mathrm{log}}\:\mathrm{6}}{\:\:^{\mathrm{4}} \boldsymbol{\mathrm{log}}\:\mathrm{9}.^{\mathrm{8}} \boldsymbol{\mathrm{log}}\:\mathrm{2}+\:^{\mathrm{4}} \boldsymbol{\mathrm{log}}\:\mathrm{9}.^{\mathrm{8}} \boldsymbol{\mathrm{log}}\:\mathrm{3}}}{\frac{\:^{\mathrm{9}} \boldsymbol{\mathrm{log}}\:\mathrm{4}.^{\mathrm{2}} \boldsymbol{\mathrm{log}}\mathrm{27}+^{\mathrm{3}} \boldsymbol{\mathrm{log}}\:\mathrm{81}}{\:^{\mathrm{2}} \boldsymbol{\mathrm{log}}\:\mathrm{64}−^{\mathrm{2}} \boldsymbol{\mathrm{log}}\:\mathrm{8}}}\right)\boldsymbol{\mathrm{dxdy}} \\ $$$$\left\{\boldsymbol{\mathrm{z}}.\right\} \\ $$
Pg 520 Pg 521 Pg 522 Pg 523 Pg 524 Pg 525 Pg 526 Pg 527 Pg 528 Pg 529
Terms of Service
Privacy Policy
Contact: info@tinkutara.com