Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 525

Question Number 166191    Answers: 1   Comments: 0

∫^( (π/2)) _(−(π/2)) ((sin x)/(x^4 +x^2 +1)) dx=?

$$\:\:\:\:\:\:\:\underset{−\frac{\pi}{\mathrm{2}}} {\int}^{\:\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{dx}=? \\ $$

Question Number 166186    Answers: 2   Comments: 0

if sinθ = (1/2) find cosθ

$${if}\:{sin}\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{find}\:{cos}\theta \\ $$

Question Number 166182    Answers: 2   Comments: 0

calculer la primitive de ∫(t^2 /((1+t^2 )^2 ))dt

$${calculer}\:{la}\:{primitive}\:{de} \\ $$$$\int\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$

Question Number 166181    Answers: 0   Comments: 0

Question Number 166177    Answers: 1   Comments: 0

help me please A cone 9 cm high and 8 cm in base diameter is filled with ice. a) vanilla for 2/5 of the height, b) chocolate for the remaining part 1. Calculate the volume of ice it contains. 2. Calculate the volume of the vanilla ice cream and the volume of the chocolate. By what fractions must the total volume of ice be multiplied to obtain these two volumes? The different volumes will be rounded to the nearest cm³.

$$ \\ $$help me please A cone 9 cm high and 8 cm in base diameter is filled with ice. a) vanilla for 2/5 of the height, b) chocolate for the remaining part 1. Calculate the volume of ice it contains. 2. Calculate the volume of the vanilla ice cream and the volume of the chocolate. By what fractions must the total volume of ice be multiplied to obtain these two volumes? The different volumes will be rounded to the nearest cm³.

Question Number 166176    Answers: 0   Comments: 0

Question Number 166170    Answers: 2   Comments: 0

tan(a+b)=(1/(17)) , tan(a−b)=((11)/(13)) tan2a=? tan2b=?

$${tan}\left({a}+{b}\right)=\frac{\mathrm{1}}{\mathrm{17}}\:\:\:,\:\:\:{tan}\left({a}−{b}\right)=\frac{\mathrm{11}}{\mathrm{13}} \\ $$$${tan}\mathrm{2}{a}=?\:\:\:\:\:\:{tan}\mathrm{2}{b}=? \\ $$

Question Number 166169    Answers: 1   Comments: 0

sin^7 (x)+(1/(sin^3 (x)))=cos^7 (x)+(1/(cos^3 (x)))

$$\:\:\mathrm{sin}^{\mathrm{7}} \left(\mathrm{x}\right)+\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{x}\right)}=\mathrm{cos}\:^{\mathrm{7}} \left(\mathrm{x}\right)+\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{3}} \left(\mathrm{x}\right)} \\ $$$$ \\ $$

Question Number 166168    Answers: 0   Comments: 0

prove Σ_(r=−∞) ^∞ (1/(x + (r+(1/2))π)) = tan(x) (Σ_(r=−∞) ^∞ (1/(x + r)))(Σ_(r=−∞) ^∞ (1/(x + r))) = −(π^2 /4) ( r = odd) (r = even)

$${prove} \\ $$$$\underset{{r}=−\infty} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{x}\:+\:\left({r}+\frac{\mathrm{1}}{\mathrm{2}}\right)\pi}\:=\:{tan}\left({x}\right) \\ $$$$\left(\underset{{r}=−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}\:+\:{r}}\right)\left(\underset{{r}=−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{x}\:+\:{r}}\right)\:=\:−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\left(\:{r}\:=\:{odd}\right)\:\:\:\:\:\:\:\:\left({r}\:=\:{even}\right) \\ $$

Question Number 166167    Answers: 0   Comments: 0

Question Number 166163    Answers: 0   Comments: 0

Question Number 166215    Answers: 1   Comments: 0

Question Number 166260    Answers: 1   Comments: 0

∫_0 ^(π/2) ln(sinx+cosx)dx=? −−−−−−−−−−−−by M.A

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{sinx}}+\boldsymbol{\mathrm{cosx}}\right)\boldsymbol{\mathrm{dx}}=? \\ $$$$−−−−−−−−−−−−\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{M}}.\boldsymbol{\mathrm{A}} \\ $$

Question Number 166160    Answers: 3   Comments: 0

Σ_(n=1) ^∞ Σ_(m=1) ^∞ (1/(m^2 n+mn^2 +2mn))=?

$$\:\:\:\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{m}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{m}^{\mathrm{2}} \mathrm{n}+\mathrm{mn}^{\mathrm{2}} +\mathrm{2mn}}=? \\ $$

Question Number 166143    Answers: 1   Comments: 0

Question Number 166141    Answers: 2   Comments: 0

∫_0 ^x (t^2 /( (√(a+2t^2 ))))dt

$$\int_{\mathrm{0}} ^{\boldsymbol{\mathrm{x}}} \frac{\boldsymbol{\mathrm{t}}^{\mathrm{2}} }{\:\sqrt{\boldsymbol{\mathrm{a}}+\mathrm{2}\boldsymbol{\mathrm{t}}^{\mathrm{2}} }}\boldsymbol{\mathrm{dt}}\: \\ $$

Question Number 166137    Answers: 2   Comments: 0

Question Number 166135    Answers: 1   Comments: 1

find the domain of f(x) = (1/([x]−1))

$${find}\:{the}\:{domain}\:{of}\:{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left[{x}\right]−\mathrm{1}} \\ $$

Question Number 166134    Answers: 1   Comments: 0

Question Number 166127    Answers: 0   Comments: 0

Question Number 166125    Answers: 0   Comments: 0

Question Number 166120    Answers: 1   Comments: 2

Question Number 166113    Answers: 2   Comments: 2

prove that 1!=1

$${prove}\:{that}\:\mathrm{1}!=\mathrm{1} \\ $$

Question Number 166112    Answers: 1   Comments: 1

prove that 0!=1

$${prove}\:{that}\:\mathrm{0}!=\mathrm{1} \\ $$

Question Number 166111    Answers: 1   Comments: 0

Question Number 166110    Answers: 1   Comments: 0

Prove that ((( n)),(( 0)) )^2 + ((( n)),(( 1)) )^2 + ((( n)),(( 2)) )^2 + …+ ((( n)),(( n)) )^2 = ((( 2n)),(( n)) )

$$\mathrm{Prove}\:\:\mathrm{that} \\ $$$$\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{0}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{1}}\end{pmatrix}^{\mathrm{2}} \:+\:\begin{pmatrix}{\:{n}}\\{\:\mathrm{2}}\end{pmatrix}^{\mathrm{2}} \:+\:\ldots+\:\begin{pmatrix}{\:{n}}\\{\:{n}}\end{pmatrix}^{\mathrm{2}} \:\:=\:\:\begin{pmatrix}{\:\mathrm{2}{n}}\\{\:\:{n}}\end{pmatrix} \\ $$

  Pg 520      Pg 521      Pg 522      Pg 523      Pg 524      Pg 525      Pg 526      Pg 527      Pg 528      Pg 529   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com