Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 524
Question Number 166391 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$\:\:\:\sqrt{{x}.\lfloor{x}\rfloor}\:−\:\sqrt{\lfloor{x}\rfloor}\:=\:\mathrm{1} \\ $$$$\:\:−−−−−−− \\ $$
Question Number 166379 Answers: 1 Comments: 0
$${soit}\left\{_{{u}_{\mathrm{1}} =\mathrm{4}} ^{{u}_{{o}} =\mathrm{1}} \:\:\forall{n}\epsilon{N}\right. \\ $$$${montrer}\:{par}\:{reccurence}\:\:{que}: \\ $$$${U}_{{n}+\mathrm{2}} =\mathrm{2}{U}_{{n}+\mathrm{1}} −{U}_{{n}} \\ $$
Question Number 166377 Answers: 1 Comments: 0
$$\:\:\mathrm{Given}\:\mathrm{A}=\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\\{\:\:\mathrm{a}\:\:\:\:\:\:\:\:\mathrm{b}}\end{pmatrix}\:.\:\mathrm{If}\:\mathrm{A}^{\mathrm{3}} =\:\mathrm{A}^{\mathrm{2}} \\ $$$$\:\mathrm{then}\:\mathrm{2a}−\mathrm{3b}=? \\ $$
Question Number 166376 Answers: 0 Comments: 0
Question Number 166378 Answers: 1 Comments: 0
$$\:\mathrm{8}{x}^{\mathrm{3}} −\mathrm{6}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\:{solve}\:{for}\:{x} \\ $$
Question Number 166373 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}\:\: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\:}{{x}^{\:\mathrm{2}} }\:{dx}\:=\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:−−−\:\:{solution}\:\left({technical}\:{method}\right)\:−−− \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right){d}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\left[\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\frac{{xln}\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}−{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:=\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}+{x}}\:{dx}\: \\ $$$$\:\:\:\:\:\:\:=\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}}{dx}\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){dx}}{\mathrm{1}+{x}} \\ $$$$\:\:\:\:\:\:=\:−\mathrm{2}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:−\mathrm{4}\:\left(\:−\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\:\:\:\:\:\therefore\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 166371 Answers: 0 Comments: 2
Question Number 166372 Answers: 3 Comments: 0
Question Number 166360 Answers: 1 Comments: 0
$$\frac{\mathrm{sin}\:\mathrm{10}{x}}{{sin}\:\mathrm{2}{x}}−\frac{\mathrm{cos}\:\mathrm{10}{x}}{\mathrm{cos}\:\mathrm{2}{x}}=? \\ $$
Question Number 166358 Answers: 1 Comments: 0
Question Number 166350 Answers: 1 Comments: 1
Question Number 166331 Answers: 2 Comments: 1
$${prove}\:{that} \\ $$$$\frac{{df}^{−\mathrm{1}} \left({a}\right)}{{dx}}×\frac{{df}\left({f}^{−\mathrm{1}} \left({a}\right)\right)}{{dx}}=\mathrm{1} \\ $$
Question Number 166321 Answers: 1 Comments: 0
Question Number 166320 Answers: 1 Comments: 0
$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\ $$
Question Number 166319 Answers: 1 Comments: 2
Question Number 166318 Answers: 0 Comments: 0
Question Number 166346 Answers: 1 Comments: 1
$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$
Question Number 166307 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 166296 Answers: 0 Comments: 2
$$\left(\mathrm{cos}\:{x}\right)^{\mathrm{2022}} −\left(\mathrm{sin}\:{x}\right)^{\mathrm{2022}} =\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 166294 Answers: 0 Comments: 5
$$\:\mathrm{f}\left(\mathrm{x}\right)=\int_{\mathrm{1}} ^{{x}} \:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} +\mathrm{3}}} \\ $$$$\:\:\:\left({f}^{−\mathrm{1}} \left(\mathrm{0}\right)\right)'=? \\ $$
Question Number 166291 Answers: 1 Comments: 0
$${calculer}\:{la}\:{somme} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}{x}^{{n}} \\ $$
Question Number 166284 Answers: 0 Comments: 1
Question Number 166281 Answers: 1 Comments: 0
Question Number 166280 Answers: 1 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\:\infty} \mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}^{−\mathrm{2}} \right)\:\mathrm{dx} \\ $$
Question Number 166279 Answers: 0 Comments: 0
$${if}\:{y}\:=\:{x}^{{x}^{{x}^{{x}} } } \:{find}\:{y}^{'} \:? \\ $$
Question Number 166273 Answers: 2 Comments: 1
Pg 519 Pg 520 Pg 521 Pg 522 Pg 523 Pg 524 Pg 525 Pg 526 Pg 527 Pg 528
Terms of Service
Privacy Policy
Contact: info@tinkutara.com