Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 524

Question Number 167189    Answers: 0   Comments: 1

Question Number 167179    Answers: 1   Comments: 0

Demonstrate that ∀ x, y ∈ R_+ ^∗ , ∀ q ∈ Q_+ ^∗ such that q>xy, ∃ a,b ∈ Q such that a>x, b>y and ab=q.

$${Demonstrate}\:{that}\:\forall\:{x},\:{y}\:\in\:\mathbb{R}_{+} ^{\ast} ,\:\forall\:{q}\:\in\:\mathbb{Q}_{+} ^{\ast} \\ $$$${such}\:{that}\:{q}>{xy},\:\exists\:{a},{b}\:\in\:\mathbb{Q}\:{such}\: \\ $$$${that}\:{a}>{x},\:{b}>{y}\:{and}\:{ab}={q}. \\ $$

Question Number 167176    Answers: 0   Comments: 1

Question Number 167173    Answers: 1   Comments: 0

∫_(−2) ^(−1) e^(−(t/2)) (√(t+2)) dt = ???

$$\int_{−\mathrm{2}} ^{−\mathrm{1}} {e}^{−\frac{{t}}{\mathrm{2}}} \sqrt{{t}+\mathrm{2}}\:{dt}\:=\:??? \\ $$

Question Number 167167    Answers: 1   Comments: 0

Find minimum value of function f(x)=2x−(√(x+1))−(√(x^2 −1))

$$\:\:\mathrm{Find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}−\sqrt{\mathrm{x}+\mathrm{1}}−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 167164    Answers: 1   Comments: 0

Ω=∫_0 ^( (π/2)) (( sin^( 2) (x))/((sin(x)+cos(x))^( 6) )) dx=?

$$ \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:\:\:\:{sin}^{\:\mathrm{2}} \left({x}\right)}{\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)^{\:\mathrm{6}} }\:{dx}=? \\ $$

Question Number 167165    Answers: 1   Comments: 0

Question Number 167160    Answers: 0   Comments: 0

calculate :: lim_(n→∞) ncos(∫_0 ^1 ((sin (2πnx))/x)dx)=(1/(2π))

$$\mathrm{calculate}\:::\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}ncos}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{sin}\:\left(\mathrm{2}\pi\mathrm{nx}\right)}{\mathrm{x}}\mathrm{dx}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi} \\ $$

Question Number 167159    Answers: 0   Comments: 0

Question Number 167158    Answers: 1   Comments: 0

Question Number 167152    Answers: 1   Comments: 2

Question Number 167150    Answers: 1   Comments: 0

Question Number 167145    Answers: 0   Comments: 1

∫ (dx/(x^2 −3(√x)+10))

$$\int\:\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{3}\sqrt{{x}}+\mathrm{10}} \\ $$

Question Number 167144    Answers: 1   Comments: 0

Calculate Σ_(k=1) ^n ((sin(1))/(cos(k)cos(k−1)))

$${Calculate}\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{sin}\left(\mathrm{1}\right)}{{cos}\left({k}\right){cos}\left({k}−\mathrm{1}\right)} \\ $$

Question Number 167137    Answers: 1   Comments: 0

Question Number 167126    Answers: 0   Comments: 9

Assuming one of the WiFi towers of a building is 20km high, and has a perpendicular distance of 15km to a straight road. Calculate the distance of the road which receives a good WiFi signal if it has a limited range of 45km (Calculate to four significant figures)

$$ \\ $$Assuming one of the WiFi towers of a building is 20km high, and has a perpendicular distance of 15km to a straight road. Calculate the distance of the road which receives a good WiFi signal if it has a limited range of 45km (Calculate to four significant figures)

Question Number 167122    Answers: 0   Comments: 0

Question Number 167119    Answers: 1   Comments: 0

(z+3i)^(20) =?

$$\left({z}+\mathrm{3}{i}\right)^{\mathrm{20}} =? \\ $$

Question Number 167115    Answers: 0   Comments: 0

Question Number 167110    Answers: 1   Comments: 0

Find the remainder when:− (a) 41! is divided by 1681 (b) 225! is divided by 227 (c) 15! is divided by 19

$$\:\:{Find}\:{the}\:{remainder}\:{when}:− \\ $$$$\:\:\left({a}\right)\:\:\mathrm{41}!\:{is}\:{divided}\:{by}\:\mathrm{1681} \\ $$$$\:\:\left({b}\right)\:\mathrm{225}!\:{is}\:{divided}\:{by}\:\mathrm{227} \\ $$$$\:\:\left({c}\right)\:\mathrm{15}!\:{is}\:{divided}\:{by}\:\mathrm{19} \\ $$

Question Number 167107    Answers: 1   Comments: 0

Question Number 167105    Answers: 4   Comments: 0

If g(x)= { (( x^( 2) x≥1)),(( x^( 3) x< 1)) :} then lim_( h→ 0^( +) ) (( g (1+3h ) − g (1−5h ))/h) =?

$$ \\ $$$$\:\:\:\:\mathrm{I}{f}\:\:\:\:{g}\left({x}\right)=\:\begin{cases}{\:{x}^{\:\mathrm{2}} \:\:\:\:\:{x}\geqslant\mathrm{1}}\\{\:{x}^{\:\mathrm{3}} \:\:\:\:\:\:\:{x}<\:\mathrm{1}}\end{cases}\: \\ $$$$\:\:\:\:\:\:{then}\:\:\:\:\:{lim}_{\:{h}\rightarrow\:\mathrm{0}^{\:+} } \frac{\:{g}\:\left(\mathrm{1}+\mathrm{3}{h}\:\right)\:−\:{g}\:\left(\mathrm{1}−\mathrm{5}{h}\:\right)}{{h}}\:=? \\ $$

Question Number 167102    Answers: 0   Comments: 0

Ω = ∫_0 ^( 1) ((Li_( 2) (1− x ))/(1+x)) dx = ? −−−−−

$$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}_{\:\mathrm{2}} \left(\mathrm{1}−\:{x}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−− \\ $$

Question Number 167100    Answers: 1   Comments: 1

calculate :: lim_(x→0^+ ) ((∫_0 ^x cos^n ((1/t))dt)/x)=?

$$\mathrm{calculate}\:\:\:::\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{cos}\:^{\mathrm{n}} \left(\frac{\mathrm{1}}{\mathrm{t}}\right)\mathrm{dt}}{\mathrm{x}}=? \\ $$

Question Number 167092    Answers: 0   Comments: 0

Question Number 167091    Answers: 0   Comments: 0

  Pg 519      Pg 520      Pg 521      Pg 522      Pg 523      Pg 524      Pg 525      Pg 526      Pg 527      Pg 528   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com