Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 524
Question Number 167536 Answers: 0 Comments: 4
$${is}\:{cos}\left({t}+\frac{\pi}{\mathrm{2}}\right)\:{trigonometric}\:{function}\:? \\ $$
Question Number 167533 Answers: 0 Comments: 3
$$\:\:\:\:\:\:\mathrm{Find}\:\mathrm{out}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{where}\:\begin{cases}{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} }\\{\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{1000}}\end{cases}\:\:\: \\ $$
Question Number 167532 Answers: 0 Comments: 5
Question Number 167496 Answers: 0 Comments: 0
Question Number 167493 Answers: 1 Comments: 0
$$\sqrt{{x}+\mathrm{6}}+\sqrt{\mathrm{8}−{x}}={A} \\ $$$${x}\in{Z}\:\:\:{and}\:{A}\in{R}\:\:\:\:\:\:\:\:\:\overset{\:\:\:\:{faid}\:\:\Sigma{x}=?} {\:} \\ $$
Question Number 167492 Answers: 1 Comments: 0
$${x}^{{a}} =\sqrt{\mathrm{2}}+\mathrm{1}\:\:\:\:\:.........\left(\mathrm{1}\right)\: \\ $$$${x}^{{b}} =\sqrt{\mathrm{2}}−\mathrm{1}\:\:\:\:\:.........\left(\mathrm{2}\right) \\ $$$$\frac{\mathrm{1}}{{x}^{{a}−{b}} }+\frac{\mathrm{1}}{{x}^{{b}−{a}} }=? \\ $$$$\left(\mathrm{1}\right)\boldsymbol{\div}\left(\mathrm{2}\right)\Rightarrow\frac{{x}^{{a}} }{{x}^{{b}} }=\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}−\mathrm{1}}}\Rightarrow{x}^{{a}−{b}} =\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}−\mathrm{1}}}\Rightarrow\frac{\mathrm{1}}{{x}^{{a}−{b}} }=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}....\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{2}\right)\boldsymbol{\div}\left(\mathrm{1}\right)\Rightarrow\frac{{x}^{{b}} }{{x}^{{a}} }=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}\Rightarrow{x}^{{b}−{a}} =\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}\Rightarrow\frac{\mathrm{1}}{{x}^{{b}−{a}} }=\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}....\left(\mathrm{4}\right) \\ $$$$\frac{\mathrm{1}}{{x}^{{a}−{b}} }+\frac{\mathrm{1}}{{x}^{{b}−{a}} }=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}+\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}=\frac{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}{\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)} \\ $$$$=\frac{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}−\mathrm{1}}=\mathrm{2}−\cancel{\mathrm{2}\sqrt{\mathrm{2}}}+\mathrm{1}+\mathrm{2}+\cancel{\mathrm{2}\sqrt{\mathrm{2}}}+\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{x}^{{a}−{b}} }+\frac{\mathrm{1}}{{x}^{{b}−{a}} }=\mathrm{6} \\ $$
Question Number 167490 Answers: 1 Comments: 0
$$\int{sin}^{\mathrm{3}} {xcos}^{\mathrm{2}} {xdx}=? \\ $$
Question Number 167489 Answers: 1 Comments: 0
$${a}+\sqrt{{x}}=\mathrm{2} \\ $$$${b}+\sqrt[{\mathrm{4}}]{{x}}=\mathrm{9}\:\:\:\:\:\:\:\:\:\overset{\:\:\:\:\:\:\left(\mathrm{4}{a}−{b}^{\mathrm{2}} \right)=?} {\:} \\ $$
Question Number 167488 Answers: 1 Comments: 1
$${a}^{\mathrm{2}} −\mathrm{4}{a}+\mathrm{2}=\mathrm{0}\:\:\:\:\:\:\:\:\:{a}\succ\mathrm{2} \\ $$$$\sqrt{\frac{{a}^{\mathrm{4}} +\mathrm{4}}{\mathrm{12}{a}^{\mathrm{2}} }}=? \\ $$
Question Number 167486 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} {x}\:=\:\mathrm{cos}\:\left(\frac{\mathrm{4}{x}}{\mathrm{3}}\right)\:;\:\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\pi \\ $$
Question Number 167485 Answers: 1 Comments: 0
$$\int\int\int\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{dx}} \\ $$
Question Number 167484 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$
Question Number 167482 Answers: 0 Comments: 0
$$\mathrm{montrer}\:\mathrm{que}\:\forall\mathrm{x}\in\mathbb{R}−\left\{\mathrm{0};\:\mathrm{1}\right\}\:\mathrm{on}\:\mathrm{a} \\ $$$$\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}−\mathrm{1}}\:<\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:? \\ $$
Question Number 167644 Answers: 1 Comments: 2
$$\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}+\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}} \\ $$
Question Number 167477 Answers: 0 Comments: 0
Question Number 167473 Answers: 2 Comments: 0
$$\:\: \\ $$$$\:\:\:\:\:\:{solve} \\ $$$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{2}} ^{\:\mathrm{3}} \lfloor\:{x}^{\:\mathrm{2}} −\:\mathrm{2}{x}\:+\mathrm{5}\:\rfloor{dx}=? \\ $$$$ \\ $$
Question Number 167471 Answers: 0 Comments: 0
$${Montrer}\:{que} \\ $$$$\left({R}^{{n}} ,{d}_{\mathrm{1}} \right),\left({R}^{{n}} ,{d}_{\mathrm{2}} \right)\:{et}\left({R}^{{n}} ,{d}_{{oo}} \right) \\ $$$${sont}\:{des}\:{espaces}\:{metrique} \\ $$
Question Number 167468 Answers: 1 Comments: 0
Question Number 167462 Answers: 2 Comments: 0
$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$
Question Number 167456 Answers: 1 Comments: 0
Question Number 167454 Answers: 0 Comments: 0
Question Number 168097 Answers: 0 Comments: 0
Question Number 167449 Answers: 0 Comments: 1
Question Number 167448 Answers: 0 Comments: 2
Question Number 167441 Answers: 0 Comments: 0
Question Number 167438 Answers: 2 Comments: 0
$$\:\:\int\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{4sin}\:^{\mathrm{4}} \mathrm{x}−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}\:\mathrm{dx}=? \\ $$
Pg 519 Pg 520 Pg 521 Pg 522 Pg 523 Pg 524 Pg 525 Pg 526 Pg 527 Pg 528
Terms of Service
Privacy Policy
Contact: info@tinkutara.com