Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 521
Question Number 166075 Answers: 0 Comments: 1
$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{relation}\:\left\{\left(\mathrm{x},\mathrm{y}\right):\mid\mathrm{x}\mid+\mathrm{y}\geq\mathrm{2}\right\}\:\mathrm{by}\:\mathrm{draw}\:\mathrm{its}\:\mathrm{graph} \\ $$
Question Number 166070 Answers: 0 Comments: 1
Question Number 166067 Answers: 0 Comments: 2
Question Number 166180 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that} \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}β{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\mathrm{2}\:\zeta\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:βββ{proof}βββ \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\left[\frac{β\mathrm{1}}{{x}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}β{x}\right)\:\right]_{\mathrm{0}} ^{\mathrm{1}} β\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{2}{ln}\left(\mathrm{1}β{x}\right)}{{x}\left(\mathrm{1}β{x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:=β{lim}_{\:\xi\rightarrow\mathrm{1}^{β} } \frac{\mathrm{1}}{\xi}{ln}^{\:\mathrm{2}} \left(\mathrm{1}β\xi\right)β\mathrm{2}\left\{\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}β{x}\right)}{\mathrm{1}β{x}}{dx}+\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}β{x}\right)}{{x}}{dx}\right\} \\ $$$$\:\:\:\:\:\:\:=\:β{lim}_{\:\xi\rightarrow\mathrm{1}^{β} } \left\{\frac{\mathrm{1}}{\xi}{ln}^{\:\mathrm{2}} \left(\mathrm{1}β\xi\right)+{ln}^{\:\mathrm{2}} \left(\mathrm{1}\:β\xi\right)\right\}+\mathrm{2}\:\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:={lim}_{\xi\rightarrow\mathrm{1}^{β} } \left(\frac{\xiβ\mathrm{1}}{\xi}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}β\xi\right)\:+\mathrm{2}\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\underset{\xi\rightarrow\mathrm{1}^{β} \:,\:\delta\rightarrow\mathrm{0}^{\:+} } {\overset{\mathrm{1}β\xi=\:\delta} {=}}\left[{lim}_{\:\delta\rightarrow\mathrm{0}^{\:+} } \left(\frac{β\delta}{\mathrm{1}β\delta}\right){ln}^{\mathrm{2}} \left(\delta\right)=\mathrm{0}\right]\:+\mathrm{2}\zeta\left(\mathrm{2}\right)\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\:\therefore\:\:\:\boldsymbol{\phi}\:=\:\mathrm{2}\:\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 166063 Answers: 0 Comments: 2
Question Number 166058 Answers: 1 Comments: 0
Question Number 166053 Answers: 1 Comments: 1
$$\:\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{in}}\:\:\mathbb{R}\overset{\:} {:} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\sqrt{\mathrm{2}}} \:\:+\:\:\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{6}\:\:\:\:\:\left(\boldsymbol{\mathrm{How}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{solve}}?\right) \\ $$
Question Number 166049 Answers: 0 Comments: 0
$${n}\epsilon\:{R}/\left\{\mathrm{0},\mathrm{1}\right\}\:{montrer}\:{que} \\ $$$$\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\:\frac{{x}^{{k}} }{{nx}+{ln}\left({k}\right)}>=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 166043 Answers: 0 Comments: 5
$$\boldsymbol{{is}}\:\mathrm{811}\:\boldsymbol{{prime}}\:\boldsymbol{{number}}\:\boldsymbol{{or}}\:\boldsymbol{{no}}\:? \\ $$
Question Number 166036 Answers: 2 Comments: 2
Question Number 166033 Answers: 1 Comments: 1
Question Number 166009 Answers: 1 Comments: 4
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{70}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{64}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\mathrm{2002}}\\{\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)=?}\end{cases}\: \\ $$$$\left({Use}\:\boldsymbol{{Newton}}-\boldsymbol{{Identities}}\right. \\ $$$$\left.{or}\:{otherwise}\right) \\ $$
Question Number 166007 Answers: 1 Comments: 1
Question Number 166006 Answers: 0 Comments: 0
$${chek}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:{cos}\left({n}\right)\:{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$
Question Number 166017 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\:\mathrm{it}\:! \\ $$$$\:\:\mathrm{2}\:\mathrm{tan}^{β\mathrm{1}} \:\sqrt{\left(\mathrm{1}β{t}\right)\left(\mathrm{1}+{t}\right)}\:β\:\mathrm{tan}^{β\mathrm{1}} \left(\mathrm{1}β{t}\right)\:=\:\mathrm{tan}^{β\mathrm{1}} \:{t}\:β\:\mathrm{tan}^{β\mathrm{1}} \:\sqrt{\mathrm{1}β{t}^{\mathrm{2}} } \\ $$
Question Number 166015 Answers: 0 Comments: 0
$${study}\:{the}\:{convergence}\:{of}\:{integral}\:{and}\:{find}\:{valeur} \\ $$$${t}β>\:\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$
Question Number 166012 Answers: 1 Comments: 1
Question Number 166013 Answers: 1 Comments: 0
Question Number 165995 Answers: 1 Comments: 0
$$\begin{cases}{{sinx}+{siny}=\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{2}^{\mathrm{sin}\:{x}} +\mathrm{2}^{\mathrm{sin}\:{y}} =\mathrm{2}+\sqrt{\mathrm{2}}}\end{cases}\:\:\:\:\:\:\:{faind}\:\:\:{x}=? \\ $$
Question Number 165984 Answers: 1 Comments: 1
Question Number 165969 Answers: 0 Comments: 3
$$ \\ $$
Question Number 165965 Answers: 2 Comments: 0
Question Number 165962 Answers: 0 Comments: 0
Question Number 165955 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{C}\:=\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2x}}\:=? \\ $$
Question Number 165942 Answers: 1 Comments: 5
Question Number 165949 Answers: 2 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{5}{x}β\mathrm{2}}{{a}}\:\:\wedge{f}^{β\mathrm{1}} \left({x}\right)=\frac{{x}+{b}}{\mathrm{5}} \\ $$$${faind}\:\:\:{a}Γ{b}=? \\ $$
Pg 516 Pg 517 Pg 518 Pg 519 Pg 520 Pg 521 Pg 522 Pg 523 Pg 524 Pg 525
Terms of Service
Privacy Policy
Contact: info@tinkutara.com