Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 521

Question Number 167144    Answers: 1   Comments: 0

Calculate Σ_(k=1) ^n ((sin(1))/(cos(k)cos(k−1)))

$${Calculate}\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{sin}\left(\mathrm{1}\right)}{{cos}\left({k}\right){cos}\left({k}−\mathrm{1}\right)} \\ $$

Question Number 167137    Answers: 1   Comments: 0

Question Number 167126    Answers: 0   Comments: 9

Assuming one of the WiFi towers of a building is 20km high, and has a perpendicular distance of 15km to a straight road. Calculate the distance of the road which receives a good WiFi signal if it has a limited range of 45km (Calculate to four significant figures)

$$ \\ $$Assuming one of the WiFi towers of a building is 20km high, and has a perpendicular distance of 15km to a straight road. Calculate the distance of the road which receives a good WiFi signal if it has a limited range of 45km (Calculate to four significant figures)

Question Number 167122    Answers: 0   Comments: 0

Question Number 167119    Answers: 1   Comments: 0

(z+3i)^(20) =?

$$\left({z}+\mathrm{3}{i}\right)^{\mathrm{20}} =? \\ $$

Question Number 167115    Answers: 0   Comments: 0

Question Number 167110    Answers: 1   Comments: 0

Find the remainder when:− (a) 41! is divided by 1681 (b) 225! is divided by 227 (c) 15! is divided by 19

$$\:\:{Find}\:{the}\:{remainder}\:{when}:− \\ $$$$\:\:\left({a}\right)\:\:\mathrm{41}!\:{is}\:{divided}\:{by}\:\mathrm{1681} \\ $$$$\:\:\left({b}\right)\:\mathrm{225}!\:{is}\:{divided}\:{by}\:\mathrm{227} \\ $$$$\:\:\left({c}\right)\:\mathrm{15}!\:{is}\:{divided}\:{by}\:\mathrm{19} \\ $$

Question Number 167107    Answers: 1   Comments: 0

Question Number 167105    Answers: 4   Comments: 0

If g(x)= { (( x^( 2) x≥1)),(( x^( 3) x< 1)) :} then lim_( h→ 0^( +) ) (( g (1+3h ) − g (1−5h ))/h) =?

$$ \\ $$$$\:\:\:\:\mathrm{I}{f}\:\:\:\:{g}\left({x}\right)=\:\begin{cases}{\:{x}^{\:\mathrm{2}} \:\:\:\:\:{x}\geqslant\mathrm{1}}\\{\:{x}^{\:\mathrm{3}} \:\:\:\:\:\:\:{x}<\:\mathrm{1}}\end{cases}\: \\ $$$$\:\:\:\:\:\:{then}\:\:\:\:\:{lim}_{\:{h}\rightarrow\:\mathrm{0}^{\:+} } \frac{\:{g}\:\left(\mathrm{1}+\mathrm{3}{h}\:\right)\:−\:{g}\:\left(\mathrm{1}−\mathrm{5}{h}\:\right)}{{h}}\:=? \\ $$

Question Number 167102    Answers: 0   Comments: 0

Ω = ∫_0 ^( 1) ((Li_( 2) (1− x ))/(1+x)) dx = ? −−−−−

$$ \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{Li}_{\:\mathrm{2}} \left(\mathrm{1}−\:{x}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−− \\ $$

Question Number 167100    Answers: 1   Comments: 1

calculate :: lim_(x→0^+ ) ((∫_0 ^x cos^n ((1/t))dt)/x)=?

$$\mathrm{calculate}\:\:\:::\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{cos}\:^{\mathrm{n}} \left(\frac{\mathrm{1}}{\mathrm{t}}\right)\mathrm{dt}}{\mathrm{x}}=? \\ $$

Question Number 167092    Answers: 0   Comments: 0

Question Number 167091    Answers: 0   Comments: 0

Question Number 167120    Answers: 3   Comments: 0

Question Number 167086    Answers: 0   Comments: 1

Question Number 167085    Answers: 0   Comments: 1

lim_(x→∞) ((√(x^2 +3x))−(√(x^2 +x)))^x =?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}−\sqrt{{x}^{\mathrm{2}} +{x}}\right)^{{x}} =? \\ $$

Question Number 167082    Answers: 1   Comments: 1

Question Number 167078    Answers: 0   Comments: 2

Question Number 167077    Answers: 0   Comments: 0

Question Number 167073    Answers: 1   Comments: 0

Let the triangle A(−3; 2), B(8; 4), C(4; −6), solve:_ ^ (a)^ find the perimeter; (b)^ find the area; (c)^ find the base; (d)^ find the height; (e)^ classify it

$$\:\boldsymbol{\mathrm{Let}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{triangle}}\:\:\boldsymbol{\mathrm{A}}\left(−\mathrm{3};\:\mathrm{2}\right),\:\:\boldsymbol{\mathrm{B}}\left(\mathrm{8};\:\mathrm{4}\right),\:\:\boldsymbol{\mathrm{C}}\left(\mathrm{4};\:−\mathrm{6}\right),\:\:\boldsymbol{\mathrm{solve}}\underset{\:} {\overset{\:} {:}} \\ $$$$\:\left(\boldsymbol{\mathrm{a}}\overset{\:} {\right)}\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{perimeter}}; \\ $$$$\:\left(\boldsymbol{\mathrm{b}}\overset{\:} {\right)}\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{area}}; \\ $$$$\:\left(\boldsymbol{\mathrm{c}}\overset{\:} {\right)}\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{base}}; \\ $$$$\:\left(\boldsymbol{\mathrm{d}}\overset{\:} {\right)}\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{height}}; \\ $$$$\:\left(\boldsymbol{\mathrm{e}}\overset{\:} {\right)}\:\boldsymbol{\mathrm{classify}}\:\:\boldsymbol{\mathrm{it}} \\ $$

Question Number 167067    Answers: 0   Comments: 0

∫ln∣sinx∣dx

$$\int{ln}\mid{sinx}\mid{dx} \\ $$

Question Number 167066    Answers: 0   Comments: 1

Question Number 167058    Answers: 1   Comments: 0

Question Number 167056    Answers: 1   Comments: 0

help me! lim_(x→∞) cosec^(−1) (2)(√(x(√(2(√x)))))

$$\mathrm{help}\:\mathrm{me}!\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}cosec}^{−\mathrm{1}} \left(\mathrm{2}\right)\sqrt{{x}\sqrt{\mathrm{2}\sqrt{{x}}}} \\ $$

Question Number 167048    Answers: 1   Comments: 0

prove that Φ= ∫_0 ^( 1) x.ψ (2+x )= 2 −(1/2)ln(8π) −−−

$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\psi\:\left(\mathrm{2}+{x}\:\right)=\:\mathrm{2}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{8}\pi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−−− \\ $$

Question Number 167054    Answers: 1   Comments: 0

f(x)= { ((e^(−x^2 ) 0<x<∞)),((e^(−x^4 ) −∞<x<0 )) :} Find geometric mean of f(x)

$${f}\left({x}\right)=\begin{cases}{{e}^{−{x}^{\mathrm{2}} } \:\:\mathrm{0}<{x}<\infty}\\{{e}^{−{x}^{\mathrm{4}} } \:−\infty<{x}<\mathrm{0}\:\:\:\:}\end{cases} \\ $$$$ \\ $$$$\:{Find}\:{geometric}\:{mean}\:{of}\:{f}\left({x}\right) \\ $$

  Pg 516      Pg 517      Pg 518      Pg 519      Pg 520      Pg 521      Pg 522      Pg 523      Pg 524      Pg 525   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com