Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 521

Question Number 166075    Answers: 0   Comments: 1

find the domain and range of the relation {(x,y):∣x∣+yβ‰₯2} by draw its graph

$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{range}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{relation}\:\left\{\left(\mathrm{x},\mathrm{y}\right):\mid\mathrm{x}\mid+\mathrm{y}\geq\mathrm{2}\right\}\:\mathrm{by}\:\mathrm{draw}\:\mathrm{its}\:\mathrm{graph} \\ $$

Question Number 166070    Answers: 0   Comments: 1

Question Number 166067    Answers: 0   Comments: 2

Question Number 166180    Answers: 0   Comments: 0

prove that 𝛗=∫_0 ^( 1) (( ln^( 2) (1βˆ’x ))/x^( 2) ) dx = 2 ΞΆ (2) βˆ’βˆ’βˆ’proofβˆ’βˆ’βˆ’ 𝛗= [((βˆ’1)/x) ln^( 2) (1βˆ’x) ]_0 ^1 βˆ’βˆ«_0 ^( 1) ((2ln(1βˆ’x))/(x(1βˆ’x)))dx =βˆ’lim_( ΞΎβ†’1^βˆ’ ) (1/ΞΎ)ln^( 2) (1βˆ’ΞΎ)βˆ’2{ ∫_0 ^( 1) ((ln(1βˆ’x))/(1βˆ’x))dx+∫_0 ^( 1) ((ln(1βˆ’x))/x)dx} = βˆ’lim_( ΞΎβ†’1^βˆ’ ) {(1/ΞΎ)ln^( 2) (1βˆ’ΞΎ)+ln^( 2) (1 βˆ’ΞΎ)}+2 ΞΆ(2) =lim_(ΞΎβ†’1^βˆ’ ) (((ΞΎβˆ’1)/ΞΎ))ln^( 2) (1βˆ’ΞΎ) +2ΞΆ(2) =_(ΞΎβ†’1^βˆ’ , Ξ΄β†’0^( +) ) ^(1βˆ’ΞΎ= Ξ΄) [lim_( Ξ΄β†’0^( +) ) (((βˆ’Ξ΄)/(1βˆ’Ξ΄)))ln^2 (Ξ΄)=0] +2ΞΆ(2) β–  m.n ∴ 𝛗 = 2 ΞΆ(2)

$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that} \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}βˆ’{x}\:\right)}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\mathrm{2}\:\zeta\:\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:βˆ’βˆ’βˆ’{proof}βˆ’βˆ’βˆ’ \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\left[\frac{βˆ’\mathrm{1}}{{x}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}βˆ’{x}\right)\:\right]_{\mathrm{0}} ^{\mathrm{1}} βˆ’\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{2}{ln}\left(\mathrm{1}βˆ’{x}\right)}{{x}\left(\mathrm{1}βˆ’{x}\right)}{dx} \\ $$$$\:\:\:\:\:\:\:\:=βˆ’{lim}_{\:\xi\rightarrow\mathrm{1}^{βˆ’} } \frac{\mathrm{1}}{\xi}{ln}^{\:\mathrm{2}} \left(\mathrm{1}βˆ’\xi\right)βˆ’\mathrm{2}\left\{\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}βˆ’{x}\right)}{\mathrm{1}βˆ’{x}}{dx}+\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}βˆ’{x}\right)}{{x}}{dx}\right\} \\ $$$$\:\:\:\:\:\:\:=\:βˆ’{lim}_{\:\xi\rightarrow\mathrm{1}^{βˆ’} } \left\{\frac{\mathrm{1}}{\xi}{ln}^{\:\mathrm{2}} \left(\mathrm{1}βˆ’\xi\right)+{ln}^{\:\mathrm{2}} \left(\mathrm{1}\:βˆ’\xi\right)\right\}+\mathrm{2}\:\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:={lim}_{\xi\rightarrow\mathrm{1}^{βˆ’} } \left(\frac{\xiβˆ’\mathrm{1}}{\xi}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}βˆ’\xi\right)\:+\mathrm{2}\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\underset{\xi\rightarrow\mathrm{1}^{βˆ’} \:,\:\delta\rightarrow\mathrm{0}^{\:+} } {\overset{\mathrm{1}βˆ’\xi=\:\delta} {=}}\left[{lim}_{\:\delta\rightarrow\mathrm{0}^{\:+} } \left(\frac{βˆ’\delta}{\mathrm{1}βˆ’\delta}\right){ln}^{\mathrm{2}} \left(\delta\right)=\mathrm{0}\right]\:+\mathrm{2}\zeta\left(\mathrm{2}\right)\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\:\therefore\:\:\:\boldsymbol{\phi}\:=\:\mathrm{2}\:\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 166063    Answers: 0   Comments: 2

Question Number 166058    Answers: 1   Comments: 0

Question Number 166053    Answers: 1   Comments: 1

Find x in R:^ x^(√2) + x = 6 (How to solve?)

$$\:\boldsymbol{\mathrm{Find}}\:\:\boldsymbol{\mathrm{x}}\:\:\boldsymbol{\mathrm{in}}\:\:\mathbb{R}\overset{\:} {:} \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\sqrt{\mathrm{2}}} \:\:+\:\:\boldsymbol{\mathrm{x}}\:\:=\:\:\mathrm{6}\:\:\:\:\:\left(\boldsymbol{\mathrm{How}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{solve}}?\right) \\ $$

Question Number 166049    Answers: 0   Comments: 0

nΞ΅ R/{0,1} montrer que Ξ£_(k=n) ^(2n) (x^k /(nx+ln(k)))>=(1/4)

$${n}\epsilon\:{R}/\left\{\mathrm{0},\mathrm{1}\right\}\:{montrer}\:{que} \\ $$$$\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\:\frac{{x}^{{k}} }{{nx}+{ln}\left({k}\right)}>=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Question Number 166043    Answers: 0   Comments: 5

is 811 prime number or no ?

$$\boldsymbol{{is}}\:\mathrm{811}\:\boldsymbol{{prime}}\:\boldsymbol{{number}}\:\boldsymbol{{or}}\:\boldsymbol{{no}}\:? \\ $$

Question Number 166036    Answers: 2   Comments: 2

Question Number 166033    Answers: 1   Comments: 1

Question Number 166009    Answers: 1   Comments: 4

{ ((x^2 +y^2 +z^2 =70)),((x^3 +y^3 +z^3 =64)),((x^4 +y^4 +z^4 =2002)),(((x+y)(y+z)(z+x)=?)) :} (Use Newton-Identities or otherwise)

$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{70}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} =\mathrm{64}}\\{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} =\mathrm{2002}}\\{\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{x}\right)=?}\end{cases}\: \\ $$$$\left({Use}\:\boldsymbol{{Newton}}-\boldsymbol{{Identities}}\right. \\ $$$$\left.{or}\:{otherwise}\right) \\ $$

Question Number 166007    Answers: 1   Comments: 1

Question Number 166006    Answers: 0   Comments: 0

chek the series Σ_(n=1) ^∞ cos(n) sin^2 ((1/n)) is converge or diverge ?

$${chek}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:{cos}\left({n}\right)\:{sin}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{n}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$

Question Number 166017    Answers: 0   Comments: 0

Solve it ! 2 tan^(βˆ’1) (√((1βˆ’t)(1+t))) βˆ’ tan^(βˆ’1) (1βˆ’t) = tan^(βˆ’1) t βˆ’ tan^(βˆ’1) (√(1βˆ’t^2 ))

$$\mathrm{Solve}\:\:\mathrm{it}\:! \\ $$$$\:\:\mathrm{2}\:\mathrm{tan}^{βˆ’\mathrm{1}} \:\sqrt{\left(\mathrm{1}βˆ’{t}\right)\left(\mathrm{1}+{t}\right)}\:βˆ’\:\mathrm{tan}^{βˆ’\mathrm{1}} \left(\mathrm{1}βˆ’{t}\right)\:=\:\mathrm{tan}^{βˆ’\mathrm{1}} \:{t}\:βˆ’\:\mathrm{tan}^{βˆ’\mathrm{1}} \:\sqrt{\mathrm{1}βˆ’{t}^{\mathrm{2}} } \\ $$

Question Number 166015    Answers: 0   Comments: 0

study the convergence of integral and find valeur tβˆ’> (t/((1+t^2 )^2 ))dt

$${study}\:{the}\:{convergence}\:{of}\:{integral}\:{and}\:{find}\:{valeur} \\ $$$${t}βˆ’>\:\frac{{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$

Question Number 166012    Answers: 1   Comments: 1

Question Number 166013    Answers: 1   Comments: 0

Question Number 165995    Answers: 1   Comments: 0

{ ((sinx+siny=(3/2))),((2^(sin x) +2^(sin y) =2+(√2))) :} faind x=?

$$\begin{cases}{{sinx}+{siny}=\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{2}^{\mathrm{sin}\:{x}} +\mathrm{2}^{\mathrm{sin}\:{y}} =\mathrm{2}+\sqrt{\mathrm{2}}}\end{cases}\:\:\:\:\:\:\:{faind}\:\:\:{x}=? \\ $$

Question Number 165984    Answers: 1   Comments: 1

Question Number 165969    Answers: 0   Comments: 3

$$ \\ $$

Question Number 165965    Answers: 2   Comments: 0

Question Number 165962    Answers: 0   Comments: 0

Question Number 165955    Answers: 1   Comments: 0

C = ∫_0 ^( Ο€) (dx/(2+cos 2x)) =?

$$\:\:\:\:\mathrm{C}\:=\:\int_{\mathrm{0}} ^{\:\pi} \frac{\mathrm{dx}}{\mathrm{2}+\mathrm{cos}\:\mathrm{2x}}\:=? \\ $$

Question Number 165942    Answers: 1   Comments: 5

Question Number 165949    Answers: 2   Comments: 0

f(x)=((5xβˆ’2)/a) ∧f^(βˆ’1) (x)=((x+b)/5) faind aΓ—b=?

$${f}\left({x}\right)=\frac{\mathrm{5}{x}βˆ’\mathrm{2}}{{a}}\:\:\wedge{f}^{βˆ’\mathrm{1}} \left({x}\right)=\frac{{x}+{b}}{\mathrm{5}} \\ $$$${faind}\:\:\:{a}Γ—{b}=? \\ $$

  Pg 516      Pg 517      Pg 518      Pg 519      Pg 520      Pg 521      Pg 522      Pg 523      Pg 524      Pg 525   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com