Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 521
Question Number 167310 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{NICE}}\:\boldsymbol{\mathrm{CALCULUS}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{ln}}\left(\mathrm{1}−\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{dx}}=? \\ $$$$ \\ $$$$ \\ $$
Question Number 167309 Answers: 0 Comments: 0
Question Number 167305 Answers: 1 Comments: 0
$$\:\:\:{Q}=\int\:\frac{\mathrm{2sin}\:\left({x}\right)}{\:\sqrt{\mathrm{3}}\:\mathrm{sin}\:\left({x}\right)−\mathrm{cos}\:\left({x}\right)}\:{dx}=? \\ $$
Question Number 167301 Answers: 3 Comments: 0
Question Number 167296 Answers: 1 Comments: 3
$$\boldsymbol{{if}}\:\mid\:\boldsymbol{{x}}−\mathrm{3}\mid<\mathrm{2}\:\boldsymbol{{then}}\:\boldsymbol{{prove}}\:\boldsymbol{{that}}\:\mid\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{9}\mid\leqslant\:\mathrm{16} \\ $$
Question Number 167295 Answers: 2 Comments: 0
Question Number 170532 Answers: 1 Comments: 0
$$\mathrm{Let}\:{I}_{{n}} \:=\int{x}^{{n}} {e}^{−{x}} {dx},\:{n}\:=\:\mathrm{0},\mathrm{1},\mathrm{2},... \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Show}\:\mathrm{that}\:{I}_{{n}} \:=\:−{x}^{{n}} {e}^{−{x}} +{nI}_{{n}−\mathrm{1}} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Show}\:\mathrm{that}\:\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}\:=\:{n}! \\ $$
Question Number 167282 Answers: 2 Comments: 0
$$\mathrm{solve}\:\left(\mathrm{3}^{\mathrm{x}} \right)^{\mathrm{2}} ×\mathrm{4}^{\mathrm{x}} =\mathrm{6}\sqrt{\mathrm{6}} \\ $$
Question Number 167280 Answers: 1 Comments: 1
Question Number 167289 Answers: 0 Comments: 0
$$\mathrm{calculate}\:::\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{k}}} =\mathrm{2} \\ $$
Question Number 167278 Answers: 1 Comments: 0
Question Number 167277 Answers: 1 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}+\mathrm{3arctan}\:\mathrm{x}}{\mathrm{x}^{\mathrm{5}} }\:=? \\ $$
Question Number 167276 Answers: 0 Comments: 0
Question Number 167275 Answers: 0 Comments: 0
Question Number 167268 Answers: 0 Comments: 1
$${x}^{\frac{\mathrm{2}}{\:\sqrt[{\mathrm{5}}]{\mathrm{2}}}} =\mathrm{25}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$
Question Number 167261 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of} \\ $$$$\mathrm{obtaining}\:\:\mathrm{a}\:\mathrm{total}\:\mathrm{of}\:\mathrm{10}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{throw}\:\mathrm{of}\:\:\mathrm{two}\:\mathrm{dice}\:\mathrm{if}\:\mathrm{one}\:\mathrm{die} \\ $$$$\mathrm{has}\:\mathrm{been}\:\mathrm{thrown}\:\mathrm{and}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{4} \\ $$
Question Number 167252 Answers: 1 Comments: 0
Question Number 167248 Answers: 2 Comments: 1
$$\sqrt{\mathrm{3}^{{x}} }+\mathrm{1}=\mathrm{2}^{{x}} \:\:\:\:{faind}\:{x}=? \\ $$
Question Number 167267 Answers: 1 Comments: 0
Question Number 167243 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\mathrm{log}\:_{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{2}\right)<\:\mathrm{log}\:_{\mathrm{3}} \left(\frac{\mathrm{3}}{\mathrm{2}}\mid{x}\mid−\mathrm{1}\right)\: \\ $$
Question Number 167241 Answers: 2 Comments: 0
$$\frac{{b}}{\mathrm{11}}\:\:{is}\:{General}\:{fraction}\:\:{and}\:\mathrm{0}.\overline {\mathrm{3}{a}} \\ $$$${faind}\:\:\left({a}−\mathrm{9}{b}\right)=? \\ $$
Question Number 167233 Answers: 2 Comments: 0
$$\int\:\frac{{lnx}}{{x}+\mathrm{1}}{dx} \\ $$
Question Number 167231 Answers: 2 Comments: 1
Question Number 167230 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:{lim}_{\:\alpha\rightarrow\infty} \left\{\:\left(\alpha\:\int_{\mathrm{0}} ^{\:\infty} {sin}\left(\:{x}^{\:\alpha} \right)\:{dx}\:\right)=\varphi\left(\alpha\right)\right]=\:\frac{\pi}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:−−−− \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {sin}\left({x}^{\:\alpha} \right){dx}\:\overset{{x}^{\:\alpha} =\:{y}} {=}\:\frac{\mathrm{1}}{\alpha}\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left({y}\right)}{{y}^{\:\mathrm{1}−\frac{\mathrm{1}}{\alpha}} }\:{dy} \\ $$$$\:\:\:\:\:\Rightarrow\:\:\alpha\:\int_{\mathrm{0}} ^{\:\infty} {sin}\left({x}^{\:\alpha} \right)\:{dx}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left({y}\right)}{{y}^{\:\mathrm{1}−\frac{\mathrm{1}}{\alpha}} }\:{dy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\:\pi}{\mathrm{2}\:\Gamma\:\left(\mathrm{1}−\frac{\mathrm{1}}{\alpha}\right){sin}\:\left(\frac{\pi}{\mathrm{2}}\:\left(\mathrm{1}−\frac{\mathrm{1}}{\alpha}\right)\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\pi}{\mathrm{2}\Gamma\:\left(\mathrm{1}−\frac{\mathrm{1}}{\alpha}\right){cos}\:\left(\frac{\pi}{\mathrm{2}\alpha}\:\right)}\:=\:\varphi\:\left(\alpha\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{lim}_{\:\alpha\rightarrow\infty} \:\varphi\:\left(\alpha\:\right)\overset{\frac{\mathrm{1}}{\alpha}\:=\beta} {=}{lim}_{\:\beta\rightarrow\mathrm{0}} \:\:\frac{\pi}{\mathrm{2}\Gamma\:\left(\mathrm{1}−\beta\right){cos}\:\left(\frac{\pi}{\mathrm{2}}\:\beta\right)}\:=\:\frac{\pi}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 167225 Answers: 0 Comments: 0
Question Number 167223 Answers: 0 Comments: 3
$$\:\:\int\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{3x}\right)\:\mathrm{cos}\:^{\mathrm{4}} \left(\mathrm{5x}\right)\:\mathrm{dx}=? \\ $$
Pg 516 Pg 517 Pg 518 Pg 519 Pg 520 Pg 521 Pg 522 Pg 523 Pg 524 Pg 525
Terms of Service
Privacy Policy
Contact: info@tinkutara.com