Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 513
Question Number 165383 Answers: 0 Comments: 0
$${Find}\:\:{the}\:\:{value}\:\:{of}\:\:{this}\:\:{expression} \\ $$$$\left(−\mathrm{1}\right)\left(\mathrm{2}^{\mathrm{2}} −\mathrm{1}\right)+\frac{\left(\mathrm{3}^{\mathrm{2}} −\mathrm{2}\right)}{\mathrm{2}!}\:−\:\frac{\left(\mathrm{4}^{\mathrm{2}} −\mathrm{3}\right)}{\mathrm{3}!}\:+\:\ldots+\:\frac{\left(\mathrm{2019}^{\mathrm{2}} −\mathrm{2018}\right)}{\mathrm{2018}!} \\ $$
Question Number 165382 Answers: 0 Comments: 1
Question Number 165381 Answers: 2 Comments: 1
Question Number 165380 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{x}^{\:\mathrm{3}} }{{sin}^{\:\mathrm{2}} \left({x}\right)}{dx}\overset{?} {=}\:\frac{\mathrm{3}}{\mathrm{8}}\:\left(\pi^{\:\mathrm{2}} {ln}\left(\mathrm{4}\right)−\mathrm{7}\zeta\left(\mathrm{3}\right)\right) \\ $$
Question Number 165376 Answers: 1 Comments: 0
$$\mathrm{Verify}\:\mathrm{wether}\:{f}\:\mathrm{is}\:\mathrm{invertible}\: \\ $$$${f}\:\left({x}\right)\:=\:\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{3}} \\ $$
Question Number 165375 Answers: 1 Comments: 0
Question Number 165372 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}ln}\:\left(\mathrm{1}+\mathrm{2}^{{x}} \right)\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right) \\ $$
Question Number 165370 Answers: 1 Comments: 1
Question Number 165364 Answers: 2 Comments: 0
Question Number 165362 Answers: 1 Comments: 0
Question Number 165361 Answers: 1 Comments: 2
$$\mathrm{Obtain}\:\mathrm{a}\:\mathrm{general}\:\mathrm{formula}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{sequence} \\ $$$$\:\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{4}}{\mathrm{5}},\frac{\mathrm{8}}{\mathrm{9}},\frac{\mathrm{16}}{\mathrm{17}},\frac{\mathrm{32}}{\mathrm{33}},... \\ $$$$\mathrm{assuming}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{continues}\:\mathrm{in}\:\mathrm{that} \\ $$$$\mathrm{pattern}. \\ $$
Question Number 165357 Answers: 1 Comments: 2
Question Number 165355 Answers: 1 Comments: 0
Question Number 165354 Answers: 0 Comments: 0
Question Number 165349 Answers: 1 Comments: 0
Question Number 165339 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:#\:{Advanced}\:\:\:{Calculus}\:#\:\:\: \\ $$$$\:\:\:\:\:\mathrm{L}{et}\:,\:\:{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{Q}\:\:{is}\:\:{a}\:\:{continuous} \\ $$$$\:\:\:\:\:\:{function}\:\:.\:{prove}\:{that}\:\:''\:{f}\:''\:{is}\:{a} \\ $$$$\:\:\:\:\:\:\:{constant}\:{function}\:.\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\:\:\:\ast\:{Adopted}\:{from}\:{mathematical}\:{analysis}\:{book}\:\:\ast\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−−−−−−− \\ $$$$ \\ $$
Question Number 165329 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:{prove}\:\:\:\:\:\:\:\:\:\:\left(\:{n}\in\:\mathbb{N}\:\right) \\ $$$$\:\:\:\:\mathrm{3}\left({n}+\mathrm{1}\right)\:\mid\:{n}^{\:\mathrm{3}} \:+\:\left({n}+\mathrm{1}\right)^{\:\mathrm{3}} +\:\left({n}+\mathrm{2}\:\right)^{\:\mathrm{3}} \\ $$$$ \\ $$
Question Number 165328 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\mathscr{N}{ice}\:\:\:\mathscr{I}{ntegral} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}^{\:\frac{\mathrm{3}}{\mathrm{2}}} \right)}{{x}^{\:\mathrm{2}} }\:{dx}\:\:=\frac{\pi\:+\:\sqrt{\mathrm{3}}\:{ln}\left(\mathrm{7}\:+\mathrm{4}\sqrt{\mathrm{3}}\:\right)}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n} \\ $$$$\:\:\:\:\:\:−−−−−−−−−\:\:\: \\ $$
Question Number 165322 Answers: 1 Comments: 2
$${who}\:{can}\:{prove}\:{that}\:\mathrm{2}^{{n}} −\mathrm{1}{produces} \\ $$$${a}\:{prime}\:{number}\:{when}\:\:{n}\:\:{is}\:{a}\: \\ $$$${prime}\:{number} \\ $$
Question Number 165321 Answers: 2 Comments: 0
Question Number 165320 Answers: 1 Comments: 0
$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \:{cos}\:\left(\mathrm{2}{x}\:\right).{e}^{\:\lfloor\:{sin}\left({x}\right)+\:{cos}\left({x}\right)\:\rfloor} {dx} \\ $$$$\:\:\:\lfloor\:{x}\:\rfloor=\:{max}\:\left\{\:{m}\:\in\:\mathbb{Z}\:\mid\:\:{m}\:\leqslant\:{x}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:−−−− \\ $$
Question Number 165314 Answers: 0 Comments: 2
$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}+.....+{sin}^{\mathrm{2}} \mathrm{90}=? \\ $$
Question Number 165301 Answers: 1 Comments: 0
Question Number 165296 Answers: 2 Comments: 1
Question Number 165307 Answers: 0 Comments: 0
Question Number 165291 Answers: 1 Comments: 0
Pg 508 Pg 509 Pg 510 Pg 511 Pg 512 Pg 513 Pg 514 Pg 515 Pg 516 Pg 517
Terms of Service
Privacy Policy
Contact: info@tinkutara.com