Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 512
Question Number 168179 Answers: 1 Comments: 0
Question Number 168176 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:{f}\left({x}\right)=\frac{\:\:\mid\:{sin}\left(\mathrm{2}{x}\right)\mid}{\mid{sin}\left({x}\right)\mid+\mid{cos}\left({x}\right)\mid\:+\mathrm{1}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\::\:\:\:\:\:\:{R}_{\:{f}} \:=?\:\:\:\:\:\:\:\:\left(\:{range}\:\right)\:\: \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 168164 Answers: 0 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{energy}\:\left({in}\:{Joules}\right) \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}.\mathrm{0}×\mathrm{10}^{−\mathrm{11}} \mathrm{kg} \\ $$$$\mathrm{moving}\:\mathrm{at}\:\mathrm{80\%}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{light}. \\ $$
Question Number 168161 Answers: 1 Comments: 1
Question Number 168159 Answers: 0 Comments: 0
Question Number 168158 Answers: 0 Comments: 0
Question Number 168157 Answers: 0 Comments: 0
Question Number 168147 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\:::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{\mathrm{x}^{\mathrm{3}} }]{\frac{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}}=? \\ $$
Question Number 168144 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} \sqrt{\mathrm{1}+{x}}\:−\mathrm{sin}\:^{\mathrm{3}} {x}\:−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \:\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{2}{x}^{\mathrm{3}} }−\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=?\:\:\:\:\:\:\:\: \\ $$
Question Number 168143 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{4}} }\:=?\:\:\:\:\:\: \\ $$
Question Number 168138 Answers: 2 Comments: 0
Question Number 168131 Answers: 2 Comments: 1
Question Number 168121 Answers: 1 Comments: 0
Question Number 168119 Answers: 1 Comments: 0
Question Number 168118 Answers: 1 Comments: 0
$${If}\:{tan}\left(\theta+{i}\phi\right)={cos}\alpha+{isin}\alpha,\: \\ $$$${prove}\:{that}\::\:\theta=\frac{{n}\Pi}{\mathrm{2}}+\frac{\Pi}{\mathrm{4}}\:{and}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}{log}\:{tan}\left(\frac{\Pi}{\mathrm{4}}+\frac{\alpha}{\mathrm{2}}\right) \\ $$
Question Number 168115 Answers: 0 Comments: 2
Question Number 168114 Answers: 2 Comments: 0
Question Number 168094 Answers: 1 Comments: 0
Question Number 168093 Answers: 1 Comments: 0
Question Number 168092 Answers: 0 Comments: 0
Question Number 168091 Answers: 0 Comments: 0
Question Number 168090 Answers: 0 Comments: 0
Question Number 168086 Answers: 1 Comments: 0
Question Number 168085 Answers: 0 Comments: 1
Question Number 168084 Answers: 3 Comments: 3
$${solve}\:{in}\:\mathbb{R} \\ $$$${arcsin}\left({x}\right)+{arcsin}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)=\frac{\pi}{\mathrm{2}} \\ $$
Question Number 168081 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{A}\:\mathrm{cook}\:\mathrm{puts}\:\mathrm{9}.\mathrm{00}\:\mathrm{g}\:\mathrm{of}\:\mathrm{water}\:\mathrm{in}\:\mathrm{a}\:\mathrm{2}.\mathrm{00L}\:\mathrm{pressure}\:\mathrm{cooker}\: \\ $$$$\mathrm{th}{a}\mathrm{t}\:\mathrm{is}\:\mathrm{then}\:\mathrm{warmed}\:\mathrm{to}\:\mathrm{500}\:\mathrm{degree}\:\mathrm{C}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{pressur}{e}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{container}\:\mathrm{A}.\:\mathrm{1}.\mathrm{89}\:\mathrm{times}\:\mathrm{106Pa}\:\mathrm{B}.\: \\ $$$$\mathrm{1}.\mathrm{89times}\:\mathrm{105Pa}\:\mathrm{C}.\:\mathrm{1}.\mathrm{99}\:\mathrm{times}\:\mathrm{104Pa}\:\mathrm{D}.\:\mathrm{1}.\mathrm{89}\:\mathrm{times}\:\mathrm{103P} \\ $$$$\mathrm{a}\:\mathrm{E}.\:\mathrm{1}.\mathrm{99}\:\mathrm{times}\:\mathrm{109Pa} \\ $$
Pg 507 Pg 508 Pg 509 Pg 510 Pg 511 Pg 512 Pg 513 Pg 514 Pg 515 Pg 516
Terms of Service
Privacy Policy
Contact: info@tinkutara.com