Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 512

Question Number 168179    Answers: 1   Comments: 0

Question Number 168176    Answers: 1   Comments: 0

If , f(x)=(( ∣ sin(2x)∣)/(∣sin(x)∣+∣cos(x)∣ +1)) then : R_( f) =? ( range )

$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:{f}\left({x}\right)=\frac{\:\:\mid\:{sin}\left(\mathrm{2}{x}\right)\mid}{\mid{sin}\left({x}\right)\mid+\mid{cos}\left({x}\right)\mid\:+\mathrm{1}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\::\:\:\:\:\:\:{R}_{\:{f}} \:=?\:\:\:\:\:\:\:\:\left(\:{range}\:\right)\:\: \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 168164    Answers: 0   Comments: 1

Find the total energy (in Joules) of a particle of mass 4.0×10^(−11) kg moving at 80% the speed of light.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{energy}\:\left({in}\:{Joules}\right) \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}.\mathrm{0}×\mathrm{10}^{−\mathrm{11}} \mathrm{kg} \\ $$$$\mathrm{moving}\:\mathrm{at}\:\mathrm{80\%}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{light}. \\ $$

Question Number 168161    Answers: 1   Comments: 1

Question Number 168159    Answers: 0   Comments: 0

Question Number 168158    Answers: 0   Comments: 0

Question Number 168157    Answers: 0   Comments: 0

Question Number 168147    Answers: 0   Comments: 0

calculate :: lim_(x→0) (((tan (1+tan x))/(tan (1+sin x))))^(1/x^3 ) =?

$$\mathrm{calculate}\:\:::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{\mathrm{x}^{\mathrm{3}} }]{\frac{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}}=? \\ $$

Question Number 168144    Answers: 1   Comments: 0

lim_(x→0) ((x^3 (√(1+x)) −sin^3 x −(1/2)x^3 tan x)/((((1+2x^3 ))^(1/3) −1)ln (1+x^2 )))=?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} \sqrt{\mathrm{1}+{x}}\:−\mathrm{sin}\:^{\mathrm{3}} {x}\:−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \:\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{2}{x}^{\mathrm{3}} }−\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=?\:\:\:\:\:\:\:\: \\ $$

Question Number 168143    Answers: 2   Comments: 0

lim_(x→0) ((1−cos (1−cos x))/x^4 ) =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{4}} }\:=?\:\:\:\:\:\: \\ $$

Question Number 168138    Answers: 2   Comments: 0

Question Number 168131    Answers: 2   Comments: 1

Question Number 168121    Answers: 1   Comments: 0

Question Number 168119    Answers: 1   Comments: 0

Question Number 168118    Answers: 1   Comments: 0

If tan(θ+iφ)=cosα+isinα, prove that : θ=((nΠ)/2)+(Π/4) and φ=(1/2)log tan((Π/4)+(α/2))

$${If}\:{tan}\left(\theta+{i}\phi\right)={cos}\alpha+{isin}\alpha,\: \\ $$$${prove}\:{that}\::\:\theta=\frac{{n}\Pi}{\mathrm{2}}+\frac{\Pi}{\mathrm{4}}\:{and}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}{log}\:{tan}\left(\frac{\Pi}{\mathrm{4}}+\frac{\alpha}{\mathrm{2}}\right) \\ $$

Question Number 168115    Answers: 0   Comments: 2

Question Number 168114    Answers: 2   Comments: 0

Question Number 168094    Answers: 1   Comments: 0

Question Number 168093    Answers: 1   Comments: 0

Question Number 168092    Answers: 0   Comments: 0

Question Number 168091    Answers: 0   Comments: 0

Question Number 168090    Answers: 0   Comments: 0

Question Number 168086    Answers: 1   Comments: 0

Question Number 168085    Answers: 0   Comments: 1

Question Number 168084    Answers: 3   Comments: 3

solve in R arcsin(x)+arcsin((√(1−x^2 )))=(π/2)

$${solve}\:{in}\:\mathbb{R} \\ $$$${arcsin}\left({x}\right)+{arcsin}\left(\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)=\frac{\pi}{\mathrm{2}} \\ $$

Question Number 168081    Answers: 0   Comments: 0

A cook puts 9.00 g of water in a 2.00L pressure cooker that is then warmed to 500 degree C. What is the pressure inside the container A. 1.89 times 106Pa B. 1.89times 105Pa C. 1.99 times 104Pa D. 1.89 times 103P a E. 1.99 times 109Pa

$$ \\ $$$$\mathrm{A}\:\mathrm{cook}\:\mathrm{puts}\:\mathrm{9}.\mathrm{00}\:\mathrm{g}\:\mathrm{of}\:\mathrm{water}\:\mathrm{in}\:\mathrm{a}\:\mathrm{2}.\mathrm{00L}\:\mathrm{pressure}\:\mathrm{cooker}\: \\ $$$$\mathrm{th}{a}\mathrm{t}\:\mathrm{is}\:\mathrm{then}\:\mathrm{warmed}\:\mathrm{to}\:\mathrm{500}\:\mathrm{degree}\:\mathrm{C}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{pressur}{e}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{container}\:\mathrm{A}.\:\mathrm{1}.\mathrm{89}\:\mathrm{times}\:\mathrm{106Pa}\:\mathrm{B}.\: \\ $$$$\mathrm{1}.\mathrm{89times}\:\mathrm{105Pa}\:\mathrm{C}.\:\mathrm{1}.\mathrm{99}\:\mathrm{times}\:\mathrm{104Pa}\:\mathrm{D}.\:\mathrm{1}.\mathrm{89}\:\mathrm{times}\:\mathrm{103P} \\ $$$$\mathrm{a}\:\mathrm{E}.\:\mathrm{1}.\mathrm{99}\:\mathrm{times}\:\mathrm{109Pa} \\ $$

  Pg 507      Pg 508      Pg 509      Pg 510      Pg 511      Pg 512      Pg 513      Pg 514      Pg 515      Pg 516   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com