Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 512
Question Number 166958 Answers: 3 Comments: 1
$$\:\:\mathrm{If}\:\mathrm{polynomial}\:\mathrm{x}^{\mathrm{3}} −\mathrm{9x}^{\mathrm{2}} +\mathrm{11x}−\mathrm{1}=\mathrm{0}\: \\ $$$$\:\mathrm{have}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{a},\mathrm{b}\:\mathrm{an}\:\mathrm{c}\:. \\ $$$$\:\mathrm{Given}\:\Delta\:=\:\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\:+\:\sqrt{\mathrm{c}}\:\mathrm{then}\: \\ $$$$\:\:\Delta^{\mathrm{4}} −\mathrm{18}\Delta^{\mathrm{2}} −\mathrm{8}\Delta\:=? \\ $$$$ \\ $$
Question Number 166956 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{calculate} \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\sqrt{{x}}\:{arctan}\left({x}\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx}\:=? \\ $$
Question Number 166954 Answers: 1 Comments: 0
$$\:\mathrm{Given}\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} \sqrt{\mathrm{2}}\:+\mathrm{6x}−\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{8}=\mathrm{0} \\ $$$$\:\mathrm{then}\:\mathrm{x}^{\mathrm{5}} −\mathrm{41x}^{\mathrm{2}} +\mathrm{2022}\:=? \\ $$
Question Number 166950 Answers: 0 Comments: 3
Question Number 166943 Answers: 1 Comments: 2
Question Number 166940 Answers: 1 Comments: 0
Question Number 166939 Answers: 1 Comments: 0
Question Number 166929 Answers: 1 Comments: 0
$$\:{A}\:{particle}\:{of}\:{mass}\:\mathrm{0}.\mathrm{25}{kg}\:{vibrates} \\ $$$$\:{with}\:{a}\:{period}\:{of}\:\mathrm{2}{secs}.\:{If}\:{its}\: \\ $$$$\:{greatest}\:{displacement}\:{is}\:\mathrm{0}.\mathrm{4}{m}.\:{What} \\ $$$$\:{is}\:{its}\:{maximum}\:{kinetic}\:{energy}. \\ $$
Question Number 166928 Answers: 1 Comments: 0
Question Number 166926 Answers: 3 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{5}^{{n}} }{{n}!}=? \\ $$
Question Number 166917 Answers: 2 Comments: 4
Question Number 166916 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{H}_{\:{n}} }{{n}\left({n}+\mathrm{1}\right)}\:= \\ $$$$\:\:\:\:\:\:\:−−−−−− \\ $$$$\:\:\:\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {x}^{\:{n}−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\:\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{ln}\left(\mathrm{1}−{x}\right).\underset{{n}=\mathrm{1}} {\sum}\frac{{x}^{\:{n}+\mathrm{1}} }{{n}+\mathrm{1}}\right\}{dx} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{−{ln}\left(\mathrm{1}−{x}\right)}{{x}^{\:\mathrm{2}} }\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{{x}^{\:{n}} }{{n}}\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{−{ln}\left(\mathrm{1}−{x}\right)}{{x}^{\:\mathrm{2}} }\:\left\{−{x}\:+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\:{n}} }{{n}}\:\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:−{li}_{\:\mathrm{2}} \left(\:\mathrm{1}\right)\:+\left[\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}−{x}\:\right)}{{x}^{\:\mathrm{2}} }{dx}\underset{{derived}} {\overset{{earlier}} {=}}\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:−\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}}\:+\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:=\:\frac{\:\pi^{\:\mathrm{2}} }{\mathrm{6}}\:=\:\zeta\:\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$
Question Number 166911 Answers: 1 Comments: 0
Question Number 166910 Answers: 1 Comments: 1
$${given}\:{that}\:{is}\:{prime},{proof}\:{that}\:\sqrt{{p}}\:{is}\: \\ $$$${irrational} \\ $$
Question Number 166904 Answers: 1 Comments: 0
$${A}\:{pendulum}\:{has}\:{a}\:{period}\:\mathrm{2}{sec}.\:{The} \\ $$$${bob}\:{pulled}\:{aside}\:{a}\:{distance}\:\mathrm{8}{cm}\:{as} \\ $$$${the}\:{amplitude}\:{and}\:{release}.\:{Find}\:{the} \\ $$$${displacement}\:{of}\:{the}\:{bob}\:\mathrm{0}.\mathrm{7}{sec}\:{after} \\ $$$${it}\:{has}\:{been}\:{released}. \\ $$
Question Number 166881 Answers: 0 Comments: 0
Question Number 166922 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\::\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} −\mathrm{4}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{ln16}−\mathrm{3} \\ $$
Question Number 166921 Answers: 0 Comments: 1
Question Number 166875 Answers: 2 Comments: 1
Question Number 166872 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}} .{ln}\left({x}\right).{sin}\left({x}\right)}{{x}}\:{dx}\:=\:−\frac{\pi}{\mathrm{8}}\:\left(\mathrm{2}\gamma\:+\:{ln}\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$
Question Number 166861 Answers: 3 Comments: 7
Question Number 166839 Answers: 1 Comments: 0
$$\int_{−{oo}} ^{+{oo}} \frac{{xe}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 166834 Answers: 2 Comments: 0
Question Number 166830 Answers: 1 Comments: 0
Question Number 166829 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:\:\:{f}\left({x}\right)=\frac{\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\left({x}^{\:\mathrm{2}} +{x}−\mathrm{2}\right)\left({x}^{\:\mathrm{4}} −\mathrm{1}\right)\left({x}^{\:\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}\right)+\mathrm{16}}\:\:+\:\sqrt{{x}^{\:\mathrm{2}} +\mathrm{3}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{then}\:,\:\:\:\:{f}\:'\:\left(\mathrm{1}\:\right)\:=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$
Question Number 166828 Answers: 0 Comments: 0
$$\mathrm{calculate}:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\alpha} }\:\:\:\:\:\:\:\:\:\:\:\:.\left(\mathrm{0}<\alpha<\mathrm{1}\right) \\ $$
Pg 507 Pg 508 Pg 509 Pg 510 Pg 511 Pg 512 Pg 513 Pg 514 Pg 515 Pg 516
Terms of Service
Privacy Policy
Contact: info@tinkutara.com