Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 512
Question Number 167482 Answers: 0 Comments: 0
$$\mathrm{montrer}\:\mathrm{que}\:\forall\mathrm{x}\in\mathbb{R}−\left\{\mathrm{0};\:\mathrm{1}\right\}\:\mathrm{on}\:\mathrm{a} \\ $$$$\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}−\mathrm{1}}\:<\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:? \\ $$
Question Number 167644 Answers: 1 Comments: 2
$$\mathrm{find}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{of} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{{dx}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}}+\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}} \\ $$
Question Number 167477 Answers: 0 Comments: 0
Question Number 167473 Answers: 2 Comments: 0
$$\:\: \\ $$$$\:\:\:\:\:\:{solve} \\ $$$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{2}} ^{\:\mathrm{3}} \lfloor\:{x}^{\:\mathrm{2}} −\:\mathrm{2}{x}\:+\mathrm{5}\:\rfloor{dx}=? \\ $$$$ \\ $$
Question Number 167471 Answers: 0 Comments: 0
$${Montrer}\:{que} \\ $$$$\left({R}^{{n}} ,{d}_{\mathrm{1}} \right),\left({R}^{{n}} ,{d}_{\mathrm{2}} \right)\:{et}\left({R}^{{n}} ,{d}_{{oo}} \right) \\ $$$${sont}\:{des}\:{espaces}\:{metrique} \\ $$
Question Number 167468 Answers: 1 Comments: 0
Question Number 167462 Answers: 2 Comments: 0
$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$
Question Number 167456 Answers: 1 Comments: 0
Question Number 167454 Answers: 0 Comments: 0
Question Number 168097 Answers: 0 Comments: 0
Question Number 167449 Answers: 0 Comments: 1
Question Number 167448 Answers: 0 Comments: 2
Question Number 167441 Answers: 0 Comments: 0
Question Number 167438 Answers: 2 Comments: 0
$$\:\:\int\:\frac{\mathrm{sin}\:\mathrm{4x}}{\mathrm{4sin}\:^{\mathrm{4}} \mathrm{x}−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}\:\mathrm{dx}=? \\ $$
Question Number 167439 Answers: 0 Comments: 1
Question Number 167434 Answers: 2 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{x}^{{n}} −{a}^{{n}} −{na}^{{n}−\mathrm{1}} \left({x}−{a}\right)}{\left({x}−{a}\right)^{\mathrm{2}} }=? \\ $$
Question Number 167433 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\:\mathrm{1}\::\:\:\Omega=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\:{H}_{\:{n}} }{{n}}\:\right)^{\:\mathrm{2}} =\:? \\ $$$$\:\:\:\:\mathrm{2}\::\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}^{\:\mathrm{2}} \left({x}\right).\mathrm{L}{i}_{\:\mathrm{2}} \left({x}\right)}{{x}}\:{dx}\:=\:? \\ $$$$ \\ $$
Question Number 167426 Answers: 0 Comments: 1
$$\int\:\frac{{sec}^{\mathrm{2}} {x}}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$
Question Number 167421 Answers: 1 Comments: 0
Question Number 167419 Answers: 1 Comments: 1
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=? \\ $$$${Use}\:{Method}\:{and}\:{Formula}!!!!!!!!! \\ $$
Question Number 167418 Answers: 0 Comments: 0
$${x}^{{y}} ={z} \\ $$$$\sqrt[{{y}}]{{z}}={x} \\ $$$$\mathrm{log}_{{x}} \left({z}\right)={y} \\ $$
Question Number 167416 Answers: 0 Comments: 3
$$\int_{\:\mathrm{0}} ^{\:\pi} \:\frac{{x}.\mathrm{sin}\:\left({x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({x}\right)\:}{dx} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\:\pi} \frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}^{\mathrm{3}} \left({x}\right)\:+\mathrm{sin}^{\mathrm{3}} \left({x}\right)\:}{dx} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{x}.\mathrm{cos}\left(\mathrm{x}\right)\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)+\:\mathrm{cot}^{\mathrm{2}} \left(\mathrm{x}\right)\:}\mathrm{dx} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$$$ \\ $$
Question Number 167445 Answers: 0 Comments: 0
Question Number 167404 Answers: 1 Comments: 0
Question Number 167443 Answers: 1 Comments: 0
Question Number 167402 Answers: 0 Comments: 2
$$\boldsymbol{{find}}\:\frac{\boldsymbol{{d}}^{\boldsymbol{{n}}} }{\boldsymbol{{dx}}^{\boldsymbol{{n}}} }\:\left[\:\boldsymbol{{ln}}\:\left(\boldsymbol{{cosx}}\right)\:\right] \\ $$
Pg 507 Pg 508 Pg 509 Pg 510 Pg 511 Pg 512 Pg 513 Pg 514 Pg 515 Pg 516
Terms of Service
Privacy Policy
Contact: info@tinkutara.com