Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 509

Question Number 165854    Answers: 0   Comments: 12

Question Number 165853    Answers: 1   Comments: 0

Question Number 165851    Answers: 2   Comments: 0

2(cos(45))^4 = (1/2) × (𝛕/(x × 2)) + 1 − (2/2) How much the x is?

$$\mathrm{2}\left(\mathrm{cos}\left(\mathrm{45}\right)\right)^{\mathrm{4}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:×\:\frac{\boldsymbol{\tau}}{{x}\:×\:\mathrm{2}}\:+\:\mathrm{1}\:−\:\frac{\mathrm{2}}{\mathrm{2}} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$

Question Number 165848    Answers: 1   Comments: 0

f((1/x))+f(1−x)=x f(x)=?

$$\:{f}\left(\frac{\mathrm{1}}{{x}}\right)+{f}\left(\mathrm{1}−{x}\right)={x} \\ $$$$\:\:{f}\left({x}\right)=? \\ $$

Question Number 165849    Answers: 0   Comments: 1

solve the differential equation (dy/dx)+(y/(x−1))=(1/(x+1))

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\frac{{dy}}{{dx}}+\frac{{y}}{{x}−\mathrm{1}}=\frac{\mathrm{1}}{{x}+\mathrm{1}} \\ $$

Question Number 165834    Answers: 0   Comments: 0

l′expression de f(x) Σ_(n=o) ^(+oo) (((−1)^n )/(2n+1))x^n xε]o,1[

$${l}'{expression}\:{de}\:{f}\left({x}\right) \\ $$$$\left.\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{{n}} \:\:\:\:{x}\epsilon\right]{o},\mathrm{1}\left[\right. \\ $$

Question Number 165831    Answers: 1   Comments: 1

Find the integer part of the number: ((2015 ∙ 2016 ∙ 2017))^(1/3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{integer}\:\mathrm{part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{2015}\:\centerdot\:\mathrm{2016}\:\centerdot\:\mathrm{2017}} \\ $$

Question Number 165830    Answers: 2   Comments: 0

(√(8a + (√(8a + (√(8a + ...)))))) - (√(a (√(a (√(a ...)))))) = 0 (a) 9 (b) 3 (c) 6 (d) 1 (e)12

$$\sqrt{\mathrm{8a}\:+\:\sqrt{\mathrm{8a}\:+\:\sqrt{\mathrm{8a}\:+\:...}}}\:-\:\sqrt{\mathrm{a}\:\sqrt{\mathrm{a}\:\sqrt{\mathrm{a}\:...}}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{9}\:\:\left(\mathrm{b}\right)\:\mathrm{3}\:\:\left(\mathrm{c}\right)\:\mathrm{6}\:\:\left(\mathrm{d}\right)\:\mathrm{1}\:\:\left(\mathrm{e}\right)\mathrm{12} \\ $$

Question Number 165829    Answers: 1   Comments: 0

Compare it: p = (1/2^2 ) + (1/3^2 ) + ... + (1/(100^2 )) and q = 0,99 (a)p=q (b)p<q (c)p>q (d)p^2 +q^2 =0 (e) (√q) = (√p) - 2

$$\mathrm{Compare}\:\mathrm{it}: \\ $$$$\mathrm{p}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:...\:+\:\frac{\mathrm{1}}{\mathrm{100}^{\mathrm{2}} }\:\:\mathrm{and}\:\:\mathrm{q}\:=\:\mathrm{0},\mathrm{99} \\ $$$$\left(\mathrm{a}\right)\mathrm{p}=\mathrm{q}\:\:\left(\mathrm{b}\right)\mathrm{p}<\mathrm{q}\:\:\left(\mathrm{c}\right)\mathrm{p}>\mathrm{q}\:\:\left(\mathrm{d}\right)\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left(\mathrm{e}\right)\:\sqrt{\mathrm{q}}\:=\:\sqrt{\mathrm{p}}\:-\:\mathrm{2} \\ $$

Question Number 165818    Answers: 1   Comments: 0

A uniform sphere of weight W rest between a smooth vertical plane and a smooth plane inclined at an angle θ with the vertical plane. Find the reaction at the contact surfaces.

$$\mathrm{A}\:\mathrm{uniform}\:\mathrm{sphere}\:\mathrm{of}\:\mathrm{weight}\:{W} \\ $$$$\mathrm{rest}\:\mathrm{between}\:\mathrm{a}\:\mathrm{smooth}\:\:\mathrm{vertical} \\ $$$$\mathrm{plane}\:\mathrm{and}\:\mathrm{a}\:\mathrm{smooth}\:\mathrm{plane}\:\mathrm{inclined} \\ $$$$\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:\mathrm{vertical} \\ $$$$\mathrm{plane}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{reaction}\:\mathrm{at}\:\mathrm{the}\: \\ $$$$\mathrm{contact}\:\mathrm{surfaces}.\: \\ $$

Question Number 165816    Answers: 1   Comments: 0

The GCF of two numbers is 8 and theirLCM is 360.if one of the number is72 find the other number.

$$\mathrm{The}\:\mathrm{GCF}\:\mathrm{of}\:\mathrm{two}\:\mathrm{numbers}\:\mathrm{is}\:\mathrm{8}\:\mathrm{and}\: \\ $$$$\mathrm{theirLCM}\:\mathrm{is}\:\mathrm{360}.\mathrm{if}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}\: \\ $$$$\mathrm{is72}\:\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{number}. \\ $$

Question Number 165815    Answers: 1   Comments: 0

deteminer l′expression de g(x) g(x)=Σ_(n=1) ^(+oo) (((−1)^n )/n)x^n

$${deteminer}\:{l}'{expression}\:{de}\:{g}\left({x}\right) \\ $$$${g}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{x}^{{n}} \\ $$

Question Number 165808    Answers: 1   Comments: 0

Which of the following is an even function? A. f_1 (x)= ((sin x)/(3^x +3^(−x) )) B. f_2 (x)= ((cos x)/(3^x +3^(−x) )) C. f_3 (x)=log_(10) (x+(√(x^2 +1))) D. f_4 (x)= (x^2 /(10^x −1))

$$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{function}? \\ $$$$\mathrm{A}.\:{f}_{\mathrm{1}} \left({x}\right)=\:\frac{\mathrm{sin}\:{x}}{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} }\:\:\:\:\:\:\:\:\:\mathrm{B}.\:{f}_{\mathrm{2}} \left({x}\right)=\:\frac{\mathrm{cos}\:{x}}{\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} } \\ $$$$\mathrm{C}.\:{f}_{\mathrm{3}} \left({x}\right)=\mathrm{log}_{\mathrm{10}} \left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\mathrm{D}.\:{f}_{\mathrm{4}} \left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{\mathrm{10}^{{x}} −\mathrm{1}} \\ $$

Question Number 165805    Answers: 1   Comments: 0

If function f(x)=log_(x/2) log_(1/3) log _4 x exist, find the domain of f .

$$\mathrm{If}\:\:\mathrm{function}\:{f}\left({x}\right)=\mathrm{log}_{\frac{{x}}{\mathrm{2}}} \mathrm{log}_{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{log}\:_{\mathrm{4}} \:{x}\:\mathrm{exist}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}\:. \\ $$

Question Number 165804    Answers: 1   Comments: 0

Question Number 165799    Answers: 2   Comments: 0

(4.2)^x =100

$$\left(\mathrm{4}.\mathrm{2}\right)^{{x}} =\mathrm{100} \\ $$$$ \\ $$$$ \\ $$

Question Number 165795    Answers: 2   Comments: 0

Question Number 165794    Answers: 2   Comments: 0

∫(t/e^(−2t) )dt

$$\int\frac{{t}}{{e}^{−\mathrm{2}{t}} }{dt} \\ $$

Question Number 165791    Answers: 2   Comments: 0

Question Number 165787    Answers: 2   Comments: 0

find ∫cos^3 x dx ?

$${find}\:\:\int{cos}^{\mathrm{3}} {x}\:{dx}\:? \\ $$

Question Number 165780    Answers: 0   Comments: 8

Mr and Mr young borrowed Z amount of money from a bank at a daily interest rate r. The youngs make the same micro payment of D amount to the bank each day. Set up a differential equation for amount x owed to the bank at the end of the each day after the loan closing.

$$\mathrm{Mr}\:\mathrm{and}\:\mathrm{Mr}\:\mathrm{young}\:\mathrm{borrowed}\:\mathrm{Z}\:\mathrm{amount}\:\mathrm{of}\:\mathrm{money}\:\mathrm{from} \\ $$$$\mathrm{a}\:\mathrm{bank}\:\mathrm{at}\:\mathrm{a}\:\mathrm{daily}\:\mathrm{interest}\:\mathrm{rate}\:\mathrm{r}.\:\mathrm{The}\:\mathrm{youngs}\:\mathrm{make}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{micro}\:\mathrm{payment}\:\mathrm{of}\:\mathrm{D}\:\mathrm{amount}\:\mathrm{to}\:\mathrm{the}\:\mathrm{bank}\:\mathrm{each}\:\mathrm{day}. \\ $$$$\:\mathrm{Set}\:\mathrm{up}\:\mathrm{a}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{for}\:\mathrm{amount}\:\mathrm{x}\:\mathrm{owed} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{bank}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{each}\:\mathrm{day}\:\mathrm{after}\:\mathrm{the}\:\mathrm{loan} \\ $$$$\mathrm{closing}. \\ $$

Question Number 165778    Answers: 1   Comments: 0

solve for the values of m,n and l l+m+n=0 l^2 +m^2 −n^2 =0

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m},\mathrm{n}\:\mathrm{and}\:\mathrm{l} \\ $$$$\mathrm{l}+\mathrm{m}+\mathrm{n}=\mathrm{0} \\ $$$$\mathrm{l}^{\mathrm{2}} +\mathrm{m}^{\mathrm{2}} −\mathrm{n}^{\mathrm{2}} =\mathrm{0} \\ $$

Question Number 165774    Answers: 1   Comments: 0

Question Number 165757    Answers: 1   Comments: 0

Question Number 165756    Answers: 0   Comments: 0

Let M be a compact smooth manifold of dimension d. Prove that there exists some n ∈Z^+ such that M can be regularly embedded in the Euclidean space R^n .

$$\mathrm{Let}\:{M}\:\mathrm{be}\:\mathrm{a}\:\mathrm{compact}\:\mathrm{smooth}\:\mathrm{manifold}\:\mathrm{of}\:\mathrm{dimension}\:{d}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{some}\:{n}\:\in\mathbb{Z}^{+} \:\mathrm{such}\:\mathrm{that}\:{M}\:\mathrm{can}\:\mathrm{be}\:\mathrm{regularly}\:\mathrm{embedded}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Euclidean}\:\mathrm{space}\:\mathbb{R}^{{n}} . \\ $$

Question Number 165777    Answers: 1   Comments: 0

The sum of first the n terms of a series {a_n } is given by S_n =3n^2 +n, find Σ_(k=10) ^(20) a_k . A) 910 B) 913 C) 968 D) 1256

$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{the}\:{n}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{a}\:\mathrm{series} \\ $$$$\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:{S}_{{n}} =\mathrm{3}{n}^{\mathrm{2}} +{n},\:\mathrm{find}\:\underset{{k}=\mathrm{10}} {\overset{\mathrm{20}} {\sum}}{a}_{{k}} \:. \\ $$$$\left.\mathrm{A}\right)\:\mathrm{910} \\ $$$$\left.\mathrm{B}\right)\:\mathrm{913} \\ $$$$\left.\mathrm{C}\right)\:\mathrm{968} \\ $$$$\left.\mathrm{D}\right)\:\mathrm{1256}\: \\ $$

  Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509      Pg 510      Pg 511      Pg 512      Pg 513   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com