Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 509

Question Number 168311    Answers: 0   Comments: 5

Calculate∫(((arcsin(x))^2 )/(1+x^2 ))dx

$${Calculate}\int\frac{\left({arcsin}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 168303    Answers: 2   Comments: 0

calculate ∫_0 ^1 x(√(1−x^6 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }{dx} \\ $$

Question Number 168297    Answers: 1   Comments: 0

prove that........ cos ((2Π)/7)+cos ((4Π)/7)+cos ((8Π)/7)=−(1/2)

$$\mathrm{prove}\:\mathrm{that}........ \\ $$$$\mathrm{cos}\:\frac{\mathrm{2}\Pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{4}\Pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{8}\Pi}{\mathrm{7}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 168296    Answers: 2   Comments: 0

∫(5x+2)cos(2x)dx=?

$$\int\left(\mathrm{5}{x}+\mathrm{2}\right){cos}\left(\mathrm{2}{x}\right){dx}=? \\ $$

Question Number 168291    Answers: 2   Comments: 0

∫t^7 sin(t^7 )dt

$$\int{t}^{\mathrm{7}} \mathrm{sin}\left({t}^{\mathrm{7}} \right){dt} \\ $$

Question Number 168280    Answers: 1   Comments: 0

Wath is your favourite formula ???

$${Wath}\:{is}\:{your}\:{favourite}\:{formula}\:??? \\ $$

Question Number 168278    Answers: 1   Comments: 2

((log_3 (12))/(log_(36) (3)))−((log_3 (4))/(log_(108) (3))) = x x =

$$\:\:\:\:\:\frac{{log}_{\mathrm{3}} \left(\mathrm{12}\right)}{{log}_{\mathrm{36}} \left(\mathrm{3}\right)}−\frac{{log}_{\mathrm{3}} \left(\mathrm{4}\right)}{{log}_{\mathrm{108}} \left(\mathrm{3}\right)}\:=\:{x} \\ $$$$\:\:\:\:\:{x}\:=\: \\ $$

Question Number 168277    Answers: 0   Comments: 1

Prove that ((sin(((3π)/5)))/(sin(((4π)/5)))) = ((1+(√5))/2)

$$\:\mathrm{Prove}\:\mathrm{that}\:\frac{\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{5}}\right)}{\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\: \\ $$

Question Number 168276    Answers: 3   Comments: 2

y = (√(x+(√(x+(√x))))) y′ =

$$\:\:\:\:{y}\:=\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}} \\ $$$$\:\:\:\:{y}'\:=\: \\ $$$$\:\:\:\:\: \\ $$

Question Number 168274    Answers: 1   Comments: 0

Question Number 168267    Answers: 1   Comments: 0

Solve this integral : ∫(((√(x+1))−1)/( (√(x+1))+1))

$$\:\:\:\:\:\:{Solve}\:\:{this}\:{integral}\:: \\ $$$$\:\:\:\:\:\:\:\int\frac{\sqrt{{x}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{{x}+\mathrm{1}}+\mathrm{1}} \\ $$$$ \\ $$

Question Number 168264    Answers: 1   Comments: 0

Question Number 168259    Answers: 1   Comments: 0

If the odds in favour of an event be (1/3).Find the probability of an occurrence of the event.

$$\mathrm{If}\:\mathrm{the}\:\mathrm{odds}\:\mathrm{in}\:\mathrm{favour}\:\mathrm{of}\:\mathrm{an}\:\mathrm{event} \\ $$$$\mathrm{be}\:\frac{\mathrm{1}}{\mathrm{3}}.\mathrm{Find}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\: \\ $$$$\mathrm{an}\:\mathrm{occurrence}\:\mathrm{of}\:\mathrm{the}\:\mathrm{event}. \\ $$

Question Number 168256    Answers: 1   Comments: 0

lim_(x→∞) ((n!)/n^n )=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{n}!}{{n}^{{n}} }=? \\ $$

Question Number 168248    Answers: 0   Comments: 1

Question Number 168247    Answers: 2   Comments: 0

Solve for x ((8^x +27^x )/(12^x +18^x ))=(7/6) Mastermind

$${Solve}\:{for}\:{x} \\ $$$$\frac{\mathrm{8}^{{x}} +\mathrm{27}^{{x}} }{\mathrm{12}^{{x}} +\mathrm{18}^{{x}} }=\frac{\mathrm{7}}{\mathrm{6}} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168244    Answers: 3   Comments: 0

Question Number 168233    Answers: 1   Comments: 0

{ ((u_0 = 3 : u_1 = 4)),((u_(n+1) = u_n + 6u_(n−1) )) :} Express u_n in terms of n

$$\begin{cases}{{u}_{\mathrm{0}} \:=\:\mathrm{3}\::\:{u}_{\mathrm{1}} \:=\:\mathrm{4}}\\{{u}_{{n}+\mathrm{1}} \:=\:{u}_{{n}} \:+\:\mathrm{6}{u}_{{n}−\mathrm{1}} }\end{cases} \\ $$$${Express}\:{u}_{{n}} \:{in}\:{terms}\:{of}\:{n} \\ $$

Question Number 168231    Answers: 0   Comments: 4

∫ x (√(1−x^6 )) dx = ?

$$\int\:\:{x}\:\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }\:\:{dx}\:\:=\:\:? \\ $$

Question Number 168229    Answers: 1   Comments: 0

Question Number 168225    Answers: 2   Comments: 0

hi ! x ∈ ](π/4) ; (π/3)[ f (x) = (1/(cos x)) primitive of f(x).

$$\mathrm{hi}\:! \\ $$$$\left.{x}\:\in\:\right]\frac{\pi}{\mathrm{4}}\:;\:\frac{\pi}{\mathrm{3}}\left[\right. \\ $$$${f}\:\left({x}\right)\:=\:\frac{\mathrm{1}}{{cos}\:{x}} \\ $$$$\mathrm{primitive}\:\mathrm{of}\:{f}\left({x}\right). \\ $$

Question Number 168210    Answers: 1   Comments: 0

Question Number 168209    Answers: 0   Comments: 0

Question Number 168208    Answers: 2   Comments: 1

If (x+yi)^4 =a+bi, show that a^2 +b^2 =(x^2 +y^2 )^4

$$\:{If}\:\left({x}+{y}\boldsymbol{{i}}\right)^{\mathrm{4}} ={a}+{b}\boldsymbol{{i}}, \\ $$$$\:{show}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{4}} \\ $$

Question Number 168206    Answers: 1   Comments: 0

Question Number 168203    Answers: 1   Comments: 0

  Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509      Pg 510      Pg 511      Pg 512      Pg 513   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com