Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 509
Question Number 167662 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left[\sqrt[{\mathrm{4}}]{{log}\sqrt[{\mathrm{3}}]{\mathrm{2}{log}\sqrt{{x}^{\mathrm{3}} +\mathrm{2}}}}\right]=? \\ $$
Question Number 167666 Answers: 1 Comments: 1
$${I}_{{n}} =\int\frac{{dx}}{\mathrm{cos}\:^{{n}} {x}} \\ $$$${Prove}\:{that} \\ $$$${I}_{{n}} =\frac{{n}−\mathrm{2}}{{n}−\mathrm{1}}{I}_{{n}−\mathrm{2}} +\frac{\mathrm{sin}\:{x}}{\left({n}−\mathrm{1}\right)\mathrm{cos}\:^{{n}−\mathrm{1}} {x}} \\ $$
Question Number 167664 Answers: 0 Comments: 0
$${a}=\mathrm{3}{k},{b}=\mathrm{4}{k},{c}=\mathrm{5}{k} \\ $$$$\mathrm{3}{k}+\mathrm{4}{k}+\mathrm{5}{k}=\mathrm{1000}\Rightarrow{k}=\mathrm{500}/\mathrm{6} \\ $$$${a}=\mathrm{1500}/\mathrm{6},{b}=\mathrm{200}/\mathrm{6},{c}=\mathrm{2500}/\mathrm{6} \\ $$
Question Number 167663 Answers: 1 Comments: 2
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left[{log}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{4}{x}}.......\right)\right]=? \\ $$
Question Number 167650 Answers: 1 Comments: 4
$$\left.\begin{matrix}{\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} }\\{{a}+{b}+{c}=\mathrm{1000}}\end{matrix}\right\};\:\overset{?} {{a}},\:\:\overset{?} {{b}},\:\:\overset{?} {{c}}\in\mathbb{Z} \\ $$$${Q}#\mathrm{167533}\:\mathrm{reposted} \\ $$
Question Number 167648 Answers: 0 Comments: 6
$$\mathrm{log}_{{sinx}} \mathrm{2}+\mathrm{log}_{{cosx}} \mathrm{2}+{log}_{\mathrm{sin}\:{x}} \mathrm{2}×{log}_{\mathrm{cos}\:{x}} \mathrm{2}=\mathrm{0} \\ $$$${x}=? \\ $$
Question Number 167647 Answers: 2 Comments: 0
Question Number 167626 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{\:\sqrt{{t}}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:{dt} \\ $$
Question Number 167624 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{solve} \\ $$$$\:\:\Omega\:={lim}_{\:{n}\rightarrow\infty} {n}^{\:\mathrm{2}} .\:{ln}\left(\:{n}\:.\:{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=? \\ $$$$ \\ $$
Question Number 167633 Answers: 1 Comments: 6
Question Number 167630 Answers: 0 Comments: 0
Question Number 167617 Answers: 3 Comments: 0
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[{tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right]^{{cotx}} =? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\mathrm{1}}{\mathrm{sin}\:{x}}−\frac{\mathrm{1}}{{x}}\right]=? \\ $$
Question Number 167616 Answers: 0 Comments: 0
$$\boldsymbol{{How}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\:\boldsymbol{{A}}\backslash\boldsymbol{{B}}\oplus\boldsymbol{{C}}=\left(\boldsymbol{{A}}\backslash\boldsymbol{{B}}\right)\oplus\left(\boldsymbol{{A}}\backslash\boldsymbol{{C}}\right) \\ $$
Question Number 167615 Answers: 0 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{3}+\mathrm{x}}\:\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{x}^{\mathrm{3}} }−\mathrm{4}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }\:=? \\ $$$$ \\ $$
Question Number 167612 Answers: 0 Comments: 1
Question Number 167609 Answers: 1 Comments: 0
Question Number 167601 Answers: 0 Comments: 0
Question Number 167598 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\int\:\frac{\mathrm{x}}{\mathrm{5x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} −\mathrm{5x}−\mathrm{1}}\:\mathrm{dx}=? \\ $$
Question Number 167596 Answers: 1 Comments: 0
$$\:\:\int\:\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:\mathrm{dx}\:=? \\ $$
Question Number 167594 Answers: 1 Comments: 0
Question Number 167593 Answers: 2 Comments: 0
Question Number 167588 Answers: 1 Comments: 0
$$\mathrm{1}+\mathrm{1}=¿ \\ $$
Question Number 167586 Answers: 2 Comments: 1
$$\:\:\:\:\:\:\:\:\lambda=\int\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}+\mathrm{cos}\:\mathrm{x}}+\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}\:=? \\ $$
Question Number 167628 Answers: 0 Comments: 1
Question Number 167627 Answers: 0 Comments: 0
Question Number 167576 Answers: 1 Comments: 1
$$\boldsymbol{{prove}}\:\boldsymbol{{by}}\:\boldsymbol{{useing}}\:\boldsymbol{{the}}\:\boldsymbol{{polar}}\:\boldsymbol{{cordinaite}}\: \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{{a}}}{\mathrm{2}}} \:\:\:\int_{\boldsymbol{{y}}} ^{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} }} \:\boldsymbol{{x}}\:\boldsymbol{{dx}}\:\boldsymbol{{dy}}\:\:=\:\frac{\mathrm{5}\:\boldsymbol{{a}}^{\mathrm{3}} }{\mathrm{24}\:} \\ $$
Pg 504 Pg 505 Pg 506 Pg 507 Pg 508 Pg 509 Pg 510 Pg 511 Pg 512 Pg 513
Terms of Service
Privacy Policy
Contact: info@tinkutara.com