# Question #
If , a ∉ Z and the function with the following rule
is differentiable at ” x = 1 ” then find the value of
“ a “ .
f(x) = (⌊ (x/2) ⌋ + ⌊ ((−x)/2) ⌋ )∣ x^( 2) +x −2∣ ⌊ax ⌋ ■ m.n
Given x, c ∈ R.
(u_n )_(n∈N ) : { ((u_0 =0)),((u_(n+1) =xsin(u_n )+c)) :}
1.Show that ∣u_(n+1) −u_n ∣≤∣c∣∣x^n ∣.
2.Show that : (∣x∣<1 et m≥n ⇒∣u_m −u_n ∣≤((∣c∣∣x^n ∣)/(1−∣x∣))
3.Deduct that u_n is convergent and
calculate its limit.