Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 508

Question Number 167964    Answers: 1   Comments: 1

Question Number 167963    Answers: 0   Comments: 0

show that_β_(1 =( nΣxy−ΣxΣy)/(nΣx^2 −(Σx)^2 )=Σxy/Σ(xy)^(2 ) where x=(x−x^− ) and y=(y−y^− ) )

$$\:{show}\:{that}_{\beta_{\mathrm{1}\:=\left(\:{n}\Sigma{xy}−\Sigma{x}\Sigma{y}\right)/\left({n}\Sigma{x}^{\mathrm{2}} −\left(\Sigma{x}\right)^{\mathrm{2}} \right)=\Sigma{xy}/\Sigma\left({xy}\right)^{\mathrm{2}\:} \:\:\:\:\:\:\:{where}\:{x}=\left({x}−\overset{−} {{x}}\right)\:{and}\:{y}=\left({y}−\overset{−} {{y}}\right)\:\:} } \: \\ $$$$ \\ $$

Question Number 167956    Answers: 0   Comments: 0

Question Number 167955    Answers: 2   Comments: 0

Question Number 167943    Answers: 2   Comments: 3

lim_(x→3) ((e^x −e^3 )/(x−3))=? wiht out H,pital ruls

$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\frac{{e}^{{x}} −{e}^{\mathrm{3}} }{{x}−\mathrm{3}}=? \\ $$$${wiht}\:{out}\:{H},{pital}\:{ruls} \\ $$

Question Number 167942    Answers: 1   Comments: 0

(x−1)(x+4)(x−2)^2 =10x^2 x=???

$$\left({x}−\mathrm{1}\right)\left({x}+\mathrm{4}\right)\left({x}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{10}{x}^{\mathrm{2}} \\ $$$${x}=??? \\ $$

Question Number 167939    Answers: 0   Comments: 0

find the root of f(x)=x^3 −5^x +3 using newton raphson iteration method

$${find}\:{the}\:{root}\:{of}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{5}^{{x}} +\mathrm{3} \\ $$$${using}\:{newton}\:{raphson}\:{iteration}\:{method} \\ $$

Question Number 190928    Answers: 0   Comments: 6

Solve the equation : 2+x^2 (x^4 +1)=(((√2)x^3 (x^4 −1))/( (√(x^4 +1))))

$${Solve}\:{the}\:{equation}\:: \\ $$$$\mathrm{2}+{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} +\mathrm{1}\right)=\frac{\sqrt{\mathrm{2}}{x}^{\mathrm{3}} \left({x}^{\mathrm{4}} −\mathrm{1}\right)}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}} \\ $$$$ \\ $$

Question Number 167930    Answers: 1   Comments: 1

y^(′′) − y^′ − 6y = xe^x sinx

$$\boldsymbol{{y}}\:^{''} \:−\:\boldsymbol{{y}}^{'} \:−\:\mathrm{6}\boldsymbol{{y}}\:=\:\boldsymbol{{xe}}^{\boldsymbol{{x}}} \:\boldsymbol{{sinx}} \\ $$

Question Number 167929    Answers: 1   Comments: 0

prove: (((a^2 +b^2 )sinαcosα−ab)/((a^2 +b^2 )cos^2 α−b^2 ))=((asinα−bcosα)/(acosα+bsinα))

$${prove}:\: \\ $$$$\:\:\:\:\:\:\:\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\mathrm{sin}\alpha\mathrm{cos}\alpha−{ab}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \alpha−{b}^{\mathrm{2}} }=\frac{{a}\mathrm{sin}\alpha−{b}\mathrm{cos}\alpha}{{a}\mathrm{cos}\alpha+{b}\mathrm{sin}\alpha} \\ $$

Question Number 167928    Answers: 1   Comments: 0

Show that ∣1−i∣^x =2^x has no nonzero integral solution

$${Show}\:{that}\:\mid\mathrm{1}−{i}\mid^{{x}} =\mathrm{2}^{{x}} \:{has}\:{no}\:{nonzero}\:{integral}\:{solution}\: \\ $$

Question Number 167925    Answers: 1   Comments: 0

Given f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex + f . f(1) = 1 , f(2) = (1/4) , f(3) = (1/9) , f(4) = (1/(16)) , f(5) = (1/(25)) , and f(6) = (1/(36)) . Value of f(8) = ?

$$\mathrm{Given}\:\:{f}\left({x}\right)\:=\:{ax}^{\mathrm{5}} \:+\:{bx}^{\mathrm{4}} \:+\:{cx}^{\mathrm{3}} \:+\:{dx}^{\mathrm{2}} \:+\:{ex}\:+\:{f}\:. \\ $$$${f}\left(\mathrm{1}\right)\:=\:\mathrm{1}\:,\:{f}\left(\mathrm{2}\right)\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\:,\:\:{f}\left(\mathrm{3}\right)\:=\:\frac{\mathrm{1}}{\mathrm{9}}\:\:,\:\:{f}\left(\mathrm{4}\right)\:=\:\frac{\mathrm{1}}{\mathrm{16}}\:\:, \\ $$$${f}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{1}}{\mathrm{25}}\:\:,\:\:{and}\:\:{f}\left(\mathrm{6}\right)\:=\:\frac{\mathrm{1}}{\mathrm{36}}\:. \\ $$$${Value}\:\:{of}\:\:{f}\left(\mathrm{8}\right)\:=\:? \\ $$

Question Number 167922    Answers: 4   Comments: 2

Find the value of Q if ∫_0 ^Q (√(cosec θ−1)) dθ=ln (((3+2(√2))/2))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{Q}\:\:\mathrm{if} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{Q}} \sqrt{\mathrm{cosec}\:\theta−\mathrm{1}}\:\mathrm{d}\theta=\mathrm{ln}\:\left(\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$$ \\ $$

Question Number 167917    Answers: 0   Comments: 0

_ Two small charged spheresn Two small charged spheresn cotain charges + q1 and + q2r espectively. A charge da ism reoved from sphere carryingh carge q1 and is transferredtoh te other. Find charge on eachs phere for maximum electrico frce between1 them.Ans.(12(q +q2) Twor paticles each having a mass of5 g and charge 107 C stay inlimiting equilibrium on ar hoizontal table with ai separaton of 10 cm betweene thm. The coefficient ofn frictio between each particlen ad the table is the same. Findthe value of thisn cocfficiet. Ans. u 018 cotain charges + q1 and + q2r espectively. A charge da ism reoved from sphere carryingh carge q1 and is transferredtoh te other. Find charge on eachs phere for maximum electrico frce between1 them.Ans.(12(q +q2) Twor paticles each having a mass of5 g and charge 107 C stay inlimiting equilibrium on ar hoizontal table with ai separaton of 10 cm betweene thm. The coefficient ofn frictio between each particlen ad the table is the same. Findthe value of thisn cocfficiet. Ans. u 018z

$$\:_{} \: \\ $$$$\mathrm{Two}\:\mathrm{small}\:\mathrm{charged}\:\mathrm{spheresn} \\ $$$$\mathrm{Two}\:\mathrm{small}\:\mathrm{charged}\:\mathrm{spheresn} \\ $$$$\mathrm{cotain}\:\mathrm{charges}\:+\:\mathrm{q1}\:\mathrm{and}\:+\:\mathrm{q2r} \\ $$$$\mathrm{espectively}.\:\mathrm{A}\:\mathrm{charge}\:\mathrm{da}\:\mathrm{ism} \\ $$$$\mathrm{reoved}\:\mathrm{from}\:\mathrm{sphere}\:\mathrm{carryingh} \\ $$$$\mathrm{carge}\:\mathrm{q1}\:\mathrm{and}\:\mathrm{is}\:\mathrm{transferredtoh} \\ $$$$\mathrm{te}\:\mathrm{other}.\:\mathrm{Find}\:\mathrm{charge}\:\mathrm{on}\:\mathrm{eachs} \\ $$$$\mathrm{phere}\:\mathrm{for}\:\mathrm{maximum}\:\mathrm{electrico} \\ $$$$\mathrm{frce}\:\mathrm{between1} \\ $$$$\mathrm{them}.\mathrm{Ans}.\left(\mathrm{12}\left(\mathrm{q}\:+\mathrm{q2}\right)\:\mathrm{Twor}\right. \\ $$$$\mathrm{paticles}\:\mathrm{each}\:\mathrm{having}\:\mathrm{a}\:\mathrm{mass}\: \\ $$$$\mathrm{of5}\:\mathrm{g}\:\mathrm{and}\:\mathrm{charge}\:\mathrm{107}\:\mathrm{C}\:\mathrm{stay}\: \\ $$$$\mathrm{inlimiting}\:\mathrm{equilibrium}\:\mathrm{on}\:\mathrm{ar} \\ $$$$\mathrm{hoizontal}\:\mathrm{table}\:\mathrm{with}\:\mathrm{ai} \\ $$$$\mathrm{separaton}\:\mathrm{of}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{betweene} \\ $$$$\mathrm{thm}.\:\mathrm{The}\:\mathrm{coefficient}\:\mathrm{ofn} \\ $$$$\mathrm{frictio}\:\mathrm{between}\:\mathrm{each}\:\mathrm{particlen} \\ $$$$\mathrm{ad}\:\mathrm{the}\:\mathrm{table}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}.\: \\ $$$$\mathrm{Findthe}\:\mathrm{value}\:\mathrm{of}\:\mathrm{thisn} \\ $$$$\mathrm{cocfficiet}.\:\mathrm{Ans}.\:\mathrm{u}\:\:\mathrm{018} \\ $$$$\mathrm{cotain}\:\mathrm{charges}\:+\:\mathrm{q1}\:\mathrm{and}\:+\:\mathrm{q2r} \\ $$$$\mathrm{espectively}.\:\mathrm{A}\:\mathrm{charge}\:\mathrm{da}\:\mathrm{ism} \\ $$$$\mathrm{reoved}\:\mathrm{from}\:\mathrm{sphere}\:\mathrm{carryingh} \\ $$$$\mathrm{carge}\:\mathrm{q1}\:\mathrm{and}\:\mathrm{is}\:\mathrm{transferredtoh} \\ $$$$\mathrm{te}\:\mathrm{other}.\:\mathrm{Find}\:\mathrm{charge}\:\mathrm{on}\:\mathrm{eachs} \\ $$$$\mathrm{phere}\:\mathrm{for}\:\mathrm{maximum}\:\mathrm{electrico} \\ $$$$\mathrm{frce}\:\mathrm{between1} \\ $$$$\mathrm{them}.\mathrm{Ans}.\left(\mathrm{12}\left(\mathrm{q}\:+\mathrm{q2}\right)\:\mathrm{Twor}\right. \\ $$$$\mathrm{paticles}\:\mathrm{each}\:\mathrm{having}\:\mathrm{a}\:\mathrm{mass}\: \\ $$$$\mathrm{of5}\:\mathrm{g}\:\mathrm{and}\:\mathrm{charge}\:\mathrm{107}\:\mathrm{C}\:\mathrm{stay}\: \\ $$$$\mathrm{inlimiting}\:\mathrm{equilibrium}\:\mathrm{on}\:\mathrm{ar} \\ $$$$\mathrm{hoizontal}\:\mathrm{table}\:\mathrm{with}\:\mathrm{ai} \\ $$$$\mathrm{separaton}\:\mathrm{of}\:\mathrm{10}\:\mathrm{cm}\:\mathrm{betweene} \\ $$$$\mathrm{thm}.\:\mathrm{The}\:\mathrm{coefficient}\:\mathrm{ofn} \\ $$$$\mathrm{frictio}\:\mathrm{between}\:\mathrm{each}\:\mathrm{particlen} \\ $$$$\mathrm{ad}\:\mathrm{the}\:\mathrm{table}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}.\: \\ $$$$\mathrm{Findthe}\:\mathrm{value}\:\mathrm{of}\:\mathrm{thisn} \\ $$$$\mathrm{cocfficiet}.\:\mathrm{Ans}.\:\mathrm{u}\:\:\mathrm{018z} \\ $$$$ \\ $$$$ \\ $$

Question Number 167916    Answers: 1   Comments: 1

give: z=cos(((2π)/(2015)))+isin(((2π)/(2015))) find S=1+z+z^2 +z^3 +...+z^(2014)

$${give}:\:{z}={cos}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right)+{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{2015}}\right) \\ $$$${find}\:{S}=\mathrm{1}+{z}+{z}^{\mathrm{2}} +{z}^{\mathrm{3}} +...+{z}^{\mathrm{2014}} \\ $$

Question Number 167915    Answers: 0   Comments: 0

Question Number 167912    Answers: 1   Comments: 0

∫^(π/4) _0 ((cos(12x))/(cos^(14) (x)))dx=?

$$\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{4}}} \frac{{cos}\left(\mathrm{12}{x}\right)}{{cos}^{\mathrm{14}} \left({x}\right)}{dx}=? \\ $$

Question Number 167911    Answers: 1   Comments: 0

If a^2 +b^2 =1 then, ((1+b+ia)/(1+b−ia))=?

$${If}\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$$\:{then},\:\:\frac{\mathrm{1}+{b}+{ia}}{\mathrm{1}+{b}−{ia}}=? \\ $$

Question Number 167899    Answers: 1   Comments: 0

Question Number 167898    Answers: 2   Comments: 0

Question Number 167889    Answers: 1   Comments: 0

Question Number 167885    Answers: 0   Comments: 0

Question Number 167884    Answers: 2   Comments: 0

∫cosx dx−∫cosx dx=?

$$\int{cosx}\:{dx}−\int{cosx}\:{dx}=? \\ $$

Question Number 167882    Answers: 2   Comments: 0

Calculate I=∫(1/x)((√((1−x)/(1+x))))dx Indication poser t=(√((1−x)/(1+x)))

$${Calculate} \\ $$$${I}=\int\frac{\mathrm{1}}{{x}}\left(\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}}\right){dx} \\ $$$${Indication}\:{poser}\:{t}=\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}} \\ $$

Question Number 167879    Answers: 2   Comments: 1

solve in R (√(x^( 2) −2x +5)) + (√(2x^( 2) −4x +8)) =7 −−−−−

$$ \\ $$$$\:\:\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$ \\ $$$$\:\:\sqrt{{x}^{\:\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{5}}\:+\:\sqrt{\mathrm{2}{x}^{\:\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{8}}\:=\mathrm{7} \\ $$$$ \\ $$$$\:\:\:\:\:\:−−−−− \\ $$

Question Number 167877    Answers: 0   Comments: 0

  Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509      Pg 510      Pg 511      Pg 512   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com