Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 508

Question Number 159379    Answers: 2   Comments: 0

let S(x) =Σ_(n=0) ^∞ (3x)^(n+2) using the sum above find: Σ_(n=0) ^∞ (((-1)^(n+1) )/(3^(n+1) (n + 3)))

$$\mathrm{let}\:\:\boldsymbol{\mathrm{S}}\left(\mathrm{x}\right)\:=\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{3x}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{2}} \\ $$$$\mathrm{using}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{above}\:\mathrm{find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{3}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \left(\mathrm{n}\:+\:\mathrm{3}\right)}\: \\ $$

Question Number 159378    Answers: 1   Comments: 2

let x;y>0 such that x^3 + y^3 = 2 find the minimum value of the following expression: P = 2020x + 2021y

$$\mathrm{let}\:\:\mathrm{x};\mathrm{y}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:=\:\mathrm{2} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{expression}: \\ $$$$\mathrm{P}\:=\:\mathrm{2020}\boldsymbol{\mathrm{x}}\:+\:\mathrm{2021}\boldsymbol{\mathrm{y}} \\ $$

Question Number 159358    Answers: 0   Comments: 0

List all the assymptotes. List the domain and the x and y intercepts of f(x)= ((x^3 −x^2 +x−4)/(x^2 +2x−1))

$$\mathrm{List}\:\mathrm{all}\:\mathrm{the}\:\mathrm{assymptotes}. \\ $$$$\mathrm{List}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{the}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{intercepts} \\ $$$$\mathrm{of}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)=\:\frac{{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{4}}{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}} \\ $$

Question Number 159355    Answers: 1   Comments: 0

Question Number 159353    Answers: 0   Comments: 0

Question Number 159349    Answers: 1   Comments: 1

lim_(x→0) ((8sec x−8+tan^4 x−4tan^2 x)/x^6 ) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{8sec}\:{x}−\mathrm{8}+\mathrm{tan}\:^{\mathrm{4}} {x}−\mathrm{4tan}\:^{\mathrm{2}} {x}}{{x}^{\mathrm{6}} }\:=? \\ $$

Question Number 159346    Answers: 1   Comments: 0

xy′′+2(x+1)y′+(x+2)y=0

$${xy}''+\mathrm{2}\left({x}+\mathrm{1}\right){y}'+\left({x}+\mathrm{2}\right){y}=\mathrm{0} \\ $$

Question Number 159338    Answers: 1   Comments: 0

define increasing and decreasing function with example?

$${define}\:{increasing} \\ $$$${and}\:{decreasing}\:{function}\:{with}\:{example}? \\ $$

Question Number 159332    Answers: 0   Comments: 1

Question Number 159330    Answers: 1   Comments: 0

how to think from 1+2+3+...+n=((n(n+1))/2) 1^2 +2^2 +3^2 +...+n^2 =((n(n+1)(2n+1))/6) 1^3 +2^3 +3^3 +...+n^3 =(((n(n+1))/2))^2

$${how}\:{to}\:{think}\:{from}\: \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+{n}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +...+{n}^{\mathrm{3}} =\left(\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$

Question Number 159327    Answers: 4   Comments: 0

Question Number 159325    Answers: 1   Comments: 1

# Trigonometry# solve ( Equation) sin((x/2) ) − 2sin ((x/3) )= 0

$$ \\ $$$$\:\:\:\:\:\:#\:\mathrm{T}{rigonometry}# \\ $$$$\:\:\:\:\:\:\:{solve}\:\left(\:\:\:\mathscr{E}{quation}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{sin}\left(\frac{{x}}{\mathrm{2}}\:\right)\:−\:\mathrm{2}{sin}\:\left(\frac{{x}}{\mathrm{3}}\:\right)=\:\mathrm{0}\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 159322    Answers: 1   Comments: 0

P(z)=(1+i(√3))z^2 −(−4+4i)z+2icos((π/5))−2sin((π/5)) Let S denote the sum of roots of P(z) a) Express S in algebraic form then in exponential form. b. Deduce the exact values of cos(((5π)/(12))) and sin(((5π)/(12))).

$$\mathrm{P}\left(\mathrm{z}\right)=\left(\mathrm{1}+{i}\sqrt{\mathrm{3}}\right){z}^{\mathrm{2}} −\left(−\mathrm{4}+\mathrm{4}{i}\right){z}+\mathrm{2}{i}\mathrm{cos}\left(\frac{\pi}{\mathrm{5}}\right)−\mathrm{2sin}\left(\frac{\pi}{\mathrm{5}}\right) \\ $$$$\mathrm{Let}\:{S}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{P}\left({z}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Express}\:{S}\:\mathrm{in}\:\mathrm{algebraic}\:\mathrm{form}\:\mathrm{then}\:\mathrm{in}\:\mathrm{exponential}\:\mathrm{form}. \\ $$$$\mathrm{b}.\:\mathrm{Deduce}\:\mathrm{the}\:\mathrm{exact}\:\mathrm{values}\:\mathrm{of}\:\mathrm{cos}\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right)\:\mathrm{and}\:\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{12}}\right). \\ $$

Question Number 159319    Answers: 1   Comments: 0

(dy/dx)+((x−y−2)/(x−2y−3))=0 Pls... solve the differential equation.

$$\:\:\:\:\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{x}−\mathrm{y}−\mathrm{2}}{\mathrm{x}−\mathrm{2y}−\mathrm{3}}=\mathrm{0} \\ $$$$\mathrm{Pls}...\:\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}. \\ $$

Question Number 159318    Answers: 1   Comments: 1

lim_(x→1) (((√(x+1))+(√(x^2 −1))−(√(x^3 +1)))/( (√(x−1))+(√(x^2 +1)) −(√(x^4 +1)))) =?

$$\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt{{x}+\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}−\sqrt{{x}^{\mathrm{3}} +\mathrm{1}}}{\:\sqrt{{x}−\mathrm{1}}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:−\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}\:=? \\ $$

Question Number 159315    Answers: 0   Comments: 1

∫ (dx/( (((x−1)^3 (x+2)^5 ))^(1/4) )) ?

$$\:\int\:\frac{{dx}}{\:\sqrt[{\mathrm{4}}]{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{5}} }\:}\:? \\ $$

Question Number 159309    Answers: 1   Comments: 0

Resolve I_n =∫_(−1) ^1 (1−x^2 )^n dx

$${Resolve}\:{I}_{{n}} =\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$

Question Number 159297    Answers: 1   Comments: 1

Question Number 159293    Answers: 1   Comments: 1

Question Number 159345    Answers: 2   Comments: 0

Question Number 159436    Answers: 0   Comments: 1

Question Number 159435    Answers: 0   Comments: 0

Question Number 159434    Answers: 0   Comments: 0

Question Number 159433    Answers: 0   Comments: 2

((5x^2 −15x−11)/((x+1)(x−2)^2 )) fractio partil

$$\frac{\mathrm{5x}^{\mathrm{2}} −\mathrm{15x}−\mathrm{11}}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} }\:\mathrm{fractio}\:\mathrm{partil} \\ $$$$ \\ $$

Question Number 159431    Answers: 1   Comments: 0

Question Number 159268    Answers: 1   Comments: 0

Find: Ω =∫_( 0) ^( 1) ∫_( 0) ^( 1) Li_3 (1 - xy)dxdy

$$\mathrm{Find}: \\ $$$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{Li}_{\mathrm{3}} \left(\mathrm{1}\:-\:{xy}\right){dxdy} \\ $$$$ \\ $$

  Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509      Pg 510      Pg 511      Pg 512   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com