Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 507
Question Number 161903 Answers: 2 Comments: 1
$$\frac{\mathrm{1}−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}=??? \\ $$$$ \\ $$
Question Number 161900 Answers: 1 Comments: 0
$$\mathrm{0}<\mathrm{x};\mathrm{y};\mathrm{z}<\mathrm{1} \\ $$$$\left(\mathrm{1}-\mathrm{x}\right)\left(\mathrm{1}-\mathrm{y}\right)\left(\mathrm{1}-\mathrm{z}\right)=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\Omega\:=\:\mathrm{min}\:\left(\frac{\mathrm{1}-\mathrm{x}}{\mathrm{xy}}\:+\:\frac{\mathrm{1}-\mathrm{y}}{\mathrm{yz}}\:+\:\frac{\mathrm{1}-\mathrm{z}}{\mathrm{zx}}\right) \\ $$
Question Number 161899 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:-\infty} {\overset{\:\infty} {\int}}\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \right)^{\mathrm{2}} }\:\mathrm{dx}\:\:;\:\:\mathrm{n}\in\mathbb{Z} \\ $$
Question Number 161884 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt[{\mathrm{7}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{-\mathrm{1}} }\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{7}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:-\:\mathrm{2}^{-\mathrm{1}} } \\ $$
Question Number 162231 Answers: 1 Comments: 0
$${nature}\:{et}\:{calcul} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\:\sqrt{\mathrm{1}−{x}}}{dx} \\ $$
Question Number 161875 Answers: 0 Comments: 0
Question Number 161888 Answers: 1 Comments: 5
$$\mathrm{help}\:\mathrm{me}\:! \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{one}\::\:\mathrm{C}_{\mathrm{40}} ^{\mathrm{2n}} \:=\:\mathrm{C}_{\mathrm{40}} ^{\mathrm{16}+\mathrm{n}} \\ $$
Question Number 161868 Answers: 1 Comments: 0
$$\:\:\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} \:+\:\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} }\:=\:\mathrm{2}^{{x}} \\ $$$$\:\:{x}=? \\ $$
Question Number 161867 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{9}}\:−\sqrt{{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}}\:\right)^{\mathrm{4}{x}} \:=\:? \\ $$
Question Number 161866 Answers: 1 Comments: 3
Question Number 161862 Answers: 0 Comments: 0
Question Number 161861 Answers: 1 Comments: 8
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={n}^{\mathrm{2}} +{n}−\mathrm{2} \\ $$
Question Number 161860 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Simplify} \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{to} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{n}^{\mathrm{2}} +\mathrm{n}−\mathrm{2} \\ $$
Question Number 161854 Answers: 1 Comments: 1
Question Number 161848 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f}\:\:\:\:{tan}\:\left(\alpha\:\right)=\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:{find}\:{the}\:{value}\:{of}\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{K}=\frac{\:\:\mathrm{1}+{sin}\left(\:\mathrm{8}\:\alpha\right)−{cos}\:\left(\mathrm{8}\alpha\:\right)}{\mathrm{1}+{sin}\left(\:\mathrm{8}\alpha\:\right)\:+\:{cos}\:\left(\mathrm{8}\:\alpha\:\right)}\:=? \\ $$$$ \\ $$$$ \\ $$
Question Number 161843 Answers: 0 Comments: 3
$${Q}#\mathrm{161744}\:{reposted}\:{with}\:{some}\:{change}. \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\boldsymbol{\mathrm{integer}}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}}\:+\:\frac{\mathrm{5}}{\mathrm{x}}\:+\:\frac{\mathrm{y}\:-\:\mathrm{5}}{\mathrm{5}}\:=\:\frac{\mathrm{y}\:+\:\mathrm{x}}{\mathrm{y}\:+\:\mathrm{5}}\:+\:\frac{\mathrm{5}\:+\:\mathrm{y}}{\mathrm{5}\:+\:\mathrm{x}} \\ $$
Question Number 161839 Answers: 3 Comments: 0
$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$
Question Number 161830 Answers: 1 Comments: 0
$$\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{14}} }} \\ $$
Question Number 161823 Answers: 1 Comments: 0
$$\:{Given}\:{that}\:−\mathrm{1}<{x}<\mathrm{1},\:{find}\:{the} \\ $$$$\:{expansion}\:{of}\:\:\frac{\mathrm{3}−\mathrm{2}{x}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{4}+{x}^{\mathrm{2}} \right)}\:{in} \\ $$$$\:{ascending}\:{power}\:{of}\:{x},\:{up}\:{to}\:{and} \\ $$$$\:{including}\:{the}\:{term}\:{in}\:{x}^{\mathrm{3}} \\ $$
Question Number 161822 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\left[\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{k}}} {\sum}}\left(\mathrm{i}\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right)\right]^{\:-\mathrm{1}} =\:? \\ $$
Question Number 161820 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{this}\:\mathrm{differential}\:\mathrm{equation}: \\ $$$${a}\:\frac{\partial{L}\left(\alpha\right)}{\partial{a}}\:+\:{b}\:\frac{\partial{L}\left(\alpha\right)}{\partial{b}}\:=\:{L}\left(\alpha\right) \\ $$$$\mathrm{where}:\:{L}\left(\alpha\right)\:=\:\underset{\:\mathrm{0}} {\overset{\:\boldsymbol{{a}}} {\int}}\sqrt{{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({t}\right)\:+\:{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({t}\right)}\:{dt} \\ $$
Question Number 161818 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\Phi\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\sqrt{\frac{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{2}} }{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=\:\frac{\sqrt{\pi}}{\mathrm{4}}\:\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}\:-\:\mathrm{4}\:\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\right) \\ $$$$\mathrm{where}:\:\Gamma-\mathrm{Gamma}\:\mathrm{function} \\ $$
Question Number 161817 Answers: 1 Comments: 0
Question Number 161815 Answers: 1 Comments: 0
Question Number 161811 Answers: 3 Comments: 0
Question Number 161800 Answers: 1 Comments: 2
$$\frac{\mathrm{1}^{\mathrm{2}} \centerdot\mathrm{2}!+\mathrm{2}^{\mathrm{2}} \centerdot\mathrm{3}!+\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{4}!+\centerdot\centerdot\centerdot+{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)!−\mathrm{2}}{\left({n}+\mathrm{1}\right)!}=\mathrm{108} \\ $$$${n}=? \\ $$
Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507 Pg 508 Pg 509 Pg 510 Pg 511
Terms of Service
Privacy Policy
Contact: info@tinkutara.com