Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 507
Question Number 163259 Answers: 1 Comments: 0
Question Number 163257 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathscr{R}{e}\:\left(\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {sin}^{\:−\mathrm{1}} \left(\frac{\:\mathrm{1}}{\mathrm{1}−\:{x}^{\:\mathrm{2}} }\:\right){dx}\:\right)=? \\ $$$$ \\ $$
Question Number 163263 Answers: 1 Comments: 0
Question Number 163293 Answers: 1 Comments: 1
Question Number 163226 Answers: 2 Comments: 3
Question Number 163223 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{arc}\:\mathrm{of}\:\mathrm{parabola}\:{y}=−{x}^{\mathrm{2}} +\mathrm{9}\:\mathrm{in}\:\mathrm{0}<{x}<\mathrm{3} \\ $$$$\mathrm{is}\:\mathrm{revolved}\:\mathrm{about}\:\mathrm{the}\:\mathrm{line}\:{y}={c}\:\mathrm{and}\:\mathrm{0}<{c}<\mathrm{9} \\ $$$$\mathrm{to}\:\mathrm{generate}\:\mathrm{a}\:\mathrm{solid}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{c}\:\mathrm{that}\:\mathrm{minimizes}\:\mathrm{the}\: \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}. \\ $$
Question Number 163222 Answers: 1 Comments: 0
$$\:\:\:\sqrt{\frac{\sqrt{{x}+\mathrm{4}}\:+\mathrm{2}}{\mathrm{2}−\sqrt{{x}+\mathrm{4}}}}\:\leqslant\:{x}−\mathrm{4}\: \\ $$
Question Number 163217 Answers: 0 Comments: 0
Question Number 163211 Answers: 0 Comments: 0
Question Number 163210 Answers: 1 Comments: 1
Question Number 163209 Answers: 0 Comments: 0
$$\mathrm{f}\::\:\mathrm{I}\:\rightarrow\:\left(\mathrm{0}\:;\:\infty\right)\:\:;\:\:\mathrm{I}\:\subset\:\mathbb{R} \\ $$$$\mathrm{f}\:-\:\mathrm{twice}\:\mathrm{derivable}\:\:;\:\:\mathrm{f}\:^{'} \:;\:\mathrm{f}\:^{''} \:-\:\mathrm{continuous} \\ $$$$\mathrm{f}\:^{''} \left(\mathrm{x}\right)\:\mathrm{f}\left(\mathrm{x}\right)\:\geqslant\:\left(\mathrm{f}\:^{'} \left(\mathrm{x}\right)\right)^{\mathrm{2}} \:;\:\:\forall\:\mathrm{x}\:\in\:\mathrm{I} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{2f}\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{2}}\right)\:\leqslant\:\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\mathrm{y}\right)\:\:;\:\:\forall\:\mathrm{x};\mathrm{y}\:\in\:\mathrm{I} \\ $$
Question Number 163205 Answers: 0 Comments: 0
$$\boldsymbol{{F}}{ourier}\:{series}\:{expansion}\:{for}\:{ln}\left({sin}\left({x}\right)\right) \\ $$
Question Number 163197 Answers: 0 Comments: 1
Question Number 163191 Answers: 0 Comments: 1
Question Number 163175 Answers: 0 Comments: 1
Question Number 163171 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\:\:\mathrm{sin}\:\mathrm{36}°\:=\:\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}^{} }}}{\mathrm{4}} \\ $$
Question Number 163214 Answers: 0 Comments: 1
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sin}\:{x}−\mathrm{2tan}\:{x}+{x}^{\mathrm{3}} }{\mathrm{6}{x}−\mathrm{2sin}\:\mathrm{3}{x}−\mathrm{9}{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 163212 Answers: 1 Comments: 3
Question Number 163168 Answers: 2 Comments: 1
Question Number 163167 Answers: 1 Comments: 0
$$\:\mathrm{6}^{{x}+\mathrm{1}} \:+\mathrm{1}\:=\:\mathrm{8}^{{x}+\mathrm{1}} −\mathrm{27}^{{x}} \: \\ $$$$\:{x}=? \\ $$
Question Number 163166 Answers: 0 Comments: 0
$$ \\ $$
Question Number 163163 Answers: 1 Comments: 1
$${x}^{\mathrm{9}} −\mathrm{2022}{x}^{\mathrm{3}} +\sqrt{\mathrm{2021}}=\mathrm{0} \\ $$$${x}=\left\{?\right\} \\ $$
Question Number 163161 Answers: 1 Comments: 0
Question Number 163158 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\:{sin}\left({x}\right)+{cos}\left({x}\right)}{\:\sqrt{\mathrm{1}+{sin}\left({x}\right){cos}\left({x}\right)}}\:{dx}=\:\sqrt{\mathrm{2}}\:.{cot}^{\:−\mathrm{1}} \left(\sqrt{\mathrm{2}}\:\right) \\ $$$$\:\:\:−−−−− \\ $$
Question Number 163153 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\:\frac{{cos}\left({x}−{y}\right)}{{cos}\left({x}+{y}\right)}=\frac{\mathrm{1}+{tanxtany}}{\mathrm{1}−{tanxtany}} \\ $$
Question Number 163148 Answers: 1 Comments: 4
Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507 Pg 508 Pg 509 Pg 510 Pg 511
Terms of Service
Privacy Policy
Contact: info@tinkutara.com