Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 506
Question Number 161994 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}\mid\boldsymbol{{x}}\mid\boldsymbol{\mathrm{ln}}\mid\frac{\mathrm{1}+\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}}\mid}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=??? \\ $$
Question Number 161991 Answers: 1 Comments: 1
Question Number 161968 Answers: 1 Comments: 0
$${Find}\:\:{coefficient}\:\:{of}\:\:{x}^{\mathrm{29}} \:\:{in}\:\:{expansion}\:\:{of}\:\:\:\left(\mathrm{1}+{x}^{\mathrm{5}} +{x}^{\mathrm{7}} +{x}^{\mathrm{9}} \right)^{\mathrm{1000}} \:. \\ $$
Question Number 161967 Answers: 3 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{\mathrm{ln}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)}{\left(\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)}\boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 161966 Answers: 1 Comments: 0
$$\int\boldsymbol{\mathrm{x}}^{\mathrm{2}} \mathrm{7}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \boldsymbol{\mathrm{dx}}=? \\ $$
Question Number 161964 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}:\:\left(\mathrm{a}\:\mathrm{series}\:\mathrm{inspired}\:\mathrm{Knopp}\:\mathrm{Konrad}\right) \\ $$$$\sqrt{\mathrm{e}^{\boldsymbol{\pi}} }\:\:=\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{sin}\left(\frac{{k}\pi}{\mathrm{4}}\right)}{\left(\mathrm{k}!\right)\:\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{k}}} }}\:\:\pi^{\boldsymbol{\mathrm{k}}} \\ $$
Question Number 161952 Answers: 0 Comments: 5
$$!!\mathrm{8}=? \\ $$
Question Number 161951 Answers: 2 Comments: 0
$${x}^{{x}} =\mathrm{2}^{\mathrm{2048}} \\ $$$${x}=? \\ $$
Question Number 161947 Answers: 2 Comments: 0
$${abc}=\mathrm{8} \\ $$$${a}+{b}+{c}=\mathrm{7} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{73} \\ $$$${then}\:{faind}\:\:{the}\:{vole}\:{of} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=? \\ $$
Question Number 161946 Answers: 2 Comments: 0
Question Number 161945 Answers: 1 Comments: 0
$$\:\:\boldsymbol{{P}\mathrm{rove}}\:\boldsymbol{\mathrm{that}}\:\int_{\mathrm{0}} ^{\infty} \frac{\left(\boldsymbol{{xcos}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)\right)^{\mathrm{2}} }{\boldsymbol{{x}}^{\mathrm{6}} }\boldsymbol{{dx}}\:=\frac{\boldsymbol{\pi}}{\mathrm{15}} \\ $$
Question Number 161939 Answers: 0 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\mathrm{1010}} {\sum}}\boldsymbol{\mathrm{tg}}^{\mathrm{2}} \left(\frac{\pi\boldsymbol{\mathrm{n}}}{\mathrm{2022}}\right)=? \\ $$
Question Number 161931 Answers: 0 Comments: 4
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}{f}\:\:\:\:\frac{\:\mathrm{1}−{sin}\left({x}\right)−{cos}\left({x}\right)}{\mathrm{1}+{sin}\left({x}\right)−{cos}\left({x}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:{then}\:\:{find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{tan}\left({x}\right)\:+\:\frac{\mathrm{1}}{{cos}\left({x}\right)}\:=? \\ $$$$\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 161930 Answers: 1 Comments: 0
$$\begin{cases}{{a}_{\mathrm{0}} =−\mathrm{2}\:}\\{{a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{n}}\end{cases}\:\:\:\:\:;\:{a}_{{n}} =? \\ $$
Question Number 161926 Answers: 0 Comments: 0
Question Number 161919 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right){dx}\: \\ $$$$\: \\ $$
Question Number 161917 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{4}} +{x}+\mathrm{1}}\:}\:{dx} \\ $$$$\: \\ $$
Question Number 161914 Answers: 1 Comments: 0
$$\:\mathrm{If}\:, \\ $$$$\:\:\:{x}^{\:\mathrm{2}} \:+\:\mathrm{9}{y}^{\:\mathrm{2}} \:+\:\mathrm{4}{x}\:+\mathrm{18}{y}\:−\mathrm{23}=\mathrm{0} \\ $$$$ \\ $$$$\:{then}\:\:{find}\:{the}\:{value}\:\:{of}\:\:,\:\:\mathrm{M}_{\:} {ax}\:\left(\:\mathrm{3}{x}+\mathrm{2}{y}\:\right)\:. \\ $$$$\:−−−−−−−−− \\ $$$$ \\ $$
Question Number 161912 Answers: 1 Comments: 6
Question Number 162027 Answers: 1 Comments: 0
Question Number 161907 Answers: 0 Comments: 1
$$\left(\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{9}\pi}{\mathrm{20}}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{cos}\:\frac{\mathrm{27}\pi}{\mathrm{20}}\right)=? \\ $$$$\left(\mathrm{2}\right)\:\mathrm{tan}\:\frac{\pi}{\mathrm{30}}\:\mathrm{tan}\:\frac{\mathrm{7}\pi}{\mathrm{30}}\:\mathrm{tan}\:\frac{\mathrm{11}\pi}{\mathrm{30}}\:=? \\ $$
Question Number 161903 Answers: 2 Comments: 1
$$\frac{\mathrm{1}−\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}{\mathrm{1}+\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)−\boldsymbol{{cos}}\left(\boldsymbol{{x}}\right)}=??? \\ $$$$ \\ $$
Question Number 161900 Answers: 1 Comments: 0
$$\mathrm{0}<\mathrm{x};\mathrm{y};\mathrm{z}<\mathrm{1} \\ $$$$\left(\mathrm{1}-\mathrm{x}\right)\left(\mathrm{1}-\mathrm{y}\right)\left(\mathrm{1}-\mathrm{z}\right)=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\Omega\:=\:\mathrm{min}\:\left(\frac{\mathrm{1}-\mathrm{x}}{\mathrm{xy}}\:+\:\frac{\mathrm{1}-\mathrm{y}}{\mathrm{yz}}\:+\:\frac{\mathrm{1}-\mathrm{z}}{\mathrm{zx}}\right) \\ $$
Question Number 161899 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:-\infty} {\overset{\:\infty} {\int}}\frac{\mathrm{1}}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \right)^{\mathrm{2}} }\:\mathrm{dx}\:\:;\:\:\mathrm{n}\in\mathbb{Z} \\ $$
Question Number 161884 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt[{\mathrm{7}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{-\mathrm{1}} }\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{7}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:-\:\mathrm{2}^{-\mathrm{1}} } \\ $$
Question Number 162231 Answers: 1 Comments: 0
$${nature}\:{et}\:{calcul} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\:\sqrt{\mathrm{1}−{x}}}{dx} \\ $$
Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507 Pg 508 Pg 509 Pg 510
Terms of Service
Privacy Policy
Contact: info@tinkutara.com