Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 505

Question Number 168203    Answers: 1   Comments: 0

Question Number 168198    Answers: 0   Comments: 0

Question Number 168190    Answers: 0   Comments: 5

Question Number 168189    Answers: 1   Comments: 11

Question Number 168188    Answers: 4   Comments: 1

∫ ((1−sin 2x)/((1+sin 2x)^2 )) dx =?

$$\:\:\:\:\:\int\:\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}\right)^{\mathrm{2}} }\:{dx}\:=? \\ $$

Question Number 168187    Answers: 2   Comments: 0

Prove that : sinh^(−1) tanθ = log tan((θ/2)+(π/4)) Mastermind

$${Prove}\:{that}\::\: \\ $$$${sinh}^{−\mathrm{1}} {tan}\theta\:=\:{log}\:{tan}\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168185    Answers: 0   Comments: 0

Separate cos^(−1) e^(iθ) into real and imaginary parts. Mastermind

$${Separate}\:{cos}^{−\mathrm{1}} {e}^{{i}\theta} \:{into}\: \\ $$$${real}\:{and}\:{imaginary}\:{parts}. \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168180    Answers: 1   Comments: 0

Question Number 168178    Answers: 0   Comments: 0

Question Number 168179    Answers: 1   Comments: 0

Question Number 168176    Answers: 1   Comments: 0

If , f(x)=(( ∣ sin(2x)∣)/(∣sin(x)∣+∣cos(x)∣ +1)) then : R_( f) =? ( range )

$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:{f}\left({x}\right)=\frac{\:\:\mid\:{sin}\left(\mathrm{2}{x}\right)\mid}{\mid{sin}\left({x}\right)\mid+\mid{cos}\left({x}\right)\mid\:+\mathrm{1}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\::\:\:\:\:\:\:{R}_{\:{f}} \:=?\:\:\:\:\:\:\:\:\left(\:{range}\:\right)\:\: \\ $$$$\:\:\:\:\:\: \\ $$

Question Number 168164    Answers: 0   Comments: 1

Find the total energy (in Joules) of a particle of mass 4.0×10^(−11) kg moving at 80% the speed of light.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{energy}\:\left({in}\:{Joules}\right) \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}.\mathrm{0}×\mathrm{10}^{−\mathrm{11}} \mathrm{kg} \\ $$$$\mathrm{moving}\:\mathrm{at}\:\mathrm{80\%}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{light}. \\ $$

Question Number 168161    Answers: 1   Comments: 1

Question Number 168159    Answers: 0   Comments: 0

Question Number 168158    Answers: 0   Comments: 0

Question Number 168157    Answers: 0   Comments: 0

Question Number 168147    Answers: 0   Comments: 0

calculate :: lim_(x→0) (((tan (1+tan x))/(tan (1+sin x))))^(1/x^3 ) =?

$$\mathrm{calculate}\:\:::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{\mathrm{x}^{\mathrm{3}} }]{\frac{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}}=? \\ $$

Question Number 168144    Answers: 1   Comments: 0

lim_(x→0) ((x^3 (√(1+x)) −sin^3 x −(1/2)x^3 tan x)/((((1+2x^3 ))^(1/3) −1)ln (1+x^2 )))=?

$$\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} \sqrt{\mathrm{1}+{x}}\:−\mathrm{sin}\:^{\mathrm{3}} {x}\:−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \:\mathrm{tan}\:{x}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{2}{x}^{\mathrm{3}} }−\mathrm{1}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=?\:\:\:\:\:\:\:\: \\ $$

Question Number 168143    Answers: 2   Comments: 0

lim_(x→0) ((1−cos (1−cos x))/x^4 ) =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{{x}^{\mathrm{4}} }\:=?\:\:\:\:\:\: \\ $$

Question Number 168138    Answers: 2   Comments: 0

Question Number 168131    Answers: 2   Comments: 1

Question Number 168121    Answers: 1   Comments: 0

Question Number 168119    Answers: 1   Comments: 0

Question Number 168118    Answers: 1   Comments: 0

If tan(θ+iφ)=cosα+isinα, prove that : θ=((nΠ)/2)+(Π/4) and φ=(1/2)log tan((Π/4)+(α/2))

$${If}\:{tan}\left(\theta+{i}\phi\right)={cos}\alpha+{isin}\alpha,\: \\ $$$${prove}\:{that}\::\:\theta=\frac{{n}\Pi}{\mathrm{2}}+\frac{\Pi}{\mathrm{4}}\:{and}\:\phi=\frac{\mathrm{1}}{\mathrm{2}}{log}\:{tan}\left(\frac{\Pi}{\mathrm{4}}+\frac{\alpha}{\mathrm{2}}\right) \\ $$

Question Number 168115    Answers: 0   Comments: 2

Question Number 168114    Answers: 2   Comments: 0

  Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com