Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 505

Question Number 168071    Answers: 0   Comments: 0

A clean tube of diameter 2.5 mm is imersed in a liquidi wth a coefficient of surface tension 0.4 nm. The anglef o contact of the liquid with the glass can be assumed as1 35^0 . The density of liquid 13600 kgm3. What would bethe level of the liquid in the tube relative to the freeu srface of the liuid inside the tube Answer should be inm m

$$ \\ $$$$\mathrm{A}\:\mathrm{clean}\:\mathrm{tube}\:\mathrm{of}\:\mathrm{diameter}\:\mathrm{2}.\mathrm{5}\:\mathrm{mm}\:\mathrm{is}\:\mathrm{imersed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{liquidi} \\ $$$$\mathrm{wth}\:\mathrm{a}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{surface}\:\mathrm{tension}\:\:\mathrm{0}.\mathrm{4}\:\mathrm{nm}.\:\mathrm{The}\:\mathrm{anglef} \\ $$$$\mathrm{o}\:\mathrm{contact}\:\mathrm{of}\:\mathrm{the}\:\mathrm{liquid}\:\mathrm{with}\:\mathrm{the}\:\mathrm{glass}\:\mathrm{can}\:\mathrm{be}\:\mathrm{assumed}\:\mathrm{as1} \\ $$$$\mathrm{35}^{\mathrm{0}} .\:\mathrm{The}\:\mathrm{density}\:\mathrm{of}\:\mathrm{liquid}\:\mathrm{13600}\:\mathrm{kgm3}.\:\mathrm{What}\:\mathrm{would}\: \\ $$$$\mathrm{bethe}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{liquid}\:\mathrm{in}\:\mathrm{the}\:\mathrm{tube}\:\mathrm{relative}\:\mathrm{to}\:\mathrm{the}\:\mathrm{freeu} \\ $$$$\mathrm{srface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{liuid}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{tube}\:\mathrm{Answer}\:\mathrm{should}\:\mathrm{be}\:\mathrm{inm} \\ $$$$\mathrm{m} \\ $$

Question Number 168064    Answers: 0   Comments: 5

q=(m/( (√p)))+(p^2 /m) make p the subject

$$\:{q}=\frac{{m}}{\:\sqrt{{p}}}+\frac{{p}^{\mathrm{2}} }{{m}} \\ $$$$\:{make}\:\:{p}\:\:{the}\:{subject} \\ $$

Question Number 168055    Answers: 2   Comments: 0

Calculate :: lim_(x→0) (((1+x)^(−(1/x^3 )) )/x)=?

$$\mathrm{Calculate}\:::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{x}\right)^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }} }{\mathrm{x}}=? \\ $$

Question Number 168054    Answers: 1   Comments: 3

Simplify (((√(1+x))+(√x))/( (√(1−x))+(√x)))

$${Simplify}\:\:\frac{\sqrt{\mathrm{1}+{x}}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}−{x}}+\sqrt{{x}}} \\ $$

Question Number 168053    Answers: 2   Comments: 0

Solve the system { ((x+2y+3z+2t=2)),((2x+5y−8z+6t=5)),((3x+4y−5z+2t=4)) :}

$${Solve}\:{the}\:{system}\: \\ $$$$\begin{cases}{{x}+\mathrm{2}{y}+\mathrm{3}{z}+\mathrm{2}{t}=\mathrm{2}}\\{\mathrm{2}{x}+\mathrm{5}{y}−\mathrm{8}{z}+\mathrm{6}{t}=\mathrm{5}}\\{\mathrm{3}{x}+\mathrm{4}{y}−\mathrm{5}{z}+\mathrm{2}{t}=\mathrm{4}}\end{cases} \\ $$

Question Number 168043    Answers: 1   Comments: 1

Solve the equation: ((7x^2 + 7)/( (√(7x^2 + 3)))) + ((y^2 + 18)/( (√(y^2 + 17)))) + ((3z^2 + 26)/( (√(3z^2 + 1)))) = 16

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\frac{\mathrm{7x}^{\mathrm{2}} \:+\:\mathrm{7}}{\:\sqrt{\mathrm{7x}^{\mathrm{2}} \:+\:\mathrm{3}}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{18}}{\:\sqrt{\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{17}}}\:+\:\frac{\mathrm{3z}^{\mathrm{2}} \:+\:\mathrm{26}}{\:\sqrt{\mathrm{3z}^{\mathrm{2}} \:+\:\mathrm{1}}}\:=\:\mathrm{16} \\ $$

Question Number 168042    Answers: 1   Comments: 1

The number of natural number k such that k∣ n^7 −n for ∀n natural numbers

$$\:\:{The}\:{number}\:{of}\:{natural}\:{number}\:{k} \\ $$$$\:{such}\:{that}\:{k}\mid\:{n}^{\mathrm{7}} −{n}\:{for}\:\forall{n}\:{natural} \\ $$$$\:{numbers} \\ $$

Question Number 168040    Answers: 0   Comments: 4

Question Number 168035    Answers: 0   Comments: 3

In an examination, the probability of charles scoring the highest mark in Maths, Physics and Chemistry are 0.90, 0.75 and 0.80 respectively. Calculate the probability that he will get the highest mark in at least 3 subjects.

$$\mathrm{In}\:\mathrm{an}\:\mathrm{examination},\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{charles} \\ $$$$\mathrm{scoring}\:\mathrm{the}\:\mathrm{highest}\:\mathrm{mark}\:\mathrm{in}\:\mathrm{Maths},\:\mathrm{Physics} \\ $$$$\mathrm{and}\:\mathrm{Chemistry}\:\mathrm{are}\:\mathrm{0}.\mathrm{90},\:\mathrm{0}.\mathrm{75}\:\mathrm{and}\:\mathrm{0}.\mathrm{80}\:\mathrm{respectively}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{he}\:\mathrm{will}\:\mathrm{get} \\ $$$$\mathrm{the}\:\mathrm{highest}\:\mathrm{mark}\:\mathrm{in}\:\mathrm{at}\:\mathrm{least}\:\mathrm{3}\:\mathrm{subjects}. \\ $$

Question Number 168166    Answers: 1   Comments: 0

lim_(x→0) ((sin (sin x)−x ((1−x))^(1/3) )/x^5 ) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{sin}\:{x}\right)−{x}\:\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}}}{{x}^{\mathrm{5}} }\:=? \\ $$

Question Number 168026    Answers: 1   Comments: 1

Math question for anyone who has a bonus code solution. Question. Find the smallest numbers that are divisible by 15 remain 9 and divide by 25 remain 19 and divide by 18 remain 12 remain and divide by 36 remain 30 remain and divide above 40 remain 34 remain Whoever solves it on the sheet, put his photo in the comment again.

$$ \\ $$Math question for anyone who has a bonus code solution. Question. Find the smallest numbers that are divisible by 15 remain 9 and divide by 25 remain 19 and divide by 18 remain 12 remain and divide by 36 remain 30 remain and divide above 40 remain 34 remain Whoever solves it on the sheet, put his photo in the comment again.

Question Number 168014    Answers: 1   Comments: 0

lim_(x→0) ((5e^x +5e^(−x) −10)/(4x^2 ))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{5}{e}^{{x}} +\mathrm{5}{e}^{−{x}} −\mathrm{10}}{\mathrm{4}{x}^{\mathrm{2}} }=? \\ $$

Question Number 168013    Answers: 2   Comments: 0

Question Number 168011    Answers: 2   Comments: 0

Solve (2x+5y+1)dx − (5x+2y−1)dy=0 Mastermind

$${Solve}\: \\ $$$$\left(\mathrm{2}{x}+\mathrm{5}{y}+\mathrm{1}\right){dx}\:−\:\left(\mathrm{5}{x}+\mathrm{2}{y}−\mathrm{1}\right){dy}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168009    Answers: 1   Comments: 0

lim_(x→∞) (((√(4x^2 −4x+1))+3x)/( (√(x^2 +x−5))+x))=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}+\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{5}}+{x}}=? \\ $$

Question Number 168004    Answers: 1   Comments: 0

lim_(x→∞) (√(4x^2 −16x+1))−2x+3=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{16}{x}+\mathrm{1}}−\mathrm{2}{x}+\mathrm{3}=? \\ $$

Question Number 168000    Answers: 0   Comments: 0

Divide a^(5/2) −5a^2 b^(1/3) +10a^(3/2) b^(2/3) −10ab+5a^(1/2) b^(4/3) by a^(1/2) −b^(1/3)

$${Divide}\:{a}^{\frac{\mathrm{5}}{\mathrm{2}}} −\mathrm{5}{a}^{\mathrm{2}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} +\mathrm{10}{a}^{\frac{\mathrm{3}}{\mathrm{2}}} {b}^{\frac{\mathrm{2}}{\mathrm{3}}} −\mathrm{10}{ab}+\mathrm{5}{a}^{\frac{\mathrm{1}}{\mathrm{2}}} {b}^{\frac{\mathrm{4}}{\mathrm{3}}} \:{by}\:{a}^{\frac{\mathrm{1}}{\mathrm{2}}} −{b}^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Question Number 167997    Answers: 0   Comments: 0

xy+3x+2y=−6 yx+y+3z=−3 zx+2z+x=2 find x and y and z

$${xy}+\mathrm{3}{x}+\mathrm{2}{y}=−\mathrm{6} \\ $$$${yx}+{y}+\mathrm{3}{z}=−\mathrm{3} \\ $$$${zx}+\mathrm{2}{z}+{x}=\mathrm{2} \\ $$$${find}\:{x}\:{and}\:{y}\:{and}\:{z} \\ $$$$ \\ $$

Question Number 167996    Answers: 0   Comments: 0

find dy/dx if y=((x+2)/( (√(x+1)))) by first principle

$${find}\:{dy}/{dx}\:{if}\:{y}=\frac{{x}+\mathrm{2}}{\:\sqrt{{x}+\mathrm{1}}}\:{by}\:{first}\:{principle} \\ $$

Question Number 167994    Answers: 0   Comments: 0

Question Number 167989    Answers: 2   Comments: 0

∫ ((3−cos x)/(3+cos x)) dx =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{\mathrm{3}−\mathrm{cos}\:{x}}{\mathrm{3}+\mathrm{cos}\:{x}}\:{dx}\:=? \\ $$

Question Number 167986    Answers: 1   Comments: 0

cosxcos(π/6)−sin(π/6)sinx=(π/4)

$$\mathrm{cosxcos}\frac{\pi}{\mathrm{6}}−\mathrm{sin}\frac{\pi}{\mathrm{6}}\mathrm{sinx}=\frac{\pi}{\mathrm{4}} \\ $$

Question Number 167985    Answers: 2   Comments: 0

If af(x)+bf((1/x))=(1/x) where a≠b and x≠0 show that f(x)=((1/(a^2 −b^2 )))((a/x)−bx)

$$\mathrm{If}\:\:\mathrm{af}\left(\mathrm{x}\right)+\mathrm{bf}\left(\frac{\mathrm{1}}{\mathrm{x}}\right)=\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{where}\: \\ $$$$\mathrm{a}\neq\mathrm{b}\:\mathrm{and}\:\:\mathrm{x}\neq\mathrm{0}\:\mathrm{show}\:\mathrm{that} \\ $$$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{2}} −\boldsymbol{\mathrm{b}}^{\mathrm{2}} }\right)\left(\frac{\boldsymbol{\mathrm{a}}}{\boldsymbol{\mathrm{x}}}−\boldsymbol{\mathrm{bx}}\right) \\ $$

Question Number 167983    Answers: 0   Comments: 0

lim_(x→2^x ) (((x+2)/(2−x)))=?

$$\underset{{x}\rightarrow\mathrm{2}^{{x}} } {\mathrm{lim}}\left(\frac{{x}+\mathrm{2}}{\mathrm{2}−{x}}\right)=? \\ $$

Question Number 167982    Answers: 0   Comments: 3

lim_(x→∞) (((√(4x^2 −4x+1))+3x)/( (√(x^2 +x−5))+x))=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{1}}+\mathrm{3}{x}}{\:\sqrt{{x}^{\mathrm{2}} +{x}−\mathrm{5}}+{x}}=? \\ $$

Question Number 167981    Answers: 1   Comments: 0

lim_(x→0) ((4^x −2^x )/(8^x −4^x ))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{4}^{{x}} −\mathrm{2}^{{x}} }{\mathrm{8}^{{x}} −\mathrm{4}^{{x}} }=? \\ $$

  Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com