Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 505
Question Number 159613 Answers: 0 Comments: 5
Question Number 159611 Answers: 2 Comments: 0
Question Number 159612 Answers: 2 Comments: 0
Question Number 159606 Answers: 2 Comments: 1
Question Number 159598 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sums}; \\ $$$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{nk}^{\mathrm{2}} +{k}+\mathrm{1}} \\ $$$${v}_{{n}} =\underset{\mathrm{1}\leqslant{k}\leqslant\mathrm{2}{n}} {\sum}\frac{{n}^{\mathrm{2}} }{{kn}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$$${w}_{{n}} =\underset{\mathrm{1}\leqslant{k}\leqslant{n}^{\mathrm{2}} } {\sum}\frac{\mathrm{sin}{k}}{{k}^{\mathrm{2}} }\left(\frac{{k}}{{k}+\mathrm{1}}\right)^{{n}} \\ $$
Question Number 159597 Answers: 1 Comments: 0
Question Number 159592 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{calculate}: \\ $$$$ \\ $$$$\:\:\:\mathcal{I}\::=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{arctan}\left({x}\right)}{{x}}\right)^{\mathrm{3}} {dx}=? \\ $$$$ \\ $$
Question Number 159591 Answers: 0 Comments: 0
$$\sqrt{\mathrm{3}}\:{and}\:\sqrt{\mathrm{5}}\:{are}\:{irrational}\:{numbers}. \\ $$$${Given}\:{i}=\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}\:. \\ $$$${Show}\:{that}\:{i}\:{is}\:{irrational}\:. \\ $$
Question Number 159587 Answers: 1 Comments: 1
$$\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{3}−{x}}\:+\:\sqrt{\mathrm{3}−{x}}\:\sqrt{\mathrm{4}−{x}}\:+\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{4}−{x}}\:=\:{x}+\mathrm{2} \\ $$$$ \\ $$
Question Number 159581 Answers: 1 Comments: 3
Question Number 159578 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{1}}\right)\right)^{\mathrm{2}} }{\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)}\right) \\ $$$$\mathrm{Answer}:\:\:\mathrm{0} \\ $$
Question Number 159568 Answers: 1 Comments: 1
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\:\int\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\centerdot\:\mathrm{cos}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$
Question Number 159556 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\mathrm{2}\nmid\:{a}\:\Rightarrow\:\mathrm{240}\mid\:{a}^{\:\mathrm{5}} \:−\:{a}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 159552 Answers: 1 Comments: 4
Question Number 159551 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\:: \\ $$$$\:\:\:\:\:\underset{\underset{>} {\boldsymbol{{x}}\rightarrow\mathrm{0}}} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{E}}\:\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{x}}}\right)\:=\:?\: \\ $$
Question Number 159549 Answers: 1 Comments: 0
Question Number 159548 Answers: 0 Comments: 0
Question Number 159561 Answers: 0 Comments: 0
Question Number 159560 Answers: 1 Comments: 0
$${Resolve}\: \\ $$$$\mathrm{1}.\:{u}_{{n}+\mathrm{2}} −\mathrm{2}{u}_{{n}+\mathrm{1}} +\mathrm{4}{u}_{{n}} =\mathrm{3}^{{n}} \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =−\mathrm{2} \\ $$$$\mathrm{2}.\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} −{u}_{{n}−\mathrm{2}} +\mathrm{2sin}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right) \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =\mathrm{2} \\ $$
Question Number 159540 Answers: 1 Comments: 0
$$ \\ $$$$\:\: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left(\sqrt{{x}}\:\right).{sin}\left(\frac{\pi}{\mathrm{3}}\:+\sqrt{{x}}\:\right).{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}+\sqrt{{x}}\:\right).{ln}\left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\right)}{{x}}{dx}\overset{?} {=}\:\pi.\left(\gamma\:+\:{ln}\left(\mathrm{3}\right)\:\right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−−−\:\:\:{m}.{n} \\ $$$$ \\ $$
Question Number 159534 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{arctan}^{\mathrm{2}} \:\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$
Question Number 159532 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\:\frac{\mathrm{x}^{\mathrm{19}} }{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{30}} }}\:\mathrm{dx}\:\geqslant\:\mathrm{log}\:\sqrt[{\mathrm{10}}]{\frac{\mathrm{2}\:+\:\mathrm{b}^{\mathrm{20}} }{\mathrm{2}\:+\:\mathrm{a}^{\mathrm{20}} }} \\ $$$$ \\ $$
Question Number 159530 Answers: 0 Comments: 0
Question Number 159529 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{3y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{7}}\\{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\sqrt{\mathrm{2}}\:\mathrm{z}\:\left(\mathrm{x}\:+\:\mathrm{y}\right)}\end{cases} \\ $$$$ \\ $$
Question Number 159528 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{6}}} {\int}}\frac{\mathrm{sin}\left(\mathrm{x}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{3}}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)\:+\:\mathrm{cos}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$$$\mathrm{Answer}:\:\:\frac{\pi}{\mathrm{48}} \\ $$
Question Number 159527 Answers: 1 Comments: 2
Pg 500 Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507 Pg 508 Pg 509
Terms of Service
Privacy Policy
Contact: info@tinkutara.com