Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 505

Question Number 159613    Answers: 0   Comments: 5

Question Number 159611    Answers: 2   Comments: 0

Question Number 159612    Answers: 2   Comments: 0

Question Number 159606    Answers: 2   Comments: 1

Question Number 159598    Answers: 0   Comments: 0

Determine the limits of the following sums; u_n =Σ_(k=1) ^n (n/(nk^2 +k+1)) v_n =Σ_(1≤k≤2n) (n^2 /(kn^2 +k^2 )) w_n =Σ_(1≤k≤n^2 ) ((sink)/k^2 )((k/(k+1)))^n

$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sums}; \\ $$$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{n}}{{nk}^{\mathrm{2}} +{k}+\mathrm{1}} \\ $$$${v}_{{n}} =\underset{\mathrm{1}\leqslant{k}\leqslant\mathrm{2}{n}} {\sum}\frac{{n}^{\mathrm{2}} }{{kn}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$$${w}_{{n}} =\underset{\mathrm{1}\leqslant{k}\leqslant{n}^{\mathrm{2}} } {\sum}\frac{\mathrm{sin}{k}}{{k}^{\mathrm{2}} }\left(\frac{{k}}{{k}+\mathrm{1}}\right)^{{n}} \\ $$

Question Number 159597    Answers: 1   Comments: 0

Question Number 159592    Answers: 1   Comments: 0

calculate: I :=∫_0 ^( ∞) (((arctan(x))/x))^3 dx=?

$$ \\ $$$$\:\:\:{calculate}: \\ $$$$ \\ $$$$\:\:\:\mathcal{I}\::=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{{arctan}\left({x}\right)}{{x}}\right)^{\mathrm{3}} {dx}=? \\ $$$$ \\ $$

Question Number 159591    Answers: 0   Comments: 0

(√3) and (√5) are irrational numbers. Given i=(√5)−(√3) . Show that i is irrational .

$$\sqrt{\mathrm{3}}\:{and}\:\sqrt{\mathrm{5}}\:{are}\:{irrational}\:{numbers}. \\ $$$${Given}\:{i}=\sqrt{\mathrm{5}}−\sqrt{\mathrm{3}}\:. \\ $$$${Show}\:{that}\:{i}\:{is}\:{irrational}\:. \\ $$

Question Number 159587    Answers: 1   Comments: 1

(√(2−x)) (√(3−x)) + (√(3−x)) (√(4−x)) + (√(2−x)) (√(4−x)) = x+2

$$\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{3}−{x}}\:+\:\sqrt{\mathrm{3}−{x}}\:\sqrt{\mathrm{4}−{x}}\:+\:\sqrt{\mathrm{2}−{x}}\:\sqrt{\mathrm{4}−{x}}\:=\:{x}+\mathrm{2} \\ $$$$ \\ $$

Question Number 159581    Answers: 1   Comments: 3

Question Number 159578    Answers: 0   Comments: 0

Find: 𝛀 =lim_(n→∞) ((((log(1 + (1/(n + 1))))^2 )/(log(1 + (1/(n + 2)))))) Answer: 0

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\left(\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{1}}\right)\right)^{\mathrm{2}} }{\mathrm{log}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{n}\:+\:\mathrm{2}}\right)}\right) \\ $$$$\mathrm{Answer}:\:\:\mathrm{0} \\ $$

Question Number 159568    Answers: 1   Comments: 1

Find: 𝛀 = ∫ sin^2 (x) ∙ cos(x) dx

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\:\int\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\:\centerdot\:\mathrm{cos}\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$

Question Number 159556    Answers: 2   Comments: 0

prove that: 2∤ a ⇒ 240∣ a^( 5) − a

$$ \\ $$$$\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\mathrm{2}\nmid\:{a}\:\Rightarrow\:\mathrm{240}\mid\:{a}^{\:\mathrm{5}} \:−\:{a}\:\:\:\:\: \\ $$$$ \\ $$

Question Number 159552    Answers: 1   Comments: 4

Question Number 159551    Answers: 0   Comments: 0

hi ! help me for this one : lim_(x→0_(>) ) x E ((𝛑/x)) = ?

$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{help}}\:\boldsymbol{\mathrm{me}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{this}}\:\boldsymbol{\mathrm{one}}\:: \\ $$$$\:\:\:\:\:\underset{\underset{>} {\boldsymbol{{x}}\rightarrow\mathrm{0}}} {\boldsymbol{{lim}}}\:\boldsymbol{{x}}\:\boldsymbol{\mathrm{E}}\:\left(\frac{\boldsymbol{\pi}}{\boldsymbol{{x}}}\right)\:=\:?\: \\ $$

Question Number 159549    Answers: 1   Comments: 0

Question Number 159548    Answers: 0   Comments: 0

Question Number 159561    Answers: 0   Comments: 0

Question Number 159560    Answers: 1   Comments: 0

Resolve 1. u_(n+2) −2u_(n+1) +4u_n =3^n with u_o =1, u_1 =−2 2. u_n =u_(n−1) −u_(n−2) +2sin (((nΠ)/3)) with u_o =1, u_1 =2

$${Resolve}\: \\ $$$$\mathrm{1}.\:{u}_{{n}+\mathrm{2}} −\mathrm{2}{u}_{{n}+\mathrm{1}} +\mathrm{4}{u}_{{n}} =\mathrm{3}^{{n}} \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =−\mathrm{2} \\ $$$$\mathrm{2}.\:{u}_{{n}} ={u}_{{n}−\mathrm{1}} −{u}_{{n}−\mathrm{2}} +\mathrm{2sin}\:\left(\frac{{n}\Pi}{\mathrm{3}}\right) \\ $$$${with}\:{u}_{{o}} =\mathrm{1},\:{u}_{\mathrm{1}} =\mathrm{2} \\ $$

Question Number 159540    Answers: 1   Comments: 0

prove that : 𝛗 := ∫_0 ^( ∞) (( sin((√x) ).sin((π/3) +(√x) ).sin(((2π)/3)+(√x) ).ln((1/x^( 2) ) ))/x)dx=^? π.(γ + ln(3) ) −−−−−−−−−− m.n

$$ \\ $$$$\:\: \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left(\sqrt{{x}}\:\right).{sin}\left(\frac{\pi}{\mathrm{3}}\:+\sqrt{{x}}\:\right).{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}+\sqrt{{x}}\:\right).{ln}\left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\right)}{{x}}{dx}\overset{?} {=}\:\pi.\left(\gamma\:+\:{ln}\left(\mathrm{3}\right)\:\right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:−−−−−−−−−−\:\:\:{m}.{n} \\ $$$$ \\ $$

Question Number 159534    Answers: 1   Comments: 0

Find: 𝛀 =∫_( 0) ^( 1) arctan^2 (x) dx

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{arctan}^{\mathrm{2}} \:\left(\mathrm{x}\right)\:\mathrm{dx} \\ $$$$ \\ $$

Question Number 159532    Answers: 0   Comments: 0

if 0<a≤b then: ∫_( a) ^( b) (x^(19) /( (√(1 + x^(30) )))) dx ≥ log (((2 + b^(20) )/(2 + a^(20) )))^(1/(10))

$$\mathrm{if}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\:\frac{\mathrm{x}^{\mathrm{19}} }{\:\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{30}} }}\:\mathrm{dx}\:\geqslant\:\mathrm{log}\:\sqrt[{\mathrm{10}}]{\frac{\mathrm{2}\:+\:\mathrm{b}^{\mathrm{20}} }{\mathrm{2}\:+\:\mathrm{a}^{\mathrm{20}} }} \\ $$$$ \\ $$

Question Number 159530    Answers: 0   Comments: 0

Question Number 159529    Answers: 1   Comments: 0

Solve for real numbers: { ((2x^2 + 3y^2 + z^2 = 7)),((x^2 + y^2 + z^2 = (√2) z (x + y))) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{3y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{7}}\\{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\sqrt{\mathrm{2}}\:\mathrm{z}\:\left(\mathrm{x}\:+\:\mathrm{y}\right)}\end{cases} \\ $$$$ \\ $$

Question Number 159528    Answers: 1   Comments: 0

Find: 𝛀 =∫_( 0) ^( (𝛑/6)) ((sin(x)∙sin(x + (π/3))∙sin(x + ((2π)/3)))/(sin(3x) + cos(3x))) dx Answer: (π/(48))

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{6}}} {\int}}\frac{\mathrm{sin}\left(\mathrm{x}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{3}}\right)\centerdot\mathrm{sin}\left(\mathrm{x}\:+\:\frac{\mathrm{2}\pi}{\mathrm{3}}\right)}{\mathrm{sin}\left(\mathrm{3x}\right)\:+\:\mathrm{cos}\left(\mathrm{3x}\right)}\:\mathrm{dx} \\ $$$$\mathrm{Answer}:\:\:\frac{\pi}{\mathrm{48}} \\ $$

Question Number 159527    Answers: 1   Comments: 2

  Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508      Pg 509   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com