Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 504

Question Number 166424    Answers: 1   Comments: 3

Question Number 166419    Answers: 1   Comments: 1

Question Number 166417    Answers: 1   Comments: 0

Question Number 166403    Answers: 1   Comments: 1

fog_((3)) =10 f(3)=4 g(x)=?

$${fog}_{\left(\mathrm{3}\right)} =\mathrm{10} \\ $$$${f}\left(\mathrm{3}\right)=\mathrm{4} \\ $$$${g}\left({x}\right)=? \\ $$

Question Number 166402    Answers: 1   Comments: 0

f(x)=x^3 +x^2 +13 g(x)=(√5) gof_((x)) =?

$${f}\left({x}\right)={x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{13} \\ $$$${g}\left({x}\right)=\sqrt{\mathrm{5}} \\ $$$${gof}_{\left({x}\right)} =? \\ $$

Question Number 166400    Answers: 0   Comments: 0

Find all pairs of positive integers (a,b) such that (a^2 /(2ab^2 − b^3 +1)) ∈ Z^+

$$\mathrm{Find}\:\:\mathrm{all}\:\:\mathrm{pairs}\:\:\mathrm{of}\:\:\mathrm{positive}\:\:\mathrm{integers}\:\left({a},{b}\right)\:\:\mathrm{such}\:\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}{ab}^{\mathrm{2}} \:−\:{b}^{\mathrm{3}} +\mathrm{1}}\:\:\in\:\:\mathbb{Z}^{+} \\ $$

Question Number 166398    Answers: 1   Comments: 0

(1/(x+(1/(y+(1/z)))))=((16)/(37)) then faind volve of x+y+z=?

$$\frac{\mathrm{1}}{{x}+\frac{\mathrm{1}}{{y}+\frac{\mathrm{1}}{{z}}}}=\frac{\mathrm{16}}{\mathrm{37}} \\ $$$${then}\:{faind}\:{volve}\:{of}\:\:\:\:{x}+{y}+{z}=? \\ $$

Question Number 166392    Answers: 2   Comments: 0

Question Number 166391    Answers: 2   Comments: 0

solve in R (√(x.⌊x⌋)) − (√(⌊x⌋)) = 1 −−−−−−−

$$ \\ $$$$\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$\:\:\:\sqrt{{x}.\lfloor{x}\rfloor}\:−\:\sqrt{\lfloor{x}\rfloor}\:=\:\mathrm{1} \\ $$$$\:\:−−−−−−− \\ $$

Question Number 166379    Answers: 1   Comments: 0

soit{_(u_1 =4) ^(u_o =1) ∀nεN montrer par reccurence que: U_(n+2) =2U_(n+1) −U_n

$${soit}\left\{_{{u}_{\mathrm{1}} =\mathrm{4}} ^{{u}_{{o}} =\mathrm{1}} \:\:\forall{n}\epsilon{N}\right. \\ $$$${montrer}\:{par}\:{reccurence}\:\:{que}: \\ $$$${U}_{{n}+\mathrm{2}} =\mathrm{2}{U}_{{n}+\mathrm{1}} −{U}_{{n}} \\ $$

Question Number 166377    Answers: 1   Comments: 0

Given A= ((((1/2) (1/2))),(( a b)) ) . If A^3 = A^2 then 2a−3b=?

$$\:\:\mathrm{Given}\:\mathrm{A}=\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\\{\:\:\mathrm{a}\:\:\:\:\:\:\:\:\mathrm{b}}\end{pmatrix}\:.\:\mathrm{If}\:\mathrm{A}^{\mathrm{3}} =\:\mathrm{A}^{\mathrm{2}} \\ $$$$\:\mathrm{then}\:\mathrm{2a}−\mathrm{3b}=? \\ $$

Question Number 166376    Answers: 0   Comments: 0

Question Number 166378    Answers: 1   Comments: 0

8x^3 −6x+1=0 solve for x

$$\:\mathrm{8}{x}^{\mathrm{3}} −\mathrm{6}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\:{solve}\:{for}\:{x} \\ $$

Question Number 166373    Answers: 0   Comments: 0

prove 𝛗=∫_0 ^( 1) (( ln^( 2) (1−x^( 2) ) )/x^( 2) ) dx =(π^( 2) /3) −4ln^( 2) (2) −−− solution (technical method) −−− 𝛗= ∫_0 ^( 1) ln^( 2) (1−x^( 2) )d(1−(1/x)) = [(1−(1/x))ln^( 2) (1−x^( 2) )]_0 ^1 +4∫_0 ^( 1) (1−(1/x))((xln(1−x^( 2) ))/(1−x^( 2) ))dx = −4∫_0 ^( 1) ((ln(1−x^( 2) ))/(1+x)) dx = −4∫_0 ^( 1) ((ln(1+x))/(1+x))dx −4∫_0 ^( 1) ((ln(1−x)dx)/(1+x)) = −2ln^( 2) (2) −4 ( −(π^( 2) /(12)) +(1/2)ln^( 2) (2)) ∴ 𝛗= (π^( 2) /3) −4ln^( 2) (2) ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{prove}\:\: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\:}{{x}^{\:\mathrm{2}} }\:{dx}\:=\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:−−−\:\:{solution}\:\left({technical}\:{method}\right)\:−−− \\ $$$$\:\:\:\:\boldsymbol{\phi}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right){d}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\left[\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)\frac{{xln}\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}−{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:=\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}^{\:\mathrm{2}} \right)}{\mathrm{1}+{x}}\:{dx}\: \\ $$$$\:\:\:\:\:\:\:=\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}}{dx}\:−\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){dx}}{\mathrm{1}+{x}} \\ $$$$\:\:\:\:\:\:=\:−\mathrm{2}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:−\mathrm{4}\:\left(\:−\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\:\:\:\:\:\therefore\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{3}}\:−\mathrm{4}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\blacksquare\:\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 166371    Answers: 0   Comments: 2

Question Number 166372    Answers: 3   Comments: 0

Question Number 166360    Answers: 1   Comments: 0

((sin 10x)/(sin 2x))−((cos 10x)/(cos 2x))=?

$$\frac{\mathrm{sin}\:\mathrm{10}{x}}{{sin}\:\mathrm{2}{x}}−\frac{\mathrm{cos}\:\mathrm{10}{x}}{\mathrm{cos}\:\mathrm{2}{x}}=? \\ $$

Question Number 166358    Answers: 1   Comments: 0

Question Number 166350    Answers: 1   Comments: 1

Question Number 166331    Answers: 2   Comments: 1

prove that ((df^(−1) (a))/dx)×((df(f^(−1) (a)))/dx)=1

$${prove}\:{that} \\ $$$$\frac{{df}^{−\mathrm{1}} \left({a}\right)}{{dx}}×\frac{{df}\left({f}^{−\mathrm{1}} \left({a}\right)\right)}{{dx}}=\mathrm{1} \\ $$

Question Number 166321    Answers: 1   Comments: 0

Question Number 166320    Answers: 1   Comments: 0

∫ (dx/(tan^2 x+sin^2 x)) =?

$$\:\:\int\:\frac{\mathrm{dx}}{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\ $$

Question Number 166319    Answers: 1   Comments: 2

Question Number 166318    Answers: 0   Comments: 0

Question Number 166346    Answers: 1   Comments: 1

∫(dx/(1+(√x)+(√(1+x))))

$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$

Question Number 166307    Answers: 1   Comments: 0

∫_0 ^1 ((x^4 (1−x)^4 )/(1+x^2 ))dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{4}} \left(\mathrm{1}−{x}\right)^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

  Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com