Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 504
Question Number 159715 Answers: 0 Comments: 1
Question Number 159693 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{1}} ^{\:\mathrm{10}} {x}\:{d}\:\left({x}\:+\:\lfloor\:{x}\:\rfloor\right)\:=? \\ $$$$ \\ $$
Question Number 159691 Answers: 0 Comments: 1
Question Number 159690 Answers: 1 Comments: 0
Question Number 159683 Answers: 2 Comments: 1
$$\mathrm{2}\:\leqslant\:\mid\boldsymbol{{x}}−\mathrm{2}\mid\:\leqslant\:\mathrm{6} \\ $$
Question Number 159682 Answers: 3 Comments: 0
$$\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:+\:\mathrm{sin}\:{x}}\:{dx}\:=?\: \\ $$
Question Number 159681 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{prove}\:{that}\:: \\ $$$$\mathrm{P}=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}\:\right)\:\overset{?} {=}\:\frac{−\sqrt{\mathrm{2}}\:{sin}\left(\pi\sqrt{\mathrm{2}}\:\right)}{\pi} \\ $$$$\:\:\:\:\:{m}.{n} \\ $$
Question Number 159680 Answers: 0 Comments: 2
$$\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{6}}} \:\frac{\mathrm{sin}\:{x}\:\mathrm{sin}\:\left({x}+\mathrm{60}°\right)\:\mathrm{sin}\:\left({x}+\mathrm{120}°\right)}{\mathrm{cos}\:\mathrm{3}{x}\:+\:\mathrm{sin}\:\mathrm{3}{x}}\:{dx}=? \\ $$
Question Number 159675 Answers: 1 Comments: 2
Question Number 159671 Answers: 1 Comments: 0
$$\int\underset{\mathrm{0}} {\overset{\infty} {\:}}\:\frac{\mathrm{sin}^{\mathrm{2}} \left({x}\right)−{x}\mathrm{sin}\left({x}\right)}{{x}^{\mathrm{3}} }\:{dx} \\ $$
Question Number 159670 Answers: 1 Comments: 0
Question Number 159669 Answers: 1 Comments: 0
$${find}\:{the}\:{relative}\:{maximum}\:{or}\:{minimum} \\ $$$${or}\:{neither}\:{at}\:{the}\:{given}\:{critical}\: \\ $$$${points}\:{of}\:{the}\:{function}? \\ $$$${f}^{'} \left({x}\right)=\mathrm{6}{x}\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{4}} ,\: \\ $$$${x}\:=\:\mathrm{1},\:{x}\:=\:\mathrm{2} \\ $$
Question Number 159668 Answers: 0 Comments: 0
$$\mathrm{Study}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of} \\ $$$$\:\:\:\:\Sigma\frac{{n}^{{n}} }{\left(\mathrm{ln}{n}\right)^{{n}^{\mathrm{2}} } } \\ $$
Question Number 159664 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{4}} \left({x}\right)}{{x}^{\:\mathrm{3}} }{dx}=\:\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:−−−−−−−−− \\ $$$$ \\ $$
Question Number 159663 Answers: 0 Comments: 0
$${find}\:{laplace}\:{transform}\:{for} \\ $$$${f}\left({t}\right)=\sqrt{{t}}\:{sinh}\left({t}\right) \\ $$$${f}\left({t}\right)=\sqrt{{t}}\:{cosh}\left({t}\right) \\ $$
Question Number 159654 Answers: 0 Comments: 0
$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{x}\:\centerdot\:\mathrm{arctan}^{\mathrm{2}} \left(\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$
Question Number 159653 Answers: 1 Comments: 0
$$\:{The}\:{equation}\:{x}^{\mathrm{2}} +\mathrm{2}{xp}+{q}=\mathrm{0} \\ $$$$\:{and}\:{x}^{\mathrm{2}} +\mathrm{2}{ax}+{b}=\mathrm{0}\:{have}\:{common} \\ $$$${roots},\:{show}\:{that}\:\left({q}−{b}\right)^{\mathrm{2}} +\mathrm{4}\left({a}−{p}\right)\left({aq}−{pb}\right)=\mathrm{0} \\ $$$$ \\ $$
Question Number 159648 Answers: 2 Comments: 0
$$\:\:{y}\:=\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right) \\ $$$$\:\:{y}^{\left({n}\right)} \:=?\: \\ $$
Question Number 159646 Answers: 1 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\left(\mathrm{cos}\:{x}\right)^{\mathrm{sin}\:{x}} }{{x}^{\mathrm{3}} }\:=? \\ $$
Question Number 159645 Answers: 0 Comments: 0
Question Number 159642 Answers: 2 Comments: 1
$${minimum}\:{value}\:{of}\:{function}\: \\ $$$$\:\:\:{f}\left({x}\right)=\sqrt{\left(\mathrm{3sin}\:{x}−\mathrm{4cos}\:{x}−\mathrm{10}\right)\left(\mathrm{3sin}\:{x}+\mathrm{4cos}\:{x}−\mathrm{10}\right)} \\ $$
Question Number 159641 Answers: 0 Comments: 1
$${minimum}\:{value}\:{of}\:{f}\left({x}\right)=\mathrm{256}\:\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)+\mathrm{324}\:\mathrm{cosec}\:^{\mathrm{2}} \left({x}\right) \\ $$$$\:\forall{x}\in\:\mathbb{R}\: \\ $$
Question Number 159639 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{9}−\mathrm{3}^{\mathrm{x}} \right)−\mathrm{3}}\:\leqslant\:\mathrm{1}\: \\ $$
Question Number 159638 Answers: 0 Comments: 0
$${x}\:,\:{y}\:\in\:\mathbb{R}\:{such}\:{that}\:{x}\neq\mathrm{1}\:{and}\:{y}\neq\mathrm{1}. \\ $$$${Show}\:{that}\: \\ $$$${if}\:{x}\neq{y}\:{then}\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\neq\frac{\mathrm{1}}{{y}−\mathrm{1}} \\ $$
Question Number 159635 Answers: 0 Comments: 1
Question Number 159621 Answers: 0 Comments: 1
Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507 Pg 508
Terms of Service
Privacy Policy
Contact: info@tinkutara.com