Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 504
Question Number 168244 Answers: 3 Comments: 0
Question Number 168233 Answers: 1 Comments: 0
$$\begin{cases}{{u}_{\mathrm{0}} \:=\:\mathrm{3}\::\:{u}_{\mathrm{1}} \:=\:\mathrm{4}}\\{{u}_{{n}+\mathrm{1}} \:=\:{u}_{{n}} \:+\:\mathrm{6}{u}_{{n}−\mathrm{1}} }\end{cases} \\ $$$${Express}\:{u}_{{n}} \:{in}\:{terms}\:{of}\:{n} \\ $$
Question Number 168231 Answers: 0 Comments: 4
$$\int\:\:{x}\:\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }\:\:{dx}\:\:=\:\:? \\ $$
Question Number 168229 Answers: 1 Comments: 0
Question Number 168225 Answers: 2 Comments: 0
$$\mathrm{hi}\:! \\ $$$$\left.{x}\:\in\:\right]\frac{\pi}{\mathrm{4}}\:;\:\frac{\pi}{\mathrm{3}}\left[\right. \\ $$$${f}\:\left({x}\right)\:=\:\frac{\mathrm{1}}{{cos}\:{x}} \\ $$$$\mathrm{primitive}\:\mathrm{of}\:{f}\left({x}\right). \\ $$
Question Number 168210 Answers: 1 Comments: 0
Question Number 168209 Answers: 0 Comments: 0
Question Number 168208 Answers: 2 Comments: 1
$$\:{If}\:\left({x}+{y}\boldsymbol{{i}}\right)^{\mathrm{4}} ={a}+{b}\boldsymbol{{i}}, \\ $$$$\:{show}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{4}} \\ $$
Question Number 168206 Answers: 1 Comments: 0
Question Number 168203 Answers: 1 Comments: 0
Question Number 168198 Answers: 0 Comments: 0
Question Number 168190 Answers: 0 Comments: 5
Question Number 168189 Answers: 1 Comments: 11
Question Number 168188 Answers: 4 Comments: 1
$$\:\:\:\:\:\int\:\frac{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}{\left(\mathrm{1}+\mathrm{sin}\:\mathrm{2}{x}\right)^{\mathrm{2}} }\:{dx}\:=? \\ $$
Question Number 168187 Answers: 2 Comments: 0
$${Prove}\:{that}\::\: \\ $$$${sinh}^{−\mathrm{1}} {tan}\theta\:=\:{log}\:{tan}\left(\frac{\theta}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168185 Answers: 0 Comments: 0
$${Separate}\:{cos}^{−\mathrm{1}} {e}^{{i}\theta} \:{into}\: \\ $$$${real}\:{and}\:{imaginary}\:{parts}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168180 Answers: 1 Comments: 0
Question Number 168178 Answers: 0 Comments: 0
Question Number 168179 Answers: 1 Comments: 0
Question Number 168176 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:{f}\left({x}\right)=\frac{\:\:\mid\:{sin}\left(\mathrm{2}{x}\right)\mid}{\mid{sin}\left({x}\right)\mid+\mid{cos}\left({x}\right)\mid\:+\mathrm{1}} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{then}\:\::\:\:\:\:\:\:{R}_{\:{f}} \:=?\:\:\:\:\:\:\:\:\left(\:{range}\:\right)\:\: \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 168164 Answers: 0 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{total}\:\mathrm{energy}\:\left({in}\:{Joules}\right) \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{4}.\mathrm{0}×\mathrm{10}^{−\mathrm{11}} \mathrm{kg} \\ $$$$\mathrm{moving}\:\mathrm{at}\:\mathrm{80\%}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{light}. \\ $$
Question Number 168161 Answers: 1 Comments: 1
Question Number 168159 Answers: 0 Comments: 0
Question Number 168158 Answers: 0 Comments: 0
Question Number 168157 Answers: 0 Comments: 0
Question Number 168147 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\:::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\sqrt[{\mathrm{x}^{\mathrm{3}} }]{\frac{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{tan}\:\mathrm{x}\right)}{\mathrm{tan}\:\left(\mathrm{1}+\mathrm{sin}\:\mathrm{x}\right)}}=? \\ $$
Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507 Pg 508
Terms of Service
Privacy Policy
Contact: info@tinkutara.com