Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 504

Question Number 159715    Answers: 0   Comments: 1

Question Number 159693    Answers: 1   Comments: 0

Ω:=∫_1 ^( 10) x d (x + ⌊ x ⌋) =?

$$ \\ $$$$\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{1}} ^{\:\mathrm{10}} {x}\:{d}\:\left({x}\:+\:\lfloor\:{x}\:\rfloor\right)\:=? \\ $$$$ \\ $$

Question Number 159691    Answers: 0   Comments: 1

Question Number 159690    Answers: 1   Comments: 0

Question Number 159683    Answers: 2   Comments: 1

2 ≤ ∣x−2∣ ≤ 6

$$\mathrm{2}\:\leqslant\:\mid\boldsymbol{{x}}−\mathrm{2}\mid\:\leqslant\:\mathrm{6} \\ $$

Question Number 159682    Answers: 3   Comments: 0

∫_( 0) ^( (π/2)) ((cos x sin x)/(cos x + sin x)) dx =?

$$\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{cos}\:{x}\:\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:+\:\mathrm{sin}\:{x}}\:{dx}\:=?\: \\ $$

Question Number 159681    Answers: 1   Comments: 0

prove that : P= Π_(n=1) ^∞ (1−(1/(n(n+2))) ) =^? ((−(√2) sin(π(√2) ))/π) m.n

$$ \\ $$$$\:\:\:\:{prove}\:{that}\:: \\ $$$$\mathrm{P}=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)}\:\right)\:\overset{?} {=}\:\frac{−\sqrt{\mathrm{2}}\:{sin}\left(\pi\sqrt{\mathrm{2}}\:\right)}{\pi} \\ $$$$\:\:\:\:\:{m}.{n} \\ $$

Question Number 159680    Answers: 0   Comments: 2

∫_( 0) ^( (π/6)) ((sin x sin (x+60°) sin (x+120°))/(cos 3x + sin 3x)) dx=?

$$\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{6}}} \:\frac{\mathrm{sin}\:{x}\:\mathrm{sin}\:\left({x}+\mathrm{60}°\right)\:\mathrm{sin}\:\left({x}+\mathrm{120}°\right)}{\mathrm{cos}\:\mathrm{3}{x}\:+\:\mathrm{sin}\:\mathrm{3}{x}}\:{dx}=? \\ $$

Question Number 159675    Answers: 1   Comments: 2

Question Number 159671    Answers: 1   Comments: 0

∫ _0 ^∞ ((sin^2 (x)−xsin(x))/x^3 ) dx

$$\int\underset{\mathrm{0}} {\overset{\infty} {\:}}\:\frac{\mathrm{sin}^{\mathrm{2}} \left({x}\right)−{x}\mathrm{sin}\left({x}\right)}{{x}^{\mathrm{3}} }\:{dx} \\ $$

Question Number 159670    Answers: 1   Comments: 0

Question Number 159669    Answers: 1   Comments: 0

find the relative maximum or minimum or neither at the given critical points of the function? f^′ (x)=6x(x^2 −4)^4 (x^2 −1)^2 +8x(x^2 −1)^3 (x^2 −4)^4 , x = 1, x = 2

$${find}\:{the}\:{relative}\:{maximum}\:{or}\:{minimum} \\ $$$${or}\:{neither}\:{at}\:{the}\:{given}\:{critical}\: \\ $$$${points}\:{of}\:{the}\:{function}? \\ $$$${f}^{'} \left({x}\right)=\mathrm{6}{x}\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{4}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{8}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{4}\right)^{\mathrm{4}} ,\: \\ $$$${x}\:=\:\mathrm{1},\:{x}\:=\:\mathrm{2} \\ $$

Question Number 159668    Answers: 0   Comments: 0

Study the nature of Σ(n^n /((lnn)^n^2 ))

$$\mathrm{Study}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of} \\ $$$$\:\:\:\:\Sigma\frac{{n}^{{n}} }{\left(\mathrm{ln}{n}\right)^{{n}^{\mathrm{2}} } } \\ $$

Question Number 159664    Answers: 0   Comments: 2

prove that : Φ = ∫_0 ^( ∞) (( sin^( 4) (x))/x^( 3) )dx= ln(2) −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{4}} \left({x}\right)}{{x}^{\:\mathrm{3}} }{dx}=\:\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:−−−−−−−−− \\ $$$$ \\ $$

Question Number 159663    Answers: 0   Comments: 0

find laplace transform for f(t)=(√t) sinh(t) f(t)=(√t) cosh(t)

$${find}\:{laplace}\:{transform}\:{for} \\ $$$${f}\left({t}\right)=\sqrt{{t}}\:{sinh}\left({t}\right) \\ $$$${f}\left({t}\right)=\sqrt{{t}}\:{cosh}\left({t}\right) \\ $$

Question Number 159654    Answers: 0   Comments: 0

Find: 𝛀 =∫_( 0) ^( ∞) ((x ∙ arctan^2 (x))/((x + 1)(x^2 + 1))) dx

$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{x}\:\centerdot\:\mathrm{arctan}^{\mathrm{2}} \left(\mathrm{x}\right)}{\left(\mathrm{x}\:+\:\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)}\:\mathrm{dx} \\ $$

Question Number 159653    Answers: 1   Comments: 0

The equation x^2 +2xp+q=0 and x^2 +2ax+b=0 have common roots, show that (q−b)^2 +4(a−p)(aq−pb)=0

$$\:{The}\:{equation}\:{x}^{\mathrm{2}} +\mathrm{2}{xp}+{q}=\mathrm{0} \\ $$$$\:{and}\:{x}^{\mathrm{2}} +\mathrm{2}{ax}+{b}=\mathrm{0}\:{have}\:{common} \\ $$$${roots},\:{show}\:{that}\:\left({q}−{b}\right)^{\mathrm{2}} +\mathrm{4}\left({a}−{p}\right)\left({aq}−{pb}\right)=\mathrm{0} \\ $$$$ \\ $$

Question Number 159648    Answers: 2   Comments: 0

y = sin^2 (2x) y^((n)) =?

$$\:\:{y}\:=\:\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right) \\ $$$$\:\:{y}^{\left({n}\right)} \:=?\: \\ $$

Question Number 159646    Answers: 1   Comments: 0

lim_(x→0) ((1−(cos x)^(sin x) )/x^3 ) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\left(\mathrm{cos}\:{x}\right)^{\mathrm{sin}\:{x}} }{{x}^{\mathrm{3}} }\:=? \\ $$

Question Number 159645    Answers: 0   Comments: 0

Question Number 159642    Answers: 2   Comments: 1

minimum value of function f(x)=(√((3sin x−4cos x−10)(3sin x+4cos x−10)))

$${minimum}\:{value}\:{of}\:{function}\: \\ $$$$\:\:\:{f}\left({x}\right)=\sqrt{\left(\mathrm{3sin}\:{x}−\mathrm{4cos}\:{x}−\mathrm{10}\right)\left(\mathrm{3sin}\:{x}+\mathrm{4cos}\:{x}−\mathrm{10}\right)} \\ $$

Question Number 159641    Answers: 0   Comments: 1

minimum value of f(x)=256 sin^2 (x)+324 cosec^2 (x) ∀x∈ R

$${minimum}\:{value}\:{of}\:{f}\left({x}\right)=\mathrm{256}\:\mathrm{sin}\:^{\mathrm{2}} \left({x}\right)+\mathrm{324}\:\mathrm{cosec}\:^{\mathrm{2}} \left({x}\right) \\ $$$$\:\forall{x}\in\:\mathbb{R}\: \\ $$

Question Number 159639    Answers: 1   Comments: 0

((x−1)/(log _3 (9−3^x )−3)) ≤ 1

$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}−\mathrm{1}}{\mathrm{log}\:_{\mathrm{3}} \left(\mathrm{9}−\mathrm{3}^{\mathrm{x}} \right)−\mathrm{3}}\:\leqslant\:\mathrm{1}\: \\ $$

Question Number 159638    Answers: 0   Comments: 0

x , y ∈ R such that x≠1 and y≠1. Show that if x≠y then (1/(x−1))≠(1/(y−1))

$${x}\:,\:{y}\:\in\:\mathbb{R}\:{such}\:{that}\:{x}\neq\mathrm{1}\:{and}\:{y}\neq\mathrm{1}. \\ $$$${Show}\:{that}\: \\ $$$${if}\:{x}\neq{y}\:{then}\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\neq\frac{\mathrm{1}}{{y}−\mathrm{1}} \\ $$

Question Number 159635    Answers: 0   Comments: 1

Question Number 159621    Answers: 0   Comments: 1

  Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507      Pg 508   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com