Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 503

Question Number 162365    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ln^2 (x+y+z)dxdydz=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ln}^{\mathrm{2}} \left({x}+{y}+{z}\right){dxdydz}=? \\ $$

Question Number 162364    Answers: 2   Comments: 1

lim_(x→0) ((5sin x−sin 3x cos 2x−cos 3x sin 2x)/x^3 ) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{5sin}\:{x}−\mathrm{sin}\:\mathrm{3}{x}\:\mathrm{cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{3}{x}\:\mathrm{sin}\:\mathrm{2}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$

Question Number 162351    Answers: 1   Comments: 0

how to show f(x)=x^4 +2x^3 +5x^2 −16x−20 in the form of (x^2 +x+a)^2 −4(x+b)^2 .

$$\mathrm{how}\:\mathrm{to}\:\mathrm{show}\: \\ $$$${f}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{16}{x}−\mathrm{20}\: \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\left({x}^{\mathrm{2}} +{x}+{a}\right)^{\mathrm{2}} −\mathrm{4}\left({x}+{b}\right)^{\mathrm{2}} . \\ $$

Question Number 162348    Answers: 1   Comments: 4

Question Number 162344    Answers: 1   Comments: 1

Question Number 162338    Answers: 1   Comments: 0

(d^2 y/dx^2 ) - 3((dy/dx)) - 4y = tan(x)log(cos(x))

$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:-\:\mathrm{3}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)\:-\:\mathrm{4y}\:=\:\mathrm{tan}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{cos}\left(\mathrm{x}\right)\right) \\ $$

Question Number 162336    Answers: 1   Comments: 0

lim_( n→∞) ((1/(1+n^( 3) )) +(( 4)/(8 +n^( 3) )) + (9/(27 +n^( 3) )) +...+(n^( 2) /(2n^( 3) )) )=?

$$ \\ $$$${lim}_{\:{n}\rightarrow\infty} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{n}^{\:\mathrm{3}} }\:+\frac{\:\mathrm{4}}{\mathrm{8}\:+{n}^{\:\mathrm{3}} }\:+\:\frac{\mathrm{9}}{\mathrm{27}\:+{n}^{\:\mathrm{3}} }\:+...+\frac{{n}^{\:\mathrm{2}} }{\mathrm{2}{n}^{\:\mathrm{3}} }\:\right)=? \\ $$$$ \\ $$

Question Number 162326    Answers: 1   Comments: 0

Hello please show it... a ∈ [0 , (π/4)] a ≤tan a ≤ 2a

$${Hello}\:{please}\:{show}\:{it}... \\ $$$$\:{a}\:\in\:\left[\mathrm{0}\:,\:\frac{\pi}{\mathrm{4}}\right]\:\:\:\:\:\:\:\:{a}\:\leqslant{tan}\:{a}\:\leqslant\:\mathrm{2}{a} \\ $$

Question Number 162309    Answers: 1   Comments: 3

Question Number 162305    Answers: 2   Comments: 0

proof that 2^(n+1) >(n+2)sin n

$${proof}\:{that} \\ $$$$\mathrm{2}^{{n}+\mathrm{1}} >\left({n}+\mathrm{2}\right)\mathrm{sin}\:{n} \\ $$

Question Number 162303    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ln^2 (x+y+z)dxdydz=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{ln}^{\mathrm{2}} \left({x}+{y}+{z}\right){dxdydz}=? \\ $$

Question Number 162280    Answers: 1   Comments: 0

y=x^(sinx) find y′

$${y}={x}^{{sinx}} \\ $$$${find}\:\:{y}' \\ $$

Question Number 162278    Answers: 0   Comments: 0

Question Number 162275    Answers: 0   Comments: 0

Question Number 162265    Answers: 0   Comments: 0

Calculate: Σ_(k=1) ^∞ ((H_(2k) (-1)^(k-1) )/(2k + 1)) where, H_n is the n-th harmonic number

$$\mathrm{Calculate}:\:\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{H}_{\mathrm{2}\boldsymbol{\mathrm{k}}} \:\left(-\mathrm{1}\right)^{\boldsymbol{\mathrm{k}}-\mathrm{1}} }{\mathrm{2k}\:+\:\mathrm{1}} \\ $$$$\mathrm{where},\:\mathrm{H}_{\boldsymbol{\mathrm{n}}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{n}-\mathrm{th}\:\mathrm{harmonic}\:\mathrm{number} \\ $$

Question Number 162264    Answers: 0   Comments: 0

𝛀 =∫_( 0) ^( 1) ∫_( 0) ^( 1) ∫_( 0) ^( 1) ln^2 (x+y+z) dxdydz = ?

$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)\:\mathrm{dxdydz}\:=\:? \\ $$

Question Number 162261    Answers: 3   Comments: 1

find Σ_(n=1) ^∞ (1/(5^n −1))=? or generally Φ(k)= Σ_(n=1) ^∞ (1/(k^n −1))=? with k∈N, k≥2

$${find}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{5}^{{n}} −\mathrm{1}}=? \\ $$$${or}\:{generally} \\ $$$$\Phi\left({k}\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}^{{n}} −\mathrm{1}}=?\:{with}\:{k}\in{N},\:{k}\geqslant\mathrm{2} \\ $$

Question Number 162301    Answers: 1   Comments: 0

lim _(x→(π/2)) ( 1− sin(x))^( ( tan((x/2))−1 )) =?

$$\: \\ $$$$\mathrm{lim}\:_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \:\left(\:\mathrm{1}−\:{sin}\left({x}\right)\right)^{\:\left(\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}\:\right)} =? \\ $$$$ \\ $$

Question Number 162299    Answers: 1   Comments: 0

calculta ∫_0 ^∞ ((lnx)/((x^2 +x+1)^2 ))dx

$$\mathrm{calculta}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 162298    Answers: 1   Comments: 0

find ∫_0 ^1 lnx ln(1−x^3 )dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnx}\:\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)\mathrm{dx} \\ $$

Question Number 162297    Answers: 1   Comments: 0

find ∫_0 ^1 ln(1−x)ln(1+x)dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 162253    Answers: 1   Comments: 0

The tangent of a parabola y^2 =4ax at the point P (ap^2 , 2ap) intersects the line x+a=0 at T . (i) If M is the midpoint of PT , find the coordinates of M in terms of a and p. (ii) Prove that the equation of locus of M is y^2 (2x+a)=a(3x+a)^2

$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{ax}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point} \\ $$$${P}\:\left({ap}^{\mathrm{2}} ,\:\mathrm{2}{ap}\right)\:\mathrm{intersects}\:\mathrm{the}\:\mathrm{line}\:{x}+{a}=\mathrm{0}\:\mathrm{at}\:{T}\:. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{If}\:{M}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of}\:{PT}\:,\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\:\:\:\:\:\:\mathrm{coordinates}\:\mathrm{of}\:{M}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{a}\:\mathrm{and}\:{p}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{locus}\:\mathrm{of}\:{M}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:{y}^{\mathrm{2}} \left(\mathrm{2}{x}+{a}\right)={a}\left(\mathrm{3}{x}+{a}\right)^{\mathrm{2}} \\ $$

Question Number 162249    Answers: 1   Comments: 0

Question Number 162243    Answers: 2   Comments: 0

∫_( 0) ^( 1) ((((ln x)^4 )/( (√x) ))) dx =?

$$\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\left(\frac{\left(\mathrm{ln}\:{x}\right)^{\mathrm{4}} }{\:\sqrt{{x}}\:}\right)\:{dx}\:=? \\ $$

Question Number 162240    Answers: 1   Comments: 0

∫((2x−5)/(x^2 +4x+5))dx

$$\int\frac{\mathrm{2}\boldsymbol{{x}}−\mathrm{5}}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{4}\boldsymbol{{x}}+\mathrm{5}}\boldsymbol{{dx}} \\ $$

Question Number 162238    Answers: 1   Comments: 0

∫_0 ^1 (1/(x^7 +1))dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{7}} +\mathrm{1}}\boldsymbol{\mathrm{dx}}=? \\ $$

  Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com