Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 503
Question Number 159775 Answers: 1 Comments: 0
$$\prod_{\mathrm{n}=\mathrm{1}} ^{\infty} \frac{\alpha^{\mathrm{3}} +\beta^{\mathrm{2}} }{\mathrm{3}^{\mathrm{n}} }=\:? \\ $$$$\mathrm{in}\:\mathrm{expanded}\:\mathrm{form} \\ $$
Question Number 159781 Answers: 0 Comments: 0
Question Number 159771 Answers: 0 Comments: 1
Question Number 159768 Answers: 1 Comments: 1
Question Number 159763 Answers: 0 Comments: 4
Question Number 159762 Answers: 1 Comments: 0
$$\:\:\:{Given}\:\mathrm{log}\:_{\mathrm{3}} \left({n}\right)=\:\mathrm{log}\:_{\mathrm{6}} \left({m}\right)=\mathrm{log}\:_{\mathrm{12}} \left({m}+{n}\right) \\ $$$$\:\:\:\frac{{m}}{{n}}\:=\:? \\ $$
Question Number 159759 Answers: 1 Comments: 0
Question Number 159757 Answers: 0 Comments: 1
Question Number 159755 Answers: 1 Comments: 1
Question Number 159754 Answers: 1 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\sqrt{\mathrm{tan}\:{x}}\:+\:\sqrt{\mathrm{sin}\:{x}}\:−\mathrm{2}\sqrt{{x}}}{\:\sqrt{\mathrm{sin}\:{x}}\:−\:\sqrt{\mathrm{tan}\:{x}}\:}\:=\:? \\ $$
Question Number 159750 Answers: 0 Comments: 1
$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\:\sqrt{\mathrm{689}×\mathrm{690}×\mathrm{691}+\mathrm{1}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{naturel}}\:\boldsymbol{\mathrm{number}}. \\ $$
Question Number 159748 Answers: 2 Comments: 0
Question Number 159747 Answers: 0 Comments: 0
Question Number 159744 Answers: 1 Comments: 0
Question Number 159742 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{perimeter}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{figure}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{is}} \\ $$$$\boldsymbol{\mathrm{bounded}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{curves}}\:\boldsymbol{\mathrm{y}}^{\mathrm{3}} =\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}=\sqrt{\mathrm{2}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \\ $$
Question Number 159740 Answers: 0 Comments: 0
Question Number 159737 Answers: 0 Comments: 0
$${Prove}\: \\ $$$$\left.\mathrm{1}\right)\:{E}\left({x}\right)+{E}\left({y}\right)\leqslant{E}\left({x}+{y}\right)\leqslant{E}\left({x}\right)+{E}\left({y}\right)+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{E}\left({x}\right)+{E}\left({y}\right)+{E}\left({x}+\mathrm{1}\right)\leqslant{E}\left(\mathrm{2}{x}\right)+{E}\left(\mathrm{2}{y}\right) \\ $$$$\left.\mathrm{3}\right)\:{E}\left(\frac{{x}}{\mathrm{2}}\right)+{E}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)={E}\left({x}\right) \\ $$
Question Number 159736 Answers: 0 Comments: 0
$${Prove}\:{that} \\ $$$$\left.\mathrm{1}\right){Sup}\left({A}\cup{B}\right)={ma}\mathrm{x}\left(\mathrm{S}{up}\left({A}\right),\:{Sup}\left({B}\right)\right) \\ $$$$\left.\mathrm{2}\right)\:{inf}\left({A}\cup{B}\right)={min}\left({inf}\left({A}\right),\:{inf}\left({B}\right)\right) \\ $$
Question Number 159733 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\lfloor{xcos}\left({x}\right)\rfloor}{{xsin}\left(\pi\lfloor\frac{{e}^{\frac{\mathrm{1}}{{x}}} }{{ln}\left({x}\right)}\rfloor\right)} \\ $$
Question Number 159731 Answers: 0 Comments: 0
Question Number 159730 Answers: 0 Comments: 0
Question Number 159727 Answers: 1 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt[{{x}^{\mathrm{3}} }]{\mathrm{1}+\mathrm{tan}\:\left(\mathrm{1}−\left(\frac{{x}}{\mathrm{sin}\:{x}}\right)\right)}\:?\: \\ $$
Question Number 159725 Answers: 0 Comments: 0
Question Number 159724 Answers: 0 Comments: 0
Question Number 159723 Answers: 1 Comments: 1
$$\frac{\mathrm{1}}{{k}+\mathrm{1}}\leqslant\int_{{k}} ^{{k}+\mathrm{1}} \left(\frac{\mathrm{1}}{{x}}\right){dx}\leqslant\frac{\mathrm{1}}{{k}}\:\:\:\:\:\:\:\:\: \\ $$$$\:{please}\:{show}\:{it}\:{with}\:{k}\in\aleph−\left(\mathrm{0}\right) \\ $$$$ \\ $$
Question Number 159720 Answers: 1 Comments: 1
$$\:\:\:\:\:\:\:\:{L}\:=\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{3}−\mathrm{4sin}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:\mathrm{2}{x}−\mathrm{sin}\:{x}}\:? \\ $$$$\:\:\:\:\:\:{Q}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\left(\frac{\mathrm{2}}{\mathrm{cos}\:^{\mathrm{2}} {x}}\:+\mathrm{cos}\:{x}−\mathrm{3}\right)\right]\:?\: \\ $$
Pg 498 Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507
Terms of Service
Privacy Policy
Contact: info@tinkutara.com