Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 503
Question Number 163638 Answers: 0 Comments: 2
$$\int\:\frac{\boldsymbol{{dx}}}{\:\sqrt{\mathrm{2}\boldsymbol{{c}}_{\mathrm{1}} +\boldsymbol{{e}}^{−\mathrm{2}\boldsymbol{{x}}} }} \\ $$
Question Number 163632 Answers: 2 Comments: 0
$$\frac{\left(\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{y}^{\mathrm{2}} \right)\centerdot\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{3xy}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{3}} }}\:=\:-\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:=\:\left(\mathrm{x}\:+\:\mathrm{y}\right)^{\mathrm{2}} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{y}} \\ $$
Question Number 163631 Answers: 2 Comments: 0
$$\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:=\:\sqrt{\mathrm{3}}\:\:\Rightarrow\:\mathrm{x}^{\mathrm{3579}} \:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3579}} }\:=\:? \\ $$
Question Number 163627 Answers: 2 Comments: 0
Question Number 163624 Answers: 1 Comments: 0
Question Number 163619 Answers: 1 Comments: 2
$$\boldsymbol{{Prove}}\:\boldsymbol{{that}}; \\ $$$$\:\:\int_{−\infty} ^{\mathrm{0}} \:\boldsymbol{{e}}^{−\mid\boldsymbol{{t}}\mid} \:\boldsymbol{{dt}}\:=\:\mathrm{1} \\ $$
Question Number 163618 Answers: 0 Comments: 0
Question Number 163613 Answers: 0 Comments: 0
Question Number 163614 Answers: 0 Comments: 0
$$\int\frac{{sec}^{\mathrm{2}} {x}}{\left({secx}+{tanx}\right)^{\mathrm{9}/\mathrm{2}} }{dx} \\ $$
Question Number 163611 Answers: 1 Comments: 0
Question Number 163610 Answers: 1 Comments: 0
Question Number 163609 Answers: 0 Comments: 0
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}n}\left[\mathrm{A}−\mathrm{n}\left(\mathrm{H}_{\mathrm{n}} −\mathrm{lnn}−\gamma\right)\right]=\mathrm{B} \\ $$$$\mathrm{Find}\:\frac{\mathrm{A}}{\mathrm{B}}=? \\ $$
Question Number 163608 Answers: 0 Comments: 0
$$\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }+...+\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} } \\ $$$$\mathrm{Prove}::\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} \left\{\frac{\mathrm{1}}{\mathrm{24}}−\mathrm{n}\left[\mathrm{n}\left(\frac{\pi}{\mathrm{4}}−\mathrm{A}_{\mathrm{n}} \right)−\frac{\mathrm{1}}{\mathrm{4}}\right]\right\}}=\mathrm{2016} \\ $$
Question Number 163601 Answers: 0 Comments: 0
$$\int_{\frac{\mathrm{2}}{\pi}} ^{+{oo}} {ln}\left({cos}\left(\frac{\mathrm{1}}{{x}}\right)\right){dx} \\ $$$${narure}? \\ $$
Question Number 163600 Answers: 1 Comments: 0
$${a}\:{line}\:{charges}\:{of}\:{charge}\:{density}\: \\ $$$${pl}=\mathrm{4}{x}^{\mathrm{3}} −{x}+\mathrm{3}{mc}/{m}\:{laying}\:{along}\:{the}\:{x}−{axis}. \\ $$$${determine}\:{the}\:{total}\:{charge}\:{if}\:{the}\:{line}\:{charge} \\ $$$${extends}\:{from}\:{x}=\mathrm{2}\:{and}\:{x}=\mathrm{6}\:{m} \\ $$
Question Number 163591 Answers: 0 Comments: 3
$$\mathrm{R}\acute {\mathrm{e}soudre}\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {u}}{\partial{y}^{\mathrm{2}} }=\mathrm{10}{e}^{\mathrm{2}{x}+{y}} \\ $$
Question Number 163586 Answers: 0 Comments: 0
Question Number 163587 Answers: 1 Comments: 0
Question Number 163588 Answers: 0 Comments: 0
$${In}\:\:\bigtriangleup{ABC}\:\:{prove}\:{that} \\ $$$$\frac{{a}}{{b}}\:+\:\frac{{b}}{{c}}\:+\:\frac{{c}}{{a}}\:+\:\frac{{R}^{\mathrm{2}} }{\mathrm{4}{r}^{\mathrm{2}} }\:\geqslant\:\mathrm{1}\:+\:\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\:\frac{{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:+\:\frac{{a}^{\mathrm{2}} }{{c}^{\mathrm{2}} } \\ $$
Question Number 163582 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{7}^{{x}+\mathrm{2}} +\mathrm{6}^{{x}} }{\mathrm{3}^{\mathrm{2}{x}} −\mathrm{5}^{{x}} }=? \\ $$
Question Number 163770 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:{solve}\::\:\:\:\:{x},{y}\:\in\:\mathbb{N}\: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{3}{x}\:+\:\mathrm{5}{y}\:=\:\mathrm{20}\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−− \\ $$
Question Number 163769 Answers: 0 Comments: 0
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{ln}\left(\mathrm{1}+\sqrt[{{n}}]{{n}!}\right)}{\:\sqrt[{{n}}]{\left(\mathrm{2}{n}−\mathrm{1}\right)!!}}=? \\ $$
Question Number 163767 Answers: 0 Comments: 0
Question Number 163580 Answers: 1 Comments: 1
$$\int\:{sin}^{\mathrm{2021}} \left({x}\right)\:.\:{sin}\left(\mathrm{2023}\:{x}\:\right)\:{dx}\: \\ $$
Question Number 163577 Answers: 0 Comments: 0
$$\:\:\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{ax}}\right)\mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}−\mathrm{x}}\right)\:\mathrm{dx} \\ $$
Question Number 163576 Answers: 2 Comments: 0
$$\:\:{What}\:{is}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{2020}} \\ $$$$\:{in}\:\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +...+{x}^{\mathrm{2020}} \right)^{\mathrm{2021}} \\ $$
Pg 498 Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507
Terms of Service
Privacy Policy
Contact: info@tinkutara.com