Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 503

Question Number 168379    Answers: 0   Comments: 0

Question Number 168380    Answers: 0   Comments: 0

Question Number 168375    Answers: 0   Comments: 2

Question Number 168368    Answers: 1   Comments: 0

Question Number 168367    Answers: 1   Comments: 0

91x^2 +84y^2 −24xy+406x−392y+799=0 find the eccentricity,focus,length of major & minor axis,directrix & length of eccentric perpendicular

$$\mathrm{91}{x}^{\mathrm{2}} +\mathrm{84}{y}^{\mathrm{2}} −\mathrm{24}{xy}+\mathrm{406}{x}−\mathrm{392}{y}+\mathrm{799}=\mathrm{0} \\ $$$${find}\:{the}\:{eccentricity},{focus},{length}\:{of}\:{major}\:\&\:{minor}\:{axis},{directrix}\:\&\:{length}\:{of}\:{eccentric}\:{perpendicular} \\ $$$$ \\ $$

Question Number 168366    Answers: 1   Comments: 0

Question Number 168361    Answers: 1   Comments: 0

Question Number 168355    Answers: 1   Comments: 0

let U_n =∫_0 ^1 (x^n )(√(1−x^(2n+1) )))dx 1) find a equivalent of U_n (n∼∞) 2) study the comvergence of Σ U_n

$$\left.{let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{n}} \right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}{n}+\mathrm{1}} }\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \left({n}\sim\infty\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{comvergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Question Number 168348    Answers: 2   Comments: 0

Question Number 168347    Answers: 1   Comments: 4

Question Number 168341    Answers: 1   Comments: 0

∫(1+x^2 )^3 dx=?

$$\int\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} {dx}=? \\ $$

Question Number 168339    Answers: 0   Comments: 0

A point in rectangular coordinates (x,y,z) can be represented in spherical coordinates (r,θ,ϕ) by: x = r sin θ sin ϕ, y = sin θ sin ϕ, z = sin ϕ, 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π (a) Calculate the Jacobian of the transformation ((∂(x,y,z))/(∂(r,θ,ϕ))) (b) Calculate the volume of the region delimited by the sphere: S = {x,y,z ∈R^3 , x^2 +y^2 +z^2 ≤ R^2 , R>0}

$$\mathrm{A}\:\mathrm{point}\:\mathrm{in}\:\mathrm{rectangular}\:\mathrm{coordinates}\: \\ $$$$\left({x},{y},{z}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{represented}\:\mathrm{in}\:\mathrm{spherical} \\ $$$$\mathrm{coordinates}\:\left({r},\theta,\varphi\right)\:\mathrm{by}: \\ $$$$\:{x}\:=\:{r}\:\mathrm{sin}\:\theta\:\mathrm{sin}\:\varphi,\:{y}\:=\:\mathrm{sin}\:\theta\:\mathrm{sin}\:\varphi,\: \\ $$$${z}\:=\:\mathrm{sin}\:\varphi,\:\mathrm{0}\:\leqslant\:\theta\:\leqslant\:\mathrm{2}\pi\:,\:\mathrm{0}\:\leqslant\:\varphi\:\leqslant\:\pi \\ $$$$\left(\mathrm{a}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{Jacobian}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{transformation}\:\frac{\partial\left({x},{y},{z}\right)}{\partial\left({r},\theta,\varphi\right)} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{region} \\ $$$$\mathrm{delimited}\:\mathrm{by}\:\mathrm{the}\:\mathrm{sphere}: \\ $$$$\:\:{S}\:=\:\left\{{x},{y},{z}\:\in\mathbb{R}^{\mathrm{3}} \:,\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:\leqslant\:{R}^{\mathrm{2}} ,\:{R}>\mathrm{0}\right\} \\ $$

Question Number 168338    Answers: 1   Comments: 0

Question Number 168335    Answers: 2   Comments: 0

(x/2)+4(√(x ))+6+3+1=x

$$\frac{{x}}{\mathrm{2}}+\mathrm{4}\sqrt{{x}\:}+\mathrm{6}+\mathrm{3}+\mathrm{1}={x} \\ $$

Question Number 168325    Answers: 0   Comments: 0

2yy′′−(y′)^2 −1= ((8y^2 )/(cos^2 x))

$$\:\:\:\:\:\:\mathrm{2}{yy}''−\left({y}'\right)^{\mathrm{2}} \:−\mathrm{1}=\:\frac{\mathrm{8}{y}^{\mathrm{2}} }{\mathrm{cos}\:^{\mathrm{2}} {x}}\: \\ $$

Question Number 168324    Answers: 1   Comments: 0

Question Number 168320    Answers: 0   Comments: 0

∫(((arcsin(x))^2 )/(1+x^2 ))dx=???

$$\:\:\:\int\frac{\left({arcsin}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=??? \\ $$

Question Number 168311    Answers: 0   Comments: 5

Calculate∫(((arcsin(x))^2 )/(1+x^2 ))dx

$${Calculate}\int\frac{\left({arcsin}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 168303    Answers: 2   Comments: 0

calculate ∫_0 ^1 x(√(1−x^6 ))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }{dx} \\ $$

Question Number 168297    Answers: 1   Comments: 0

prove that........ cos ((2Π)/7)+cos ((4Π)/7)+cos ((8Π)/7)=−(1/2)

$$\mathrm{prove}\:\mathrm{that}........ \\ $$$$\mathrm{cos}\:\frac{\mathrm{2}\Pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{4}\Pi}{\mathrm{7}}+\mathrm{cos}\:\frac{\mathrm{8}\Pi}{\mathrm{7}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 168296    Answers: 2   Comments: 0

∫(5x+2)cos(2x)dx=?

$$\int\left(\mathrm{5}{x}+\mathrm{2}\right){cos}\left(\mathrm{2}{x}\right){dx}=? \\ $$

Question Number 168291    Answers: 2   Comments: 0

∫t^7 sin(t^7 )dt

$$\int{t}^{\mathrm{7}} \mathrm{sin}\left({t}^{\mathrm{7}} \right){dt} \\ $$

Question Number 168280    Answers: 1   Comments: 0

Wath is your favourite formula ???

$${Wath}\:{is}\:{your}\:{favourite}\:{formula}\:??? \\ $$

Question Number 168278    Answers: 1   Comments: 2

((log_3 (12))/(log_(36) (3)))−((log_3 (4))/(log_(108) (3))) = x x =

$$\:\:\:\:\:\frac{{log}_{\mathrm{3}} \left(\mathrm{12}\right)}{{log}_{\mathrm{36}} \left(\mathrm{3}\right)}−\frac{{log}_{\mathrm{3}} \left(\mathrm{4}\right)}{{log}_{\mathrm{108}} \left(\mathrm{3}\right)}\:=\:{x} \\ $$$$\:\:\:\:\:{x}\:=\: \\ $$

Question Number 168277    Answers: 0   Comments: 1

Prove that ((sin(((3π)/5)))/(sin(((4π)/5)))) = ((1+(√5))/2)

$$\:\mathrm{Prove}\:\mathrm{that}\:\frac{\mathrm{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{5}}\right)}{\mathrm{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{5}}\right)}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\: \\ $$

Question Number 168276    Answers: 3   Comments: 2

y = (√(x+(√(x+(√x))))) y′ =

$$\:\:\:\:{y}\:=\:\sqrt{{x}+\sqrt{{x}+\sqrt{{x}}}} \\ $$$$\:\:\:\:{y}'\:=\: \\ $$$$\:\:\:\:\: \\ $$

  Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com