Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 503
Question Number 168606 Answers: 1 Comments: 6
Question Number 168605 Answers: 0 Comments: 4
$$\:\:\:\:\:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{10}°+\mathrm{sin}\:^{\mathrm{2}} \mathrm{25}°−\mathrm{cos}\:^{\mathrm{2}} \mathrm{15}°}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{10}°+\mathrm{sin}\:^{\mathrm{2}} \mathrm{25}°−\mathrm{sin}\:^{\mathrm{2}} \mathrm{15}°}=? \\ $$
Question Number 168603 Answers: 1 Comments: 1
Question Number 168595 Answers: 0 Comments: 1
Question Number 168593 Answers: 0 Comments: 3
Question Number 168585 Answers: 1 Comments: 2
$${if}:\:{U}_{\mathrm{0}} =\mathrm{0}\:,\:{U}_{{n}+\mathrm{1}} \:=\:\left(\mathrm{2}{n}+\mathrm{2}\right){U}_{{n}} +\mathrm{2}{n}+\mathrm{1}\:{find}\:{U}_{{n}\:} \:? \\ $$
Question Number 168579 Answers: 0 Comments: 1
Question Number 168576 Answers: 0 Comments: 1
$$\:\:\:{If}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{{m}} \left({mx}\right)−\mathrm{cos}\:^{{n}} \left({nx}\right)}{\left({m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{mn}\right){x}^{\mathrm{2}} \:}\:=\:\mathrm{1} \\ $$$$\:{find}\:\frac{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} −\mathrm{4}}{{mn}}\:. \\ $$
Question Number 168575 Answers: 1 Comments: 0
$$\mathrm{Calculate}\:::\:\:\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\left(\mathrm{x}+\mathrm{a}\right)^{\mathrm{x}+\mathrm{a}} \left(\mathrm{x}+\mathrm{b}\right)^{\mathrm{x}+\mathrm{b}} }{\left(\mathrm{x}+\mathrm{a}+\mathrm{b}\right)^{\mathrm{2x}+\mathrm{a}+\mathrm{b}} }=? \\ $$
Question Number 168558 Answers: 2 Comments: 1
Question Number 168556 Answers: 1 Comments: 0
$$\int\sqrt{{sinx}}\:{dx} \\ $$
Question Number 168555 Answers: 2 Comments: 0
Question Number 168552 Answers: 0 Comments: 0
Question Number 168550 Answers: 1 Comments: 0
Question Number 168549 Answers: 1 Comments: 0
$${Resolve} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} {y}^{''} −\mathrm{3}\left({x}−\mathrm{2}\right){y}'+{y}={x} \\ $$
Question Number 168548 Answers: 1 Comments: 0
Question Number 168546 Answers: 0 Comments: 0
Question Number 168538 Answers: 2 Comments: 0
Question Number 168537 Answers: 2 Comments: 0
$$\mathrm{4}^{\mathrm{61}} +\mathrm{4}^{\mathrm{62}} +\mathrm{4}^{\mathrm{63}} +\mathrm{4}^{\mathrm{64}\:} \:{is}\:{divisible}\:{by} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{17}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{3} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{11}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right)\:\mathrm{13} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168534 Answers: 1 Comments: 0
$$\begin{array}{|c|c|c|c|c|c|c|c|c|}{{a}}&\hline{{b}}&\hline{{c}}&\hline{{v}_{{o}} }\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\\hline\end{array} \\ $$$${what}\:{is}\:{the}\:{logic}\:{gate}\:{type}\:{of}\:{this}\:{truth} \\ $$$${table}?? \\ $$
Question Number 168527 Answers: 1 Comments: 0
$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$${x}^{\mathrm{3}} +\mathrm{64}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168526 Answers: 0 Comments: 0
$$\bigstar\:\mathrm{2}{AB}_{\mathrm{3}} \:\rightarrow\:{A}_{\mathrm{2}} \:+\:\mathrm{3}{B}_{\mathrm{2}} \:;\:{to}\:{prove}\:{that}\:{this}\:{is}\:{a}\:{redox}\:{reaction}.\: \\ $$
Question Number 168525 Answers: 1 Comments: 0
$${Resolve} \\ $$$${x}^{\mathrm{2}} {y}^{''} +{xy}^{'} +{y}=\mathrm{1} \\ $$
Question Number 168519 Answers: 1 Comments: 0
$$\int\:{x}^{{x}} \:{dx} \\ $$
Question Number 168518 Answers: 1 Comments: 1
$${R}\acute {{e}soudre}\:{l}'\acute {{e}quation}\:{au}\mathrm{x}\:\mathrm{differentiel}{les} \\ $$$$\mathrm{totales} \\ $$$$\mathrm{2}{xydx}+\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$
Question Number 168515 Answers: 1 Comments: 1
$$\:\:\:\:\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{9}}{\mathrm{3}}\mid+\frac{{x}−\mathrm{3}}{\mathrm{3}}\:>\mathrm{9}\: \\ $$$$\:\:\:\:{x}=? \\ $$
Pg 498 Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504 Pg 505 Pg 506 Pg 507
Terms of Service
Privacy Policy
Contact: info@tinkutara.com