Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 503

Question Number 168606    Answers: 1   Comments: 6

Question Number 168605    Answers: 0   Comments: 4

((cos^2 10°+sin^2 25°−cos^2 15°)/(sin^2 10°+sin^2 25°−sin^2 15°))=?

$$\:\:\:\:\:\frac{\mathrm{cos}\:^{\mathrm{2}} \mathrm{10}°+\mathrm{sin}\:^{\mathrm{2}} \mathrm{25}°−\mathrm{cos}\:^{\mathrm{2}} \mathrm{15}°}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{10}°+\mathrm{sin}\:^{\mathrm{2}} \mathrm{25}°−\mathrm{sin}\:^{\mathrm{2}} \mathrm{15}°}=? \\ $$

Question Number 168603    Answers: 1   Comments: 1

Question Number 168595    Answers: 0   Comments: 1

Question Number 168593    Answers: 0   Comments: 3

Question Number 168585    Answers: 1   Comments: 2

if: U_0 =0 , U_(n+1) = (2n+2)U_n +2n+1 find U_(n ) ?

$${if}:\:{U}_{\mathrm{0}} =\mathrm{0}\:,\:{U}_{{n}+\mathrm{1}} \:=\:\left(\mathrm{2}{n}+\mathrm{2}\right){U}_{{n}} +\mathrm{2}{n}+\mathrm{1}\:{find}\:{U}_{{n}\:} \:? \\ $$

Question Number 168579    Answers: 0   Comments: 1

Question Number 168576    Answers: 0   Comments: 1

If lim_(x→0) ((cos^m (mx)−cos^n (nx))/((m^2 +n^2 +mn)x^2 )) = 1 find ((m^2 +n^2 −4)/(mn)) .

$$\:\:\:{If}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:^{{m}} \left({mx}\right)−\mathrm{cos}\:^{{n}} \left({nx}\right)}{\left({m}^{\mathrm{2}} +{n}^{\mathrm{2}} +{mn}\right){x}^{\mathrm{2}} \:}\:=\:\mathrm{1} \\ $$$$\:{find}\:\frac{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} −\mathrm{4}}{{mn}}\:. \\ $$

Question Number 168575    Answers: 1   Comments: 0

Calculate :: lim_(x→+∞) (((x+a)^(x+a) (x+b)^(x+b) )/((x+a+b)^(2x+a+b) ))=?

$$\mathrm{Calculate}\:::\:\:\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\frac{\left(\mathrm{x}+\mathrm{a}\right)^{\mathrm{x}+\mathrm{a}} \left(\mathrm{x}+\mathrm{b}\right)^{\mathrm{x}+\mathrm{b}} }{\left(\mathrm{x}+\mathrm{a}+\mathrm{b}\right)^{\mathrm{2x}+\mathrm{a}+\mathrm{b}} }=? \\ $$

Question Number 168558    Answers: 2   Comments: 1

Question Number 168556    Answers: 1   Comments: 0

∫(√(sinx)) dx

$$\int\sqrt{{sinx}}\:{dx} \\ $$

Question Number 168555    Answers: 2   Comments: 0

Question Number 168552    Answers: 0   Comments: 0

Question Number 168550    Answers: 1   Comments: 0

Question Number 168549    Answers: 1   Comments: 0

Resolve (x−2)^2 y^(′′) −3(x−2)y′+y=x

$${Resolve} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} {y}^{''} −\mathrm{3}\left({x}−\mathrm{2}\right){y}'+{y}={x} \\ $$

Question Number 168548    Answers: 1   Comments: 0

Question Number 168546    Answers: 0   Comments: 0

Question Number 168538    Answers: 2   Comments: 0

Question Number 168537    Answers: 2   Comments: 0

4^(61) +4^(62) +4^(63) +4^(64 ) is divisible by (1) 17 (2) 3 (3) 11 (4) 13 Mastermind

$$\mathrm{4}^{\mathrm{61}} +\mathrm{4}^{\mathrm{62}} +\mathrm{4}^{\mathrm{63}} +\mathrm{4}^{\mathrm{64}\:} \:{is}\:{divisible}\:{by} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{17}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{3} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{11}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right)\:\mathrm{13} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168534    Answers: 1   Comments: 0

determinant ((a,b,c,v_o ),(0,0,0,1),(0,0,1,1),(0,1,0,1),(0,1,1,0),(1,0,0,0),(1,0,1,0),(1,1,0,0),(1,1,1,0)) what is the logic gate type of this truth table??

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}{{a}}&\hline{{b}}&\hline{{c}}&\hline{{v}_{{o}} }\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\\hline\end{array} \\ $$$${what}\:{is}\:{the}\:{logic}\:{gate}\:{type}\:{of}\:{this}\:{truth} \\ $$$${table}?? \\ $$

Question Number 168527    Answers: 1   Comments: 0

Find the value of x x^3 +64=0 Mastermind

$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$${x}^{\mathrm{3}} +\mathrm{64}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168526    Answers: 0   Comments: 0

★ 2AB_3 → A_2 + 3B_2 ; to prove that this is a redox reaction.

$$\bigstar\:\mathrm{2}{AB}_{\mathrm{3}} \:\rightarrow\:{A}_{\mathrm{2}} \:+\:\mathrm{3}{B}_{\mathrm{2}} \:;\:{to}\:{prove}\:{that}\:{this}\:{is}\:{a}\:{redox}\:{reaction}.\: \\ $$

Question Number 168525    Answers: 1   Comments: 0

Resolve x^2 y^(′′) +xy^′ +y=1

$${Resolve} \\ $$$${x}^{\mathrm{2}} {y}^{''} +{xy}^{'} +{y}=\mathrm{1} \\ $$

Question Number 168519    Answers: 1   Comments: 0

∫ x^x dx

$$\int\:{x}^{{x}} \:{dx} \\ $$

Question Number 168518    Answers: 1   Comments: 1

Re^ soudre l′e^ quation aux differentielles totales 2xydx+(x^2 −y^2 )dy=0

$${R}\acute {{e}soudre}\:{l}'\acute {{e}quation}\:{au}\mathrm{x}\:\mathrm{differentiel}{les} \\ $$$$\mathrm{totales} \\ $$$$\mathrm{2}{xydx}+\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$

Question Number 168515    Answers: 1   Comments: 1

∣((x^2 −9)/3)∣+((x−3)/3) >9 x=?

$$\:\:\:\:\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{9}}{\mathrm{3}}\mid+\frac{{x}−\mathrm{3}}{\mathrm{3}}\:>\mathrm{9}\: \\ $$$$\:\:\:\:{x}=? \\ $$

  Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505      Pg 506      Pg 507   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com