Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 501

Question Number 166911    Answers: 1   Comments: 0

Question Number 166910    Answers: 1   Comments: 1

given that is prime,proof that (√p) is irrational

$${given}\:{that}\:{is}\:{prime},{proof}\:{that}\:\sqrt{{p}}\:{is}\: \\ $$$${irrational} \\ $$

Question Number 166904    Answers: 1   Comments: 0

A pendulum has a period 2sec. The bob pulled aside a distance 8cm as the amplitude and release. Find the displacement of the bob 0.7sec after it has been released.

$${A}\:{pendulum}\:{has}\:{a}\:{period}\:\mathrm{2}{sec}.\:{The} \\ $$$${bob}\:{pulled}\:{aside}\:{a}\:{distance}\:\mathrm{8}{cm}\:{as} \\ $$$${the}\:{amplitude}\:{and}\:{release}.\:{Find}\:{the} \\ $$$${displacement}\:{of}\:{the}\:{bob}\:\mathrm{0}.\mathrm{7}{sec}\:{after} \\ $$$${it}\:{has}\:{been}\:{released}. \\ $$

Question Number 166881    Answers: 0   Comments: 0

Question Number 166922    Answers: 0   Comments: 0

calculate : lim_(x→1) (((1+x)^(1/x) (1+(1/x))^x −4)/((x−1)^2 ))=ln16−3

$$\mathrm{calculate}\:\::\:\:\:\underset{\mathrm{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} −\mathrm{4}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{ln16}−\mathrm{3} \\ $$

Question Number 166921    Answers: 0   Comments: 1

Question Number 166875    Answers: 2   Comments: 1

Question Number 166872    Answers: 2   Comments: 0

∫_0 ^( ∞) (( e^( −x) .ln(x).sin(x))/x) dx = −(π/8) (2γ + ln(2))

$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}} .{ln}\left({x}\right).{sin}\left({x}\right)}{{x}}\:{dx}\:=\:−\frac{\pi}{\mathrm{8}}\:\left(\mathrm{2}\gamma\:+\:{ln}\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$

Question Number 166861    Answers: 3   Comments: 7

Question Number 166839    Answers: 1   Comments: 0

∫_(−oo) ^(+oo) ((xe^x )/((1+e^x )^2 ))dx

$$\int_{−{oo}} ^{+{oo}} \frac{{xe}^{{x}} }{\left(\mathrm{1}+{e}^{{x}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 166834    Answers: 2   Comments: 0

Question Number 166830    Answers: 1   Comments: 0

Question Number 166829    Answers: 1   Comments: 0

calculate If , f(x)=(( (x^2 +1)(((x^( 2) +x−2)(x^( 4) −1)(x^( 2) +2x−3)+16))^(1/3) + (√(x^( 2) +3)))/(( 1+x +x^( 2) ))) then , f ′ (1 ) =? ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:\:\:{f}\left({x}\right)=\frac{\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\left({x}^{\:\mathrm{2}} +{x}−\mathrm{2}\right)\left({x}^{\:\mathrm{4}} −\mathrm{1}\right)\left({x}^{\:\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}\right)+\mathrm{16}}\:\:+\:\sqrt{{x}^{\:\mathrm{2}} +\mathrm{3}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{then}\:,\:\:\:\:{f}\:'\:\left(\mathrm{1}\:\right)\:=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$

Question Number 166828    Answers: 0   Comments: 0

calculate: lim_(n→∞) Σ_(k=1) ^n (1/(n+k^α )) .(0<α<1)

$$\mathrm{calculate}:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\alpha} }\:\:\:\:\:\:\:\:\:\:\:\:.\left(\mathrm{0}<\alpha<\mathrm{1}\right) \\ $$

Question Number 166822    Answers: 1   Comments: 0

Question Number 166818    Answers: 1   Comments: 3

Question Number 166814    Answers: 2   Comments: 0

f(x)=x^n e^(−nx) Determinate f^((n)) (x).

$${f}\left({x}\right)={x}^{{n}} {e}^{−{nx}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$

Question Number 166813    Answers: 2   Comments: 0

f(x)=x^(2n) Determinate f^((n)) (x)

$${f}\left({x}\right)={x}^{\mathrm{2}{n}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$

Question Number 166812    Answers: 0   Comments: 0

f(x)=e^(nx) cos(x). Determinate f^((n)) (x).

$${f}\left({x}\right)={e}^{{nx}} {cos}\left({x}\right). \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$

Question Number 166805    Answers: 1   Comments: 0

f(x)=(x/(1+∣x∣)). show that ∃ K ∈ R_+ such that ∀ x, y ∈ R, ∣f(x)−f(y)∣≤K∣x−y∣

$${f}\left({x}\right)=\frac{{x}}{\mathrm{1}+\mid{x}\mid}. \\ $$$${show}\:{that}\:\exists\:{K}\:\in\:\mathbb{R}_{+} \:{such}\:{that} \\ $$$$\forall\:{x},\:{y}\:\in\:\mathbb{R},\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant{K}\mid{x}−{y}\mid \\ $$

Question Number 166801    Answers: 1   Comments: 2

Calculate: lim_(x→0) ((x−(√x))/( ((sin(x)−tan^2 (x)))^(1/3) ))

$${Calculate}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}−\sqrt{{x}}}{\:\sqrt[{\mathrm{3}}]{{sin}\left({x}\right)−{tan}^{\mathrm{2}} \left({x}\right)}} \\ $$

Question Number 166888    Answers: 1   Comments: 0

Question Number 166892    Answers: 2   Comments: 0

solve in R i: ⌊ x ⌊ x⌋⌋= 3x ii : ⌊x ⌋^( 2) −3 ⌊x ⌋ +2 ≤ 0 −−−−−−

$$ \\ $$$$\:\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$ \\ $$$$\:\:{i}:\:\:\:\:\lfloor\:{x}\:\lfloor\:{x}\rfloor\rfloor=\:\mathrm{3}{x} \\ $$$$ \\ $$$$\:\:{ii}\::\:\:\:\lfloor{x}\:\rfloor^{\:\mathrm{2}} −\mathrm{3}\:\lfloor{x}\:\rfloor\:+\mathrm{2}\:\leqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:−−−−−− \\ $$$$ \\ $$

Question Number 166891    Answers: 0   Comments: 0

Linearize sin^4 (x)cos^2 (x)

$${Linearize}\:{sin}^{\mathrm{4}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 166796    Answers: 1   Comments: 0

∫ ((sin^3 x)/((cos^2 x+1)(√(cos^2 x+1)))) dx

$$\:\:\:\:\int\:\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}{\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$

Question Number 166793    Answers: 1   Comments: 0

  Pg 496      Pg 497      Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com