Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 501

Question Number 168538    Answers: 2   Comments: 0

Question Number 168537    Answers: 2   Comments: 0

4^(61) +4^(62) +4^(63) +4^(64 ) is divisible by (1) 17 (2) 3 (3) 11 (4) 13 Mastermind

$$\mathrm{4}^{\mathrm{61}} +\mathrm{4}^{\mathrm{62}} +\mathrm{4}^{\mathrm{63}} +\mathrm{4}^{\mathrm{64}\:} \:{is}\:{divisible}\:{by} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{17}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right)\:\mathrm{3} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{11}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{4}\right)\:\mathrm{13} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168534    Answers: 1   Comments: 0

determinant ((a,b,c,v_o ),(0,0,0,1),(0,0,1,1),(0,1,0,1),(0,1,1,0),(1,0,0,0),(1,0,1,0),(1,1,0,0),(1,1,1,0)) what is the logic gate type of this truth table??

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}{{a}}&\hline{{b}}&\hline{{c}}&\hline{{v}_{{o}} }\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}\\{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{1}}&\hline{\mathrm{0}}\\\hline\end{array} \\ $$$${what}\:{is}\:{the}\:{logic}\:{gate}\:{type}\:{of}\:{this}\:{truth} \\ $$$${table}?? \\ $$

Question Number 168527    Answers: 1   Comments: 0

Find the value of x x^3 +64=0 Mastermind

$${Find}\:{the}\:{value}\:{of}\:{x} \\ $$$${x}^{\mathrm{3}} +\mathrm{64}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168526    Answers: 0   Comments: 0

★ 2AB_3 → A_2 + 3B_2 ; to prove that this is a redox reaction.

$$\bigstar\:\mathrm{2}{AB}_{\mathrm{3}} \:\rightarrow\:{A}_{\mathrm{2}} \:+\:\mathrm{3}{B}_{\mathrm{2}} \:;\:{to}\:{prove}\:{that}\:{this}\:{is}\:{a}\:{redox}\:{reaction}.\: \\ $$

Question Number 168525    Answers: 1   Comments: 0

Resolve x^2 y^(′′) +xy^′ +y=1

$${Resolve} \\ $$$${x}^{\mathrm{2}} {y}^{''} +{xy}^{'} +{y}=\mathrm{1} \\ $$

Question Number 168519    Answers: 1   Comments: 0

∫ x^x dx

$$\int\:{x}^{{x}} \:{dx} \\ $$

Question Number 168518    Answers: 1   Comments: 1

Re^ soudre l′e^ quation aux differentielles totales 2xydx+(x^2 −y^2 )dy=0

$${R}\acute {{e}soudre}\:{l}'\acute {{e}quation}\:{au}\mathrm{x}\:\mathrm{differentiel}{les} \\ $$$$\mathrm{totales} \\ $$$$\mathrm{2}{xydx}+\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$

Question Number 168515    Answers: 1   Comments: 1

∣((x^2 −9)/3)∣+((x−3)/3) >9 x=?

$$\:\:\:\:\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{9}}{\mathrm{3}}\mid+\frac{{x}−\mathrm{3}}{\mathrm{3}}\:>\mathrm{9}\: \\ $$$$\:\:\:\:{x}=? \\ $$

Question Number 168510    Answers: 0   Comments: 1

Is it possible to express x+y in terms of x^2 +y^2 ?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{express}\:{x}+{y}\:\mathrm{in} \\ $$$$\mathrm{terms}\:\mathrm{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ? \\ $$

Question Number 168509    Answers: 0   Comments: 0

hello everybody that is link for mathematics forum httpschat.whatsapp.comK8mwbIMlp4U5babIVrqVdw

$${hello}\:{everybody}\:\: \\ $$$${that}\:{is}\:{link}\:{for}\:{mathematics}\:{forum} \\ $$$$ \\ $$$$\mathrm{httpschat}.\mathrm{whatsapp}.\mathrm{comK8mwbIMlp4U5babIVrqVdw} \\ $$

Question Number 168499    Answers: 2   Comments: 0

Question Number 168497    Answers: 0   Comments: 1

Question Number 168493    Answers: 1   Comments: 0

Question Number 168492    Answers: 0   Comments: 3

Question Number 168489    Answers: 1   Comments: 1

Question Number 168477    Answers: 0   Comments: 6

Question Number 168480    Answers: 1   Comments: 4

n^2 +n+109=x^2 x−integer positive integer solutions n=?

$$\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}+\mathrm{109}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{integer}} \\ $$$$\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{solutions}}\:\boldsymbol{\mathrm{n}}=? \\ $$

Question Number 168473    Answers: 1   Comments: 0

Integrate: ∫((1/x)−1)^(1/2) dx Mastermind

$${Integrate}: \\ $$$$\int\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168471    Answers: 1   Comments: 1

Question Number 168464    Answers: 1   Comments: 1

lim_(x→0) ((1−cos7x)/x^2 )=?

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{1}−{cos}\mathrm{7}{x}}{{x}^{\mathrm{2}} }=? \\ $$

Question Number 168463    Answers: 0   Comments: 0

∫ ((4csc^2 x)/( (√(1−3cot 2x)))) dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{\mathrm{4csc}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{1}−\mathrm{3cot}\:\mathrm{2}{x}}}\:{dx}=? \\ $$

Question Number 168459    Answers: 2   Comments: 0

Question Number 168458    Answers: 0   Comments: 1

How to check f g is the smallest h I have no idea Find the smallest positive integer n for which the function f(n) = n^2 + n + 17 is composite. Do the same for the functions g(n) = n^2 + 21n + 1 and h(n) = 3n^2 + 3n + 23

$${How}\:{to}\:{check}\:{f}\:{g}\:{is}\:{the}\:{smallest} \\ $$$${h}\:{I}\:{have}\:{no}\:{idea} \\ $$Find the smallest positive integer n for which the function f(n) = n^2 + n + 17 is composite. Do the same for the functions g(n) = n^2 + 21n + 1 and h(n) = 3n^2 + 3n + 23

Question Number 168461    Answers: 0   Comments: 1

y=(sin x+cos x)^2 −1 Minemum praice of[((3π)/2),((7π)/2)]

$${y}=\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${Minemum}\:{praice}\:{of}\left[\frac{\mathrm{3}\pi}{\mathrm{2}},\frac{\mathrm{7}\pi}{\mathrm{2}}\right] \\ $$

Question Number 168443    Answers: 0   Comments: 0

  Pg 496      Pg 497      Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504      Pg 505   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com