Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 500

Question Number 169147    Answers: 0   Comments: 2

lim_(x→(π/3)) ((1−2cosx)/(sin(x−(π/3))))=?

$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2}{cosx}}{{sin}\left({x}−\frac{\pi}{\mathrm{3}}\right)}=? \\ $$

Question Number 169145    Answers: 1   Comments: 0

ABC is a triangle in which the bisector of angle at B meet the side AC at D, and the bisector of the angle BDC is parallel to the side AB. Prove that the △ABC is issoceles triangle.

$$\boldsymbol{{ABC}}\:\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{bisector}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{B}}\:\boldsymbol{\mathrm{meet}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{{AC}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{D}}, \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{bisector}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{{BDC}}\:\boldsymbol{\mathrm{is}} \\ $$$$\:\boldsymbol{\mathrm{parallel}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{{AB}}.\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\:\boldsymbol{\mathrm{the}}\:\bigtriangleup\boldsymbol{{ABC}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{issoceles}}\:\boldsymbol{\mathrm{triangle}}. \\ $$$$ \\ $$

Question Number 169142    Answers: 2   Comments: 1

Question Number 169140    Answers: 0   Comments: 0

Question Number 169139    Answers: 0   Comments: 3

Question Number 169138    Answers: 0   Comments: 0

Hello, please help me. calculate P= Π_(k=0) ^n cos(θk)

$${Hello},\:{please}\:{help}\:{me}. \\ $$$${calculate}\:{P}=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{cos}\left(\theta{k}\right) \\ $$

Question Number 169130    Answers: 1   Comments: 0

If (0.3)^x =(0.5)^8 , find the value of x

$$\mathrm{If}\:\left(\mathrm{0}.\mathrm{3}\right)^{\mathrm{x}} =\left(\mathrm{0}.\mathrm{5}\right)^{\mathrm{8}} ,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$

Question Number 169120    Answers: 3   Comments: 0

solve in R ⌊ log_( 2) (x) ⌋= 5 log_( 8) ((√x) )

$$ \\ $$$$\:\:\:\:{solve}\:\:{in}\:\mathbb{R} \\ $$$$\: \\ $$$$\:\:\:\:\:\lfloor\:\mathrm{log}_{\:\mathrm{2}} \left({x}\right)\:\rfloor=\:\mathrm{5}\:\mathrm{log}_{\:\mathrm{8}} \left(\sqrt{{x}}\:\right) \\ $$$$ \\ $$

Question Number 169117    Answers: 3   Comments: 0

Question Number 169115    Answers: 0   Comments: 0

Prove that Ω= ∫_0 ^( ∞) (( sin(x))/(e^( x) −1)) dx =^? (1/2) ( πcoth(π) −1 ) −−− solution −−− Ω= ∫_0 ^( ∞) (( e^( −x) .sin(x))/(1− e^( −x) )) dx=∫_0 ^( ∞) (sin(x) Σ_(n=1) ^∞ e^( −nx) )dx = Σ_(n=1) ^∞ ∫_0 ^( ∞) e^( −nx) .sin(x)dx = Σ_(n=1) ^∞ (( 1)/(1 + n^( 2) )) =_(function) ^(Upsilon) (1/2) ( πcoth(π) − 1) ■ m.n Note : Υ (s )= Σ_(n=1) ^∞ (1/( s^( 2) + n^( 2) )) = (1/(2s))( πcoth(πs) −(1/(2s ))) where : s ∈ C − { ki∈ Z : k≠ 0 }

$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Prove}\:\:\:\:\mathrm{that} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left({x}\right)}{{e}^{\:{x}} \:−\mathrm{1}}\:{dx}\:\overset{?} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\:\pi{coth}\left(\pi\right)\:−\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\:−−−\:\:{solution}\:−−− \\ $$$$\:\:\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}} .{sin}\left({x}\right)}{\mathrm{1}−\:{e}^{\:−{x}} }\:{dx}=\int_{\mathrm{0}} ^{\:\infty} \left({sin}\left({x}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\:−{nx}} \right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\:\infty} \:{e}^{\:−{nx}} .{sin}\left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} }\:\:\underset{{function}} {\overset{{Upsilon}} {=}}\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\:\pi{coth}\left(\pi\right)\:−\:\mathrm{1}\right)\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Note}\::\:\Upsilon\:\left({s}\:\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\:{s}^{\:\mathrm{2}} \:+\:{n}^{\:\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}{s}}\left(\:\pi{coth}\left(\pi{s}\right)\:−\frac{\mathrm{1}}{\mathrm{2}{s}\:}\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{where}\::\:\:\:{s}\:\in\:\mathbb{C}\:−\:\left\{\:{ki}\in\:\mathbb{Z}\::\:\:{k}\neq\:\mathrm{0}\:\right\}\:\: \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Question Number 169112    Answers: 1   Comments: 1

Question Number 169105    Answers: 1   Comments: 1

Question Number 169101    Answers: 1   Comments: 0

In AB^Δ C : m_b ^( 2) + m_c ^( 2) = 5 m_a ^( 2) prove that : A^( ∧) = 90^( °) m_a : ( median )

$$ \\ $$$$\:\:\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\::\:\:\:\:{m}_{{b}} ^{\:\mathrm{2}} \:+\:{m}_{{c}} ^{\:\mathrm{2}} =\:\mathrm{5}\:{m}_{{a}} ^{\:\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\::\:\:\:\overset{\:\:\wedge} {{A}}\:=\:\mathrm{90}^{\:°} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}_{{a}} :\:\:\left(\:{median}\:\right) \\ $$

Question Number 169092    Answers: 1   Comments: 0

Question Number 169088    Answers: 1   Comments: 0

Question Number 169078    Answers: 1   Comments: 0

Question Number 169076    Answers: 0   Comments: 0

Question Number 169073    Answers: 2   Comments: 0

∫((3x)/((1−4x−2x^2 )^2 ))dx

$$\int\frac{\mathrm{3}{x}}{\left(\mathrm{1}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$

Question Number 169054    Answers: 2   Comments: 0

∫((3x)/((1−4x−x^2 ))) dx

$$\int\frac{\mathrm{3}{x}}{\left(\mathrm{1}−\mathrm{4}{x}−{x}^{\mathrm{2}} \right)}\:{dx} \\ $$

Question Number 169053    Answers: 1   Comments: 0

Solve the ODE y′ + 2xy = xe^(−x^2 ) , with y(0)=1 Mastermind

$${Solve}\:{the}\:{ODE}\: \\ $$$${y}'\:+\:\mathrm{2}{xy}\:=\:{xe}^{−{x}^{\mathrm{2}} } ,\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 169052    Answers: 1   Comments: 3

lim_(x→0) (((√((1+2x)/(1−3x))) (((1+x)/(1−x)))^(1/3) (((1+4x)/(1+3x)))^(1/4) −1)/(2x)) =?

$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\frac{\mathrm{1}+\mathrm{2}{x}}{\mathrm{1}−\mathrm{3}{x}}}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\:\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4}{x}}{\mathrm{1}+\mathrm{3}{x}}}\:−\mathrm{1}}{\mathrm{2}{x}}\:=? \\ $$

Question Number 169051    Answers: 1   Comments: 4

Solve the ODE (x^2 −2)y′ + xy = 0, with y(1)=1 Mastermind

$${Solve}\:{the}\:{ODE} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}\right){y}'\:+\:{xy}\:=\:\mathrm{0},\:{with}\:{y}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 169050    Answers: 1   Comments: 0

Solve the ODE y′ + xy = x^2 , with y(0)=2 Mastermind

$${Solve}\:{the}\:{ODE} \\ $$$${y}'\:+\:{xy}\:=\:{x}^{\mathrm{2}} ,\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{2} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 169049    Answers: 1   Comments: 0

∫x^2 e^(x^2 /2) Mastermind

$$\int{x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 169048    Answers: 0   Comments: 0

find ∫_0 ^∞ ((lnx)/(x^2 −x+2))dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{{x}^{\mathrm{2}} −{x}+\mathrm{2}}{dx} \\ $$

Question Number 169044    Answers: 1   Comments: 0

does the series Σ_(n=1) ^∞ e^(−2(n−1)) sin(((nπ)/2)) is converge or diverge ?

$${does}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\left({n}−\mathrm{1}\right)} \:{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$

  Pg 495      Pg 496      Pg 497      Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com