Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 500

Question Number 166830    Answers: 1   Comments: 0

Question Number 166829    Answers: 1   Comments: 0

calculate If , f(x)=(( (x^2 +1)(((x^( 2) +x−2)(x^( 4) −1)(x^( 2) +2x−3)+16))^(1/3) + (√(x^( 2) +3)))/(( 1+x +x^( 2) ))) then , f ′ (1 ) =? ■ m.n

$$ \\ $$$$\:\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:\:\:{f}\left({x}\right)=\frac{\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\left({x}^{\:\mathrm{2}} +{x}−\mathrm{2}\right)\left({x}^{\:\mathrm{4}} −\mathrm{1}\right)\left({x}^{\:\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}\right)+\mathrm{16}}\:\:+\:\sqrt{{x}^{\:\mathrm{2}} +\mathrm{3}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{then}\:,\:\:\:\:{f}\:'\:\left(\mathrm{1}\:\right)\:=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$

Question Number 166828    Answers: 0   Comments: 0

calculate: lim_(n→∞) Σ_(k=1) ^n (1/(n+k^α )) .(0<α<1)

$$\mathrm{calculate}:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\alpha} }\:\:\:\:\:\:\:\:\:\:\:\:.\left(\mathrm{0}<\alpha<\mathrm{1}\right) \\ $$

Question Number 166822    Answers: 1   Comments: 0

Question Number 166818    Answers: 1   Comments: 3

Question Number 166814    Answers: 2   Comments: 0

f(x)=x^n e^(−nx) Determinate f^((n)) (x).

$${f}\left({x}\right)={x}^{{n}} {e}^{−{nx}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$

Question Number 166813    Answers: 2   Comments: 0

f(x)=x^(2n) Determinate f^((n)) (x)

$${f}\left({x}\right)={x}^{\mathrm{2}{n}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$

Question Number 166812    Answers: 0   Comments: 0

f(x)=e^(nx) cos(x). Determinate f^((n)) (x).

$${f}\left({x}\right)={e}^{{nx}} {cos}\left({x}\right). \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$

Question Number 166805    Answers: 1   Comments: 0

f(x)=(x/(1+∣x∣)). show that ∃ K ∈ R_+ such that ∀ x, y ∈ R, ∣f(x)−f(y)∣≤K∣x−y∣

$${f}\left({x}\right)=\frac{{x}}{\mathrm{1}+\mid{x}\mid}. \\ $$$${show}\:{that}\:\exists\:{K}\:\in\:\mathbb{R}_{+} \:{such}\:{that} \\ $$$$\forall\:{x},\:{y}\:\in\:\mathbb{R},\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant{K}\mid{x}−{y}\mid \\ $$

Question Number 166801    Answers: 1   Comments: 2

Calculate: lim_(x→0) ((x−(√x))/( ((sin(x)−tan^2 (x)))^(1/3) ))

$${Calculate}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}−\sqrt{{x}}}{\:\sqrt[{\mathrm{3}}]{{sin}\left({x}\right)−{tan}^{\mathrm{2}} \left({x}\right)}} \\ $$

Question Number 166888    Answers: 1   Comments: 0

Question Number 166892    Answers: 2   Comments: 0

solve in R i: ⌊ x ⌊ x⌋⌋= 3x ii : ⌊x ⌋^( 2) −3 ⌊x ⌋ +2 ≤ 0 −−−−−−

$$ \\ $$$$\:\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$ \\ $$$$\:\:{i}:\:\:\:\:\lfloor\:{x}\:\lfloor\:{x}\rfloor\rfloor=\:\mathrm{3}{x} \\ $$$$ \\ $$$$\:\:{ii}\::\:\:\:\lfloor{x}\:\rfloor^{\:\mathrm{2}} −\mathrm{3}\:\lfloor{x}\:\rfloor\:+\mathrm{2}\:\leqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:−−−−−− \\ $$$$ \\ $$

Question Number 166891    Answers: 0   Comments: 0

Linearize sin^4 (x)cos^2 (x)

$${Linearize}\:{sin}^{\mathrm{4}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 166796    Answers: 1   Comments: 0

∫ ((sin^3 x)/((cos^2 x+1)(√(cos^2 x+1)))) dx

$$\:\:\:\:\int\:\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}{\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$

Question Number 166793    Answers: 1   Comments: 0

Question Number 166797    Answers: 0   Comments: 0

∫((√(x+(√x)))/( (√(x+1)))) dx

$$\:\int\frac{\sqrt{{x}+\sqrt{{x}}}}{\:\sqrt{{x}+\mathrm{1}}}\:{dx} \\ $$

Question Number 166787    Answers: 0   Comments: 3

How many permutations of the letters of the word EINSTEIN are possible if the EIN groups must not be next to eachother?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{permutations}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{EINSTEIN}\:\mathrm{are} \\ $$$$\mathrm{possible}\:\mathrm{if}\:\mathrm{the}\:\mathrm{EIN}\:\mathrm{groups}\:\mathrm{must}\:\mathrm{not} \\ $$$$\mathrm{be}\:\mathrm{next}\:\mathrm{to}\:\mathrm{eachother}? \\ $$

Question Number 166779    Answers: 1   Comments: 0

Question Number 166774    Answers: 0   Comments: 1

Question Number 166771    Answers: 0   Comments: 0

lim_(x→0) (((√(1−cos x))−((sin x))^(1/3) )/(sin^2 x)) =?

$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\ $$

Question Number 166770    Answers: 4   Comments: 6

In how many ways can you go up a staircase with 20 steps if you take one, two or three steps at a time?

$${In}\:{how}\:{many}\:{ways}\:{can}\:{you}\:{go}\:{up}\:{a}\: \\ $$$${staircase}\:{with}\:\mathrm{20}\:{steps}\:{if}\:{you}\:{take}\: \\ $$$${one},\:{two}\:{or}\:{three}\:{steps}\:{at}\:{a}\:{time}? \\ $$

Question Number 166764    Answers: 1   Comments: 0

(dy/dx)=cos(y−x)

$$\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{x}}\right)\:\: \\ $$

Question Number 166759    Answers: 0   Comments: 0

Question Number 166756    Answers: 2   Comments: 0

Evaluate: ∫_0 ^( ∞) (((x + 1)^(2020) )/((x + 2)^(2022) )) dx = ?

$$\mathrm{Evaluate}: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2020}} }{\left(\mathrm{x}\:+\:\mathrm{2}\right)^{\mathrm{2022}} }\:\mathrm{dx}\:=\:? \\ $$

Question Number 166754    Answers: 1   Comments: 0

Question Number 166749    Answers: 1   Comments: 1

  Pg 495      Pg 496      Pg 497      Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com