Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 500
Question Number 169147 Answers: 0 Comments: 2
$$\underset{{x}\rightarrow\frac{\pi}{\mathrm{3}}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{2}{cosx}}{{sin}\left({x}−\frac{\pi}{\mathrm{3}}\right)}=? \\ $$
Question Number 169145 Answers: 1 Comments: 0
$$\boldsymbol{{ABC}}\:\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{bisector}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{B}}\:\boldsymbol{\mathrm{meet}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{{AC}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{D}}, \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{bisector}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{{BDC}}\:\boldsymbol{\mathrm{is}} \\ $$$$\:\boldsymbol{\mathrm{parallel}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{{AB}}.\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\:\boldsymbol{\mathrm{the}}\:\bigtriangleup\boldsymbol{{ABC}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{issoceles}}\:\boldsymbol{\mathrm{triangle}}. \\ $$$$ \\ $$
Question Number 169142 Answers: 2 Comments: 1
Question Number 169140 Answers: 0 Comments: 0
Question Number 169139 Answers: 0 Comments: 3
Question Number 169138 Answers: 0 Comments: 0
$${Hello},\:{please}\:{help}\:{me}. \\ $$$${calculate}\:{P}=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{cos}\left(\theta{k}\right) \\ $$
Question Number 169130 Answers: 1 Comments: 0
$$\mathrm{If}\:\left(\mathrm{0}.\mathrm{3}\right)^{\mathrm{x}} =\left(\mathrm{0}.\mathrm{5}\right)^{\mathrm{8}} ,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$
Question Number 169120 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\:\:{solve}\:\:{in}\:\mathbb{R} \\ $$$$\: \\ $$$$\:\:\:\:\:\lfloor\:\mathrm{log}_{\:\mathrm{2}} \left({x}\right)\:\rfloor=\:\mathrm{5}\:\mathrm{log}_{\:\mathrm{8}} \left(\sqrt{{x}}\:\right) \\ $$$$ \\ $$
Question Number 169117 Answers: 3 Comments: 0
Question Number 169115 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Prove}\:\:\:\:\mathrm{that} \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}\left({x}\right)}{{e}^{\:{x}} \:−\mathrm{1}}\:{dx}\:\overset{?} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\:\pi{coth}\left(\pi\right)\:−\mathrm{1}\:\right) \\ $$$$\:\:\:\:\:\:−−−\:\:{solution}\:−−− \\ $$$$\:\:\:\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}} .{sin}\left({x}\right)}{\mathrm{1}−\:{e}^{\:−{x}} }\:{dx}=\int_{\mathrm{0}} ^{\:\infty} \left({sin}\left({x}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{\:−{nx}} \right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\:\infty} \:{e}^{\:−{nx}} .{sin}\left({x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} }\:\:\underset{{function}} {\overset{{Upsilon}} {=}}\:\frac{\mathrm{1}}{\mathrm{2}}\:\left(\:\pi{coth}\left(\pi\right)\:−\:\mathrm{1}\right)\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Note}\::\:\Upsilon\:\left({s}\:\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\:{s}^{\:\mathrm{2}} \:+\:{n}^{\:\mathrm{2}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}{s}}\left(\:\pi{coth}\left(\pi{s}\right)\:−\frac{\mathrm{1}}{\mathrm{2}{s}\:}\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{where}\::\:\:\:{s}\:\in\:\mathbb{C}\:−\:\left\{\:{ki}\in\:\mathbb{Z}\::\:\:{k}\neq\:\mathrm{0}\:\right\}\:\: \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Question Number 169112 Answers: 1 Comments: 1
Question Number 169105 Answers: 1 Comments: 1
Question Number 169101 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\::\:\:\:\:{m}_{{b}} ^{\:\mathrm{2}} \:+\:{m}_{{c}} ^{\:\mathrm{2}} =\:\mathrm{5}\:{m}_{{a}} ^{\:\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\::\:\:\:\overset{\:\:\wedge} {{A}}\:=\:\mathrm{90}^{\:°} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}_{{a}} :\:\:\left(\:{median}\:\right) \\ $$
Question Number 169092 Answers: 1 Comments: 0
Question Number 169088 Answers: 1 Comments: 0
Question Number 169078 Answers: 1 Comments: 0
Question Number 169076 Answers: 0 Comments: 0
Question Number 169073 Answers: 2 Comments: 0
$$\int\frac{\mathrm{3}{x}}{\left(\mathrm{1}−\mathrm{4}{x}−\mathrm{2}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$
Question Number 169054 Answers: 2 Comments: 0
$$\int\frac{\mathrm{3}{x}}{\left(\mathrm{1}−\mathrm{4}{x}−{x}^{\mathrm{2}} \right)}\:{dx} \\ $$
Question Number 169053 Answers: 1 Comments: 0
$${Solve}\:{the}\:{ODE}\: \\ $$$${y}'\:+\:\mathrm{2}{xy}\:=\:{xe}^{−{x}^{\mathrm{2}} } ,\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 169052 Answers: 1 Comments: 3
$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\frac{\mathrm{1}+\mathrm{2}{x}}{\mathrm{1}−\mathrm{3}{x}}}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\:\sqrt[{\mathrm{4}}]{\frac{\mathrm{1}+\mathrm{4}{x}}{\mathrm{1}+\mathrm{3}{x}}}\:−\mathrm{1}}{\mathrm{2}{x}}\:=? \\ $$
Question Number 169051 Answers: 1 Comments: 4
$${Solve}\:{the}\:{ODE} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}\right){y}'\:+\:{xy}\:=\:\mathrm{0},\:{with}\:{y}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 169050 Answers: 1 Comments: 0
$${Solve}\:{the}\:{ODE} \\ $$$${y}'\:+\:{xy}\:=\:{x}^{\mathrm{2}} ,\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{2} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 169049 Answers: 1 Comments: 0
$$\int{x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 169048 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnx}}{{x}^{\mathrm{2}} −{x}+\mathrm{2}}{dx} \\ $$
Question Number 169044 Answers: 1 Comments: 0
$${does}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}\left({n}−\mathrm{1}\right)} \:{sin}\left(\frac{{n}\pi}{\mathrm{2}}\right)\:{is}\:{converge}\:{or}\:{diverge}\:? \\ $$
Pg 495 Pg 496 Pg 497 Pg 498 Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504
Terms of Service
Privacy Policy
Contact: info@tinkutara.com