Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 500
Question Number 166830 Answers: 1 Comments: 0
Question Number 166829 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{calculate}\: \\ $$$$\:\:\:\mathrm{I}{f}\:,\:\:\:\:{f}\left({x}\right)=\frac{\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\left({x}^{\:\mathrm{2}} +{x}−\mathrm{2}\right)\left({x}^{\:\mathrm{4}} −\mathrm{1}\right)\left({x}^{\:\mathrm{2}} +\mathrm{2}{x}−\mathrm{3}\right)+\mathrm{16}}\:\:+\:\sqrt{{x}^{\:\mathrm{2}} +\mathrm{3}}}{\left(\:\mathrm{1}+{x}\:+{x}^{\:\mathrm{2}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{then}\:,\:\:\:\:{f}\:'\:\left(\mathrm{1}\:\right)\:=?\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$
Question Number 166828 Answers: 0 Comments: 0
$$\mathrm{calculate}:\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{n}+\mathrm{k}^{\alpha} }\:\:\:\:\:\:\:\:\:\:\:\:.\left(\mathrm{0}<\alpha<\mathrm{1}\right) \\ $$
Question Number 166822 Answers: 1 Comments: 0
Question Number 166818 Answers: 1 Comments: 3
Question Number 166814 Answers: 2 Comments: 0
$${f}\left({x}\right)={x}^{{n}} {e}^{−{nx}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$
Question Number 166813 Answers: 2 Comments: 0
$${f}\left({x}\right)={x}^{\mathrm{2}{n}} \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$
Question Number 166812 Answers: 0 Comments: 0
$${f}\left({x}\right)={e}^{{nx}} {cos}\left({x}\right). \\ $$$${Determinate}\:{f}^{\left({n}\right)} \left({x}\right). \\ $$
Question Number 166805 Answers: 1 Comments: 0
$${f}\left({x}\right)=\frac{{x}}{\mathrm{1}+\mid{x}\mid}. \\ $$$${show}\:{that}\:\exists\:{K}\:\in\:\mathbb{R}_{+} \:{such}\:{that} \\ $$$$\forall\:{x},\:{y}\:\in\:\mathbb{R},\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant{K}\mid{x}−{y}\mid \\ $$
Question Number 166801 Answers: 1 Comments: 2
$${Calculate}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}−\sqrt{{x}}}{\:\sqrt[{\mathrm{3}}]{{sin}\left({x}\right)−{tan}^{\mathrm{2}} \left({x}\right)}} \\ $$
Question Number 166888 Answers: 1 Comments: 0
Question Number 166892 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:{solve}\:{in}\:\:\mathbb{R} \\ $$$$ \\ $$$$\:\:{i}:\:\:\:\:\lfloor\:{x}\:\lfloor\:{x}\rfloor\rfloor=\:\mathrm{3}{x} \\ $$$$ \\ $$$$\:\:{ii}\::\:\:\:\lfloor{x}\:\rfloor^{\:\mathrm{2}} −\mathrm{3}\:\lfloor{x}\:\rfloor\:+\mathrm{2}\:\leqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:−−−−−− \\ $$$$ \\ $$
Question Number 166891 Answers: 0 Comments: 0
$${Linearize}\:{sin}^{\mathrm{4}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 166796 Answers: 1 Comments: 0
$$\:\:\:\:\int\:\frac{\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}{\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}\right)\sqrt{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{1}}}\:\mathrm{dx} \\ $$
Question Number 166793 Answers: 1 Comments: 0
Question Number 166797 Answers: 0 Comments: 0
$$\:\int\frac{\sqrt{{x}+\sqrt{{x}}}}{\:\sqrt{{x}+\mathrm{1}}}\:{dx} \\ $$
Question Number 166787 Answers: 0 Comments: 3
$$\mathrm{How}\:\mathrm{many}\:\mathrm{permutations}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{EINSTEIN}\:\mathrm{are} \\ $$$$\mathrm{possible}\:\mathrm{if}\:\mathrm{the}\:\mathrm{EIN}\:\mathrm{groups}\:\mathrm{must}\:\mathrm{not} \\ $$$$\mathrm{be}\:\mathrm{next}\:\mathrm{to}\:\mathrm{eachother}? \\ $$
Question Number 166779 Answers: 1 Comments: 0
Question Number 166774 Answers: 0 Comments: 1
Question Number 166771 Answers: 0 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}−\sqrt[{\mathrm{3}}]{\mathrm{sin}\:\mathrm{x}}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:=? \\ $$
Question Number 166770 Answers: 4 Comments: 6
$${In}\:{how}\:{many}\:{ways}\:{can}\:{you}\:{go}\:{up}\:{a}\: \\ $$$${staircase}\:{with}\:\mathrm{20}\:{steps}\:{if}\:{you}\:{take}\: \\ $$$${one},\:{two}\:{or}\:{three}\:{steps}\:{at}\:{a}\:{time}? \\ $$
Question Number 166764 Answers: 1 Comments: 0
$$\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}=\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{y}}−\boldsymbol{\mathrm{x}}\right)\:\: \\ $$
Question Number 166759 Answers: 0 Comments: 0
Question Number 166756 Answers: 2 Comments: 0
$$\mathrm{Evaluate}: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left(\mathrm{x}\:+\:\mathrm{1}\right)^{\mathrm{2020}} }{\left(\mathrm{x}\:+\:\mathrm{2}\right)^{\mathrm{2022}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 166754 Answers: 1 Comments: 0
Question Number 166749 Answers: 1 Comments: 1
Pg 495 Pg 496 Pg 497 Pg 498 Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504
Terms of Service
Privacy Policy
Contact: info@tinkutara.com