Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 500
Question Number 168480 Answers: 1 Comments: 4
$$\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}+\mathrm{109}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{integer}} \\ $$$$\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{solutions}}\:\boldsymbol{\mathrm{n}}=? \\ $$
Question Number 168473 Answers: 1 Comments: 0
$${Integrate}: \\ $$$$\int\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168471 Answers: 1 Comments: 1
Question Number 168464 Answers: 1 Comments: 1
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{1}−{cos}\mathrm{7}{x}}{{x}^{\mathrm{2}} }=? \\ $$
Question Number 168463 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{\mathrm{4csc}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{1}−\mathrm{3cot}\:\mathrm{2}{x}}}\:{dx}=? \\ $$
Question Number 168459 Answers: 2 Comments: 0
Question Number 168458 Answers: 0 Comments: 1
$${How}\:{to}\:{check}\:{f}\:{g}\:{is}\:{the}\:{smallest} \\ $$$${h}\:{I}\:{have}\:{no}\:{idea} \\ $$Find the smallest positive integer n for which the function f(n) = n^2 + n + 17 is composite. Do the same for the functions g(n) = n^2 + 21n + 1 and h(n) = 3n^2 + 3n + 23
Question Number 168461 Answers: 0 Comments: 1
$${y}=\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${Minemum}\:{praice}\:{of}\left[\frac{\mathrm{3}\pi}{\mathrm{2}},\frac{\mathrm{7}\pi}{\mathrm{2}}\right] \\ $$
Question Number 168443 Answers: 0 Comments: 0
Question Number 168442 Answers: 0 Comments: 0
Question Number 168441 Answers: 1 Comments: 0
$${find}\:{the}\:{liength}\:{of}\:{x}\:=\:{y}^{\frac{\mathrm{3}}{\mathrm{2}}} \:{from}\:\left(\mathrm{1},\mathrm{1}\right){to}\:\left(\mathrm{2},\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$
Question Number 168438 Answers: 0 Comments: 0
$${y}={sin}\frac{\mathrm{2}{x}}{\mathrm{3}}\:\:\:{function}\:{any} \\ $$$${point}\:{minemum}\:{praice} \\ $$$${the}\:\left[\pi,\mathrm{3}\pi\right] \\ $$
Question Number 168436 Answers: 0 Comments: 0
$${y}=\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${is}\:{any}\:{point}\:{minmum}\:{praice} \\ $$$${the}\:\left[\frac{\mathrm{3}\pi}{\mathrm{2}},\frac{\mathrm{7}\pi}{\mathrm{2}}\right] \\ $$
Question Number 168435 Answers: 0 Comments: 0
$${x}^{{x}+{y}} ={x} \\ $$$${y}^{{x}+{y}} ={xy}^{\mathrm{3}\:\:\:\:\:\:\:\:\:\overset{\left({x},{y}\right)=\left(?,?\right)} {\:}} \\ $$
Question Number 168434 Answers: 3 Comments: 0
$$\mathrm{2}^{{x}} ×\mathrm{3}^{\frac{\mathrm{4}}{{x}}} =\mathrm{48} \\ $$$${x}=? \\ $$
Question Number 168429 Answers: 2 Comments: 0
$${calculate}: \\ $$$${P}=\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \frac{{cos}\left({lnx}\right)}{{x}}{dx} \\ $$
Question Number 168446 Answers: 1 Comments: 0
Question Number 168428 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{solve} \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:{x}\:+\sqrt{{x}^{\:\mathrm{2}} −\mathrm{3}{x}\:+\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{R}\:_{{f}} \:=?\:\:\:\:\:\:\:{R}_{\:{f}} :\:{rang}\:{of}\:\:\:\:{f} \\ $$
Question Number 168427 Answers: 2 Comments: 2
Question Number 168421 Answers: 0 Comments: 0
$${Calculate}\:{the}\:{compound}\:{interest}\: \\ $$$${on}\:{the}\:{sum}\:{of}\:#\mathrm{400}\:\mathrm{000}\: \\ $$$${for}\:\mathrm{2}{years}\:{at}\:{the}\:{rate}\:{of} \\ $$$$\mathrm{10\%}\:. \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 168411 Answers: 0 Comments: 0
Question Number 168424 Answers: 0 Comments: 0
$${f}\left(\mathrm{4}\right)=\mathrm{5}\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{5}\right)=\mathrm{7} \\ $$$${g}\left(\mathrm{5}\right)=\mathrm{3}\:\:\:\:\:\:\:\:\:{g}\left(\mathrm{7}\right)=\mathrm{4} \\ $$$${f}\left({g}\left(\mathrm{5}\right)\right)=? \\ $$
Question Number 168405 Answers: 1 Comments: 2
Question Number 168402 Answers: 0 Comments: 1
$$\mathrm{2}{x}^{\mathrm{3}} +\mathrm{9}{x}^{\mathrm{2}} +\mathrm{13}{x}+\mathrm{6}=\mathrm{0} \\ $$$${Solve}\:{the}\:{x},\:\left({Use}\:{Cubic}\:{Formula}!\right) \\ $$$${x}_{\mathrm{1}} =? \\ $$$${x}_{\mathrm{2}} =? \\ $$$${x}_{\mathrm{3}} =? \\ $$
Question Number 168400 Answers: 0 Comments: 1
Question Number 168399 Answers: 1 Comments: 0
$${solve} \\ $$$${z}^{\frac{\mathrm{1}}{\mathrm{4}}} −{i}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$
Pg 495 Pg 496 Pg 497 Pg 498 Pg 499 Pg 500 Pg 501 Pg 502 Pg 503 Pg 504
Terms of Service
Privacy Policy
Contact: info@tinkutara.com