Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 500

Question Number 168480    Answers: 1   Comments: 4

n^2 +n+109=x^2 x−integer positive integer solutions n=?

$$\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}+\mathrm{109}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{integer}} \\ $$$$\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{solutions}}\:\boldsymbol{\mathrm{n}}=? \\ $$

Question Number 168473    Answers: 1   Comments: 0

Integrate: ∫((1/x)−1)^(1/2) dx Mastermind

$${Integrate}: \\ $$$$\int\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168471    Answers: 1   Comments: 1

Question Number 168464    Answers: 1   Comments: 1

lim_(x→0) ((1−cos7x)/x^2 )=?

$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\frac{\mathrm{1}−{cos}\mathrm{7}{x}}{{x}^{\mathrm{2}} }=? \\ $$

Question Number 168463    Answers: 0   Comments: 0

∫ ((4csc^2 x)/( (√(1−3cot 2x)))) dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{\mathrm{4csc}^{\mathrm{2}} {x}}{\:\sqrt{\mathrm{1}−\mathrm{3cot}\:\mathrm{2}{x}}}\:{dx}=? \\ $$

Question Number 168459    Answers: 2   Comments: 0

Question Number 168458    Answers: 0   Comments: 1

How to check f g is the smallest h I have no idea Find the smallest positive integer n for which the function f(n) = n^2 + n + 17 is composite. Do the same for the functions g(n) = n^2 + 21n + 1 and h(n) = 3n^2 + 3n + 23

$${How}\:{to}\:{check}\:{f}\:{g}\:{is}\:{the}\:{smallest} \\ $$$${h}\:{I}\:{have}\:{no}\:{idea} \\ $$Find the smallest positive integer n for which the function f(n) = n^2 + n + 17 is composite. Do the same for the functions g(n) = n^2 + 21n + 1 and h(n) = 3n^2 + 3n + 23

Question Number 168461    Answers: 0   Comments: 1

y=(sin x+cos x)^2 −1 Minemum praice of[((3π)/2),((7π)/2)]

$${y}=\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${Minemum}\:{praice}\:{of}\left[\frac{\mathrm{3}\pi}{\mathrm{2}},\frac{\mathrm{7}\pi}{\mathrm{2}}\right] \\ $$

Question Number 168443    Answers: 0   Comments: 0

Question Number 168442    Answers: 0   Comments: 0

Question Number 168441    Answers: 1   Comments: 0

find the liength of x = y^(3/2) from (1,1)to (2,2(√2))

$${find}\:{the}\:{liength}\:{of}\:{x}\:=\:{y}^{\frac{\mathrm{3}}{\mathrm{2}}} \:{from}\:\left(\mathrm{1},\mathrm{1}\right){to}\:\left(\mathrm{2},\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$

Question Number 168438    Answers: 0   Comments: 0

y=sin((2x)/3) function any point minemum praice the [π,3π]

$${y}={sin}\frac{\mathrm{2}{x}}{\mathrm{3}}\:\:\:{function}\:{any} \\ $$$${point}\:{minemum}\:{praice} \\ $$$${the}\:\left[\pi,\mathrm{3}\pi\right] \\ $$

Question Number 168436    Answers: 0   Comments: 0

y=(sin x+cos x)^2 −1 is any point minmum praice the [((3π)/2),((7π)/2)]

$${y}=\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$${is}\:{any}\:{point}\:{minmum}\:{praice} \\ $$$${the}\:\left[\frac{\mathrm{3}\pi}{\mathrm{2}},\frac{\mathrm{7}\pi}{\mathrm{2}}\right] \\ $$

Question Number 168435    Answers: 0   Comments: 0

x^(x+y) =x y^(x+y) =xy^(3 ^((x,y)=(?,?)) )

$${x}^{{x}+{y}} ={x} \\ $$$${y}^{{x}+{y}} ={xy}^{\mathrm{3}\:\:\:\:\:\:\:\:\:\overset{\left({x},{y}\right)=\left(?,?\right)} {\:}} \\ $$

Question Number 168434    Answers: 3   Comments: 0

2^x ×3^(4/x) =48 x=?

$$\mathrm{2}^{{x}} ×\mathrm{3}^{\frac{\mathrm{4}}{{x}}} =\mathrm{48} \\ $$$${x}=? \\ $$

Question Number 168429    Answers: 2   Comments: 0

calculate: P=∫_1 ^e^(π/2) ((cos(lnx))/x)dx

$${calculate}: \\ $$$${P}=\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \frac{{cos}\left({lnx}\right)}{{x}}{dx} \\ $$

Question Number 168446    Answers: 1   Comments: 0

Question Number 168428    Answers: 1   Comments: 0

solve f(x)= x +(√(x^( 2) −3x +2)) R _f =? R_( f) : rang of f

$$ \\ $$$$\:\:\:\:\:{solve} \\ $$$$\:\:\:\:\:{f}\left({x}\right)=\:{x}\:+\sqrt{{x}^{\:\mathrm{2}} −\mathrm{3}{x}\:+\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:{R}\:_{{f}} \:=?\:\:\:\:\:\:\:{R}_{\:{f}} :\:{rang}\:{of}\:\:\:\:{f} \\ $$

Question Number 168427    Answers: 2   Comments: 2

Question Number 168421    Answers: 0   Comments: 0

Calculate the compound interest on the sum of #400 000 for 2years at the rate of 10% . Mastermind

$${Calculate}\:{the}\:{compound}\:{interest}\: \\ $$$${on}\:{the}\:{sum}\:{of}\:#\mathrm{400}\:\mathrm{000}\: \\ $$$${for}\:\mathrm{2}{years}\:{at}\:{the}\:{rate}\:{of} \\ $$$$\mathrm{10\%}\:. \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 168411    Answers: 0   Comments: 0

Question Number 168424    Answers: 0   Comments: 0

f(4)=5 f(5)=7 g(5)=3 g(7)=4 f(g(5))=?

$${f}\left(\mathrm{4}\right)=\mathrm{5}\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{5}\right)=\mathrm{7} \\ $$$${g}\left(\mathrm{5}\right)=\mathrm{3}\:\:\:\:\:\:\:\:\:{g}\left(\mathrm{7}\right)=\mathrm{4} \\ $$$${f}\left({g}\left(\mathrm{5}\right)\right)=? \\ $$

Question Number 168405    Answers: 1   Comments: 2

Question Number 168402    Answers: 0   Comments: 1

2x^3 +9x^2 +13x+6=0 Solve the x, (Use Cubic Formula!) x_1 =? x_2 =? x_3 =?

$$\mathrm{2}{x}^{\mathrm{3}} +\mathrm{9}{x}^{\mathrm{2}} +\mathrm{13}{x}+\mathrm{6}=\mathrm{0} \\ $$$${Solve}\:{the}\:{x},\:\left({Use}\:{Cubic}\:{Formula}!\right) \\ $$$${x}_{\mathrm{1}} =? \\ $$$${x}_{\mathrm{2}} =? \\ $$$${x}_{\mathrm{3}} =? \\ $$

Question Number 168400    Answers: 0   Comments: 1

Question Number 168399    Answers: 1   Comments: 0

solve z^(1/4) −i=0 Mastermind

$${solve} \\ $$$${z}^{\frac{\mathrm{1}}{\mathrm{4}}} −{i}=\mathrm{0} \\ $$$$ \\ $$$${Mastermind} \\ $$

  Pg 495      Pg 496      Pg 497      Pg 498      Pg 499      Pg 500      Pg 501      Pg 502      Pg 503      Pg 504   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com