Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 50

Question Number 220362    Answers: 0   Comments: 0

Question Number 220377    Answers: 1   Comments: 0

Prove equation ∫_0 ^( ∞) f(u)g(u)e^(−uρ) du=(1/(2πi)) ∫_(−∞i+𝛄) ^( +∞i+𝛄) F(u)G(u−ρ)du F(u)=∫_0 ^( ∞) f(t)e^(−ut) dt G(u)=∫_0 ^( ∞) g(t)e^(−ut) dt

$$\mathrm{Prove}\:\mathrm{equation} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({u}\right)\mathrm{g}\left({u}\right){e}^{−{u}\rho} \mathrm{d}{u}=\frac{\mathrm{1}}{\mathrm{2}\pi\boldsymbol{{i}}}\:\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:+\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\:{F}\left({u}\right){G}\left({u}−\rho\right)\mathrm{d}{u} \\ $$$${F}\left({u}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({t}\right){e}^{−{ut}} \mathrm{d}{t} \\ $$$${G}\left({u}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({t}\right){e}^{−{ut}} \mathrm{d}{t} \\ $$

Question Number 220340    Answers: 2   Comments: 0

Question Number 220320    Answers: 1   Comments: 3

Question Number 220353    Answers: 1   Comments: 3

Question Number 220307    Answers: 1   Comments: 0

Question Number 220286    Answers: 3   Comments: 5

Question Number 220278    Answers: 0   Comments: 0

Question Number 220269    Answers: 1   Comments: 0

lim_(t→0) ((C_1 J_ν (t)+C_2 Y_ν (t)+H_ν (t))/(C_1 J_ν (t)+C_2 Y_ν (t)))=?? ν∈R J_ν (z) Bessel function First kind Y_ν (z) Bessel function Second Kind H_ν (z) Struve H function

$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)+\boldsymbol{\mathrm{H}}_{\nu} \left({t}\right)}{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)}=?? \\ $$$$\nu\in\mathbb{R} \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{First}\:\mathrm{kind} \\ $$$${Y}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{Second}\:\mathrm{Kind} \\ $$$$\boldsymbol{\mathrm{H}}_{\nu} \left({z}\right)\:\mathrm{Struve}\:\mathrm{H}\:\mathrm{function} \\ $$

Question Number 220266    Answers: 1   Comments: 0

2^a + 2^b + 2^c = 148

$$\mathrm{2}^{\mathrm{a}} \:\:+\:\:\mathrm{2}^{\mathrm{b}} \:\:+\:\:\mathrm{2}^{\mathrm{c}} \:\:=\:\:\mathrm{148} \\ $$

Question Number 220264    Answers: 1   Comments: 0

Question Number 220263    Answers: 3   Comments: 0

Question Number 220262    Answers: 7   Comments: 0

Question Number 220257    Answers: 2   Comments: 0

proof that volume of frustum of circular cone is (1/3)h[A1+A2+(√(A1A2)) A_1 and A_2 are areas of base

$${proof}\:{that}\:{volume}\:{of}\:{frustum}\:{of} \\ $$$$\:{circular}\:{cone}\:{is}\:\frac{\mathrm{1}}{\mathrm{3}}{h}\left[{A}\mathrm{1}+{A}\mathrm{2}+\sqrt{{A}\mathrm{1}{A}\mathrm{2}}\right. \\ $$$${A}_{\mathrm{1}} {and}\:{A}_{\mathrm{2}} \:{are}\:\:{areas}\:{of}\:{base} \\ $$

Question Number 220253    Answers: 0   Comments: 0

Question Number 220250    Answers: 3   Comments: 0

Question Number 220249    Answers: 1   Comments: 0

Question Number 220248    Answers: 20   Comments: 0

Question Number 220247    Answers: 2   Comments: 0

Question Number 220246    Answers: 6   Comments: 0

Question Number 220245    Answers: 1   Comments: 0

Question Number 220244    Answers: 3   Comments: 0

Question Number 220243    Answers: 5   Comments: 0

Question Number 220242    Answers: 0   Comments: 0

∫ ((ln x)/((1 + x^2 )^2 )) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{{ln}\:{x}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\:^{\mathrm{2}} }\:\:{dx} \\ $$$$ \\ $$

Question Number 220232    Answers: 1   Comments: 0

prove that (π/(16)) < ∫_0 ^( 1 ) (√((x(1−x))/(sin(πx)+cos(πx)+2))) dx<(π/8)

$$ \\ $$$$\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:\:\frac{\pi}{\mathrm{16}}\:<\:\int_{\mathrm{0}} ^{\:\mathrm{1}\:} \sqrt{\frac{{x}\left(\mathrm{1}−{x}\right)}{{sin}\left(\pi{x}\right)+{cos}\left(\pi{x}\right)+\mathrm{2}}}\:{dx}<\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\: \\ $$

Question Number 220231    Answers: 4   Comments: 0

  Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com