Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 50
Question Number 219119 Answers: 4 Comments: 0
Question Number 219118 Answers: 5 Comments: 0
Question Number 219117 Answers: 6 Comments: 0
Question Number 219116 Answers: 5 Comments: 0
Question Number 219113 Answers: 3 Comments: 1
$$\frac{\mathrm{a}\:+\:\mathrm{3b}}{\mathrm{a}\:+\:\mathrm{b}−\mathrm{1}}\:+\:\frac{\mathrm{a}\:+\:\mathrm{3b}−\mathrm{1}}{\mathrm{a}\:+\:\mathrm{b}−\mathrm{3}}\:=\:\mathrm{4}\:\:\Rightarrow\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:? \\ $$
Question Number 219112 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{it}: \\ $$$$\mathrm{In}\:\mathrm{triangle}\:\mathrm{ABC},\:\mathrm{AB}=\mathrm{c},\:\mathrm{BC}=\mathrm{b},\:\mathrm{AC}=\mathrm{a} \\ $$$$\mathrm{ab}^{\mathrm{2}} \mathrm{c}\:+\:\mathrm{abc}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \mathrm{bc}\:\geqslant\:\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}\:\frac{\mathrm{2S}^{\mathrm{3}} }{\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} } \\ $$
Question Number 219110 Answers: 1 Comments: 0
$${find}\:{the}\:{nth}\:{term}\:{of}\:{x}_{{n}+\mathrm{1}} \:=\:{x}_{{n}} \left(\mathrm{2}−{x}_{{n}} \right) \\ $$$${in}\:{x}_{\mathrm{1}} \\ $$
Question Number 219098 Answers: 2 Comments: 0
$$\zeta\left(\alpha\right)=\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\alpha} }\:\: \\ $$
Question Number 219093 Answers: 3 Comments: 1
Question Number 219090 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:{a}_{{n}} =\frac{\mathrm{1}}{\:\sqrt[{{n}}]{{n}!}}\:\mathrm{is}\:\mathrm{decreasing}. \\ $$
Question Number 219088 Answers: 0 Comments: 0
Question Number 219087 Answers: 1 Comments: 0
Question Number 219086 Answers: 2 Comments: 0
Question Number 219085 Answers: 0 Comments: 0
Question Number 219084 Answers: 0 Comments: 0
Question Number 219083 Answers: 0 Comments: 0
Question Number 219078 Answers: 1 Comments: 0
$$\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{m}}\right).\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} \centerdot{k}\centerdot\frac{\left({m}!\right)^{\mathrm{2}} }{\left({m}−{k}\right)!\left({m}+{k}\right)!}=\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:{Proof}\:{this}\:{formula} \\ $$
Question Number 219077 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{+\infty} \left(\frac{{sin}\left({n}\right)}{{n}}\right)^{{m}} {dn}=\pi\centerdot\frac{{m}}{\mathrm{2}^{{m}} }\centerdot\underset{\phi=\mathrm{0}} {\overset{{m}/\mathrm{2}} {\sum}}\left(−\mathrm{1}\right)^{\emptyset} \centerdot\frac{\left({n}−\mathrm{2}\phi\right)^{{m}−\mathrm{1}} }{\left({m}−\phi\right)!\centerdot\phi!}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Proof}\:{this}\:{formula} \\ $$
Question Number 219076 Answers: 0 Comments: 0
Question Number 219071 Answers: 3 Comments: 0
Question Number 219070 Answers: 0 Comments: 0
Question Number 219069 Answers: 0 Comments: 0
Question Number 219068 Answers: 2 Comments: 0
Question Number 219067 Answers: 2 Comments: 1
Question Number 219066 Answers: 4 Comments: 0
Question Number 219065 Answers: 3 Comments: 0
Pg 45 Pg 46 Pg 47 Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54
Terms of Service
Privacy Policy
Contact: info@tinkutara.com