F^→ (x,y)=−(1/2)ye_1 ^→ +(1/2)xe_2 ^→
▽^→ ×F^→ (x,y)= determinant ((( e_1 ^→ ),e_2 ^→ ,e_3 ^→ ),(( ∂_x ),( ∂_y ),∂_z ),((−(1/2)y),((1/2)x),0))=0e_1 ^→ −0e_2 ^→ +((1/2)−(−(1/2)))e_3 ^→
∮_( C) F^→ ∙dl=∮_( C) −(1/2)ydx+(1/2)xdx=∫∫_( R^2 ) e_3 ^→ ∙n^→ dS
∴∮_( C) −(1/2)ydx+(1/2)xdx=∫∫_( R^2 ) dS.....is right...??
|