i^i =e^(−(π/2))
and we can renote complex number i as ((0,(−1)),(1,( 0)) )
i^i = ((0,(−1)),(1,( 0)) )^ ((0,(−1)),(1,( 0)) )
But why Matrix Exponent Calculate Dosen′t defined??
I mean A,B∈mat(m,m)
why A^B dosen′t defined??
If f(x,y)=(((x^2 +y^2 )^n )/(2n(2n−1)))+xφ((y/x))+Ψ((y/x)),
then using Euler′s theorem on homogenous functions,show that
x^2 ((δ^2 f)/(δx^2 ))+2xy((δ^2 f)/(δxδy))+y^2 ((δ^2 f)/(δy^2 ))=(x^2 +y^2 )^n
let n ≥ 2 ∈ Z and x_1 , x_2 , ..., x_n are a positive real numbers
such that Σ_(i=1) ^n x_i = n , prove that
Σ_(i=1) ^n (x_i ^n /(x_1 + ∙∙∙ + x_i ^ + ∙∙∙ + x_n )) ≥ (n/(n − 1))