Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 50
Question Number 220362 Answers: 0 Comments: 0
Question Number 220377 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{equation} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({u}\right)\mathrm{g}\left({u}\right){e}^{−{u}\rho} \mathrm{d}{u}=\frac{\mathrm{1}}{\mathrm{2}\pi\boldsymbol{{i}}}\:\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:+\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\:{F}\left({u}\right){G}\left({u}−\rho\right)\mathrm{d}{u} \\ $$$${F}\left({u}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({t}\right){e}^{−{ut}} \mathrm{d}{t} \\ $$$${G}\left({u}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{g}\left({t}\right){e}^{−{ut}} \mathrm{d}{t} \\ $$
Question Number 220340 Answers: 2 Comments: 0
Question Number 220320 Answers: 1 Comments: 3
Question Number 220353 Answers: 1 Comments: 3
Question Number 220307 Answers: 1 Comments: 0
Question Number 220286 Answers: 3 Comments: 5
Question Number 220278 Answers: 0 Comments: 0
Question Number 220269 Answers: 1 Comments: 0
$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)+\boldsymbol{\mathrm{H}}_{\nu} \left({t}\right)}{{C}_{\mathrm{1}} {J}_{\nu} \left({t}\right)+{C}_{\mathrm{2}} {Y}_{\nu} \left({t}\right)}=?? \\ $$$$\nu\in\mathbb{R} \\ $$$${J}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{First}\:\mathrm{kind} \\ $$$${Y}_{\nu} \left({z}\right)\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{Second}\:\mathrm{Kind} \\ $$$$\boldsymbol{\mathrm{H}}_{\nu} \left({z}\right)\:\mathrm{Struve}\:\mathrm{H}\:\mathrm{function} \\ $$
Question Number 220266 Answers: 1 Comments: 0
$$\mathrm{2}^{\mathrm{a}} \:\:+\:\:\mathrm{2}^{\mathrm{b}} \:\:+\:\:\mathrm{2}^{\mathrm{c}} \:\:=\:\:\mathrm{148} \\ $$
Question Number 220264 Answers: 1 Comments: 0
Question Number 220263 Answers: 3 Comments: 0
Question Number 220262 Answers: 7 Comments: 0
Question Number 220257 Answers: 2 Comments: 0
$${proof}\:{that}\:{volume}\:{of}\:{frustum}\:{of} \\ $$$$\:{circular}\:{cone}\:{is}\:\frac{\mathrm{1}}{\mathrm{3}}{h}\left[{A}\mathrm{1}+{A}\mathrm{2}+\sqrt{{A}\mathrm{1}{A}\mathrm{2}}\right. \\ $$$${A}_{\mathrm{1}} {and}\:{A}_{\mathrm{2}} \:{are}\:\:{areas}\:{of}\:{base} \\ $$
Question Number 220253 Answers: 0 Comments: 0
Question Number 220250 Answers: 3 Comments: 0
Question Number 220249 Answers: 1 Comments: 0
Question Number 220248 Answers: 20 Comments: 0
Question Number 220247 Answers: 2 Comments: 0
Question Number 220246 Answers: 6 Comments: 0
Question Number 220245 Answers: 1 Comments: 0
Question Number 220244 Answers: 3 Comments: 0
Question Number 220243 Answers: 5 Comments: 0
Question Number 220242 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\:\frac{{ln}\:{x}}{\left(\mathrm{1}\:+\:{x}^{\mathrm{2}} \right)\:^{\mathrm{2}} }\:\:{dx} \\ $$$$ \\ $$
Question Number 220232 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{prove}\:{that} \\ $$$$ \\ $$$$\:\:\frac{\pi}{\mathrm{16}}\:<\:\int_{\mathrm{0}} ^{\:\mathrm{1}\:} \sqrt{\frac{{x}\left(\mathrm{1}−{x}\right)}{{sin}\left(\pi{x}\right)+{cos}\left(\pi{x}\right)+\mathrm{2}}}\:{dx}<\frac{\pi}{\mathrm{8}} \\ $$$$\:\:\:\:\: \\ $$
Question Number 220231 Answers: 4 Comments: 0
Pg 45 Pg 46 Pg 47 Pg 48 Pg 49 Pg 50 Pg 51 Pg 52 Pg 53 Pg 54
Terms of Service
Privacy Policy
Contact: info@tinkutara.com