Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 493
Question Number 167772 Answers: 1 Comments: 2
$${x}+\sqrt{{x}}=\mathrm{5} \\ $$$${x}+\frac{\mathrm{5}}{\:\sqrt{{x}}}=? \\ $$
Question Number 167750 Answers: 1 Comments: 0
Question Number 167725 Answers: 1 Comments: 4
$${Q}#\mathrm{167612}\:{reposted}. \\ $$$$\mathcal{D}{etermine}\:{all}\:{the}\:{possible}\:{triples} \\ $$$$\left({a},{b},{c}\right)\:{of}\:{positive}\:{integers}\:{for}\:{which} \\ $$$${ab}−{c},{bc}−{a}\:{and}\:{ca}−{b}\:{are}\:{powers}\:{of} \\ $$$$\mathrm{2}. \\ $$
Question Number 167722 Answers: 1 Comments: 1
$$\frac{\mathrm{2}}{\boldsymbol{\mathrm{Z}}}\:=\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}} \\ $$$$\boldsymbol{\mathrm{Z}}\:=\:???\:{help} \\ $$
Question Number 167718 Answers: 0 Comments: 2
$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} +\left({z}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{25}}+\frac{{z}^{\mathrm{2}} }{\mathrm{16}}=? \\ $$$${help}\:{me} \\ $$
Question Number 167716 Answers: 1 Comments: 0
Question Number 167713 Answers: 1 Comments: 0
Question Number 167709 Answers: 0 Comments: 0
Question Number 167700 Answers: 1 Comments: 0
$$\mathrm{Evalvate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{integrals}: \\ $$$$\mathrm{1}.\:\int\sqrt{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{6x}^{\mathrm{2}} \:+\:\mathrm{9x}\:\mathrm{dx}} \\ $$$$\mathrm{2}.\:\int\:\frac{\left(\mathrm{x}\:-\:\mathrm{6}\right)\:\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:-\:\mathrm{24x}\:+\:\mathrm{3}} \\ $$
Question Number 167699 Answers: 4 Comments: 0
Question Number 167696 Answers: 1 Comments: 0
$${solv}:\:\: \\ $$$${e}^{{x}} +{x}+\mathrm{1}=\mathrm{0} \\ $$
Question Number 167690 Answers: 1 Comments: 0
Question Number 167682 Answers: 1 Comments: 1
$${solve}:\:\mathrm{2}^{{x}} +\mathrm{3}^{{x}} =\mathrm{5}^{{x}} \\ $$
Question Number 167662 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left[\sqrt[{\mathrm{4}}]{{log}\sqrt[{\mathrm{3}}]{\mathrm{2}{log}\sqrt{{x}^{\mathrm{3}} +\mathrm{2}}}}\right]=? \\ $$
Question Number 167666 Answers: 1 Comments: 1
$${I}_{{n}} =\int\frac{{dx}}{\mathrm{cos}\:^{{n}} {x}} \\ $$$${Prove}\:{that} \\ $$$${I}_{{n}} =\frac{{n}−\mathrm{2}}{{n}−\mathrm{1}}{I}_{{n}−\mathrm{2}} +\frac{\mathrm{sin}\:{x}}{\left({n}−\mathrm{1}\right)\mathrm{cos}\:^{{n}−\mathrm{1}} {x}} \\ $$
Question Number 167664 Answers: 0 Comments: 0
$${a}=\mathrm{3}{k},{b}=\mathrm{4}{k},{c}=\mathrm{5}{k} \\ $$$$\mathrm{3}{k}+\mathrm{4}{k}+\mathrm{5}{k}=\mathrm{1000}\Rightarrow{k}=\mathrm{500}/\mathrm{6} \\ $$$${a}=\mathrm{1500}/\mathrm{6},{b}=\mathrm{200}/\mathrm{6},{c}=\mathrm{2500}/\mathrm{6} \\ $$
Question Number 167663 Answers: 1 Comments: 2
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left[{log}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{4}{x}}.......\right)\right]=? \\ $$
Question Number 167650 Answers: 1 Comments: 4
$$\left.\begin{matrix}{\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} }\\{{a}+{b}+{c}=\mathrm{1000}}\end{matrix}\right\};\:\overset{?} {{a}},\:\:\overset{?} {{b}},\:\:\overset{?} {{c}}\in\mathbb{Z} \\ $$$${Q}#\mathrm{167533}\:\mathrm{reposted} \\ $$
Question Number 167648 Answers: 0 Comments: 6
$$\mathrm{log}_{{sinx}} \mathrm{2}+\mathrm{log}_{{cosx}} \mathrm{2}+{log}_{\mathrm{sin}\:{x}} \mathrm{2}×{log}_{\mathrm{cos}\:{x}} \mathrm{2}=\mathrm{0} \\ $$$${x}=? \\ $$
Question Number 167647 Answers: 2 Comments: 0
Question Number 167626 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{\:\sqrt{{t}}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:{dt} \\ $$
Question Number 167624 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{solve} \\ $$$$\:\:\Omega\:={lim}_{\:{n}\rightarrow\infty} {n}^{\:\mathrm{2}} .\:{ln}\left(\:{n}\:.\:{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=? \\ $$$$ \\ $$
Question Number 167633 Answers: 1 Comments: 6
Question Number 167630 Answers: 0 Comments: 0
Question Number 167617 Answers: 3 Comments: 0
$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[{tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right]^{{cotx}} =? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\mathrm{1}}{\mathrm{sin}\:{x}}−\frac{\mathrm{1}}{{x}}\right]=? \\ $$
Question Number 167616 Answers: 0 Comments: 0
$$\boldsymbol{{How}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\:\boldsymbol{{A}}\backslash\boldsymbol{{B}}\oplus\boldsymbol{{C}}=\left(\boldsymbol{{A}}\backslash\boldsymbol{{B}}\right)\oplus\left(\boldsymbol{{A}}\backslash\boldsymbol{{C}}\right) \\ $$
Pg 488 Pg 489 Pg 490 Pg 491 Pg 492 Pg 493 Pg 494 Pg 495 Pg 496 Pg 497
Terms of Service
Privacy Policy
Contact: info@tinkutara.com