Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 493

Question Number 167772    Answers: 1   Comments: 2

x+(√x)=5 x+(5/( (√x)))=?

$${x}+\sqrt{{x}}=\mathrm{5} \\ $$$${x}+\frac{\mathrm{5}}{\:\sqrt{{x}}}=? \\ $$

Question Number 167750    Answers: 1   Comments: 0

Question Number 167725    Answers: 1   Comments: 4

Q#167612 reposted. Determine all the possible triples (a,b,c) of positive integers for which ab−c,bc−a and ca−b are powers of 2.

$${Q}#\mathrm{167612}\:{reposted}. \\ $$$$\mathcal{D}{etermine}\:{all}\:{the}\:{possible}\:{triples} \\ $$$$\left({a},{b},{c}\right)\:{of}\:{positive}\:{integers}\:{for}\:{which} \\ $$$${ab}−{c},{bc}−{a}\:{and}\:{ca}−{b}\:{are}\:{powers}\:{of} \\ $$$$\mathrm{2}. \\ $$

Question Number 167722    Answers: 1   Comments: 1

(2/Z) = (1/a)+(1/b) Z = ??? help

$$\frac{\mathrm{2}}{\boldsymbol{\mathrm{Z}}}\:=\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}} \\ $$$$\boldsymbol{\mathrm{Z}}\:=\:???\:{help} \\ $$

Question Number 167718    Answers: 0   Comments: 2

(x−3)^2 +(y−5)^2 +(z−4)^2 =0 (x^2 /9)+(y^2 /(25))+(z^2 /(16))=? help me

$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}−\mathrm{5}\right)^{\mathrm{2}} +\left({z}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{25}}+\frac{{z}^{\mathrm{2}} }{\mathrm{16}}=? \\ $$$${help}\:{me} \\ $$

Question Number 167716    Answers: 1   Comments: 0

Question Number 167713    Answers: 1   Comments: 0

Question Number 167709    Answers: 0   Comments: 0

Question Number 167700    Answers: 1   Comments: 0

Evalvate the following integrals: 1. ∫(√(x^3 + 6x^2 + 9x dx)) 2. ∫ (((x - 6) dx)/(x^4 - 24x + 3))

$$\mathrm{Evalvate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{integrals}: \\ $$$$\mathrm{1}.\:\int\sqrt{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{6x}^{\mathrm{2}} \:+\:\mathrm{9x}\:\mathrm{dx}} \\ $$$$\mathrm{2}.\:\int\:\frac{\left(\mathrm{x}\:-\:\mathrm{6}\right)\:\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:-\:\mathrm{24x}\:+\:\mathrm{3}} \\ $$

Question Number 167699    Answers: 4   Comments: 0

Question Number 167696    Answers: 1   Comments: 0

solv: e^x +x+1=0

$${solv}:\:\: \\ $$$${e}^{{x}} +{x}+\mathrm{1}=\mathrm{0} \\ $$

Question Number 167690    Answers: 1   Comments: 0

Question Number 167682    Answers: 1   Comments: 1

solve: 2^x +3^x =5^x

$${solve}:\:\mathrm{2}^{{x}} +\mathrm{3}^{{x}} =\mathrm{5}^{{x}} \\ $$

Question Number 167662    Answers: 1   Comments: 0

lim_(x→3) [((log((2log(√(x^3 +2))))^(1/3) ))^(1/4) ]=?

$$\underset{{x}\rightarrow\mathrm{3}} {\mathrm{lim}}\left[\sqrt[{\mathrm{4}}]{{log}\sqrt[{\mathrm{3}}]{\mathrm{2}{log}\sqrt{{x}^{\mathrm{3}} +\mathrm{2}}}}\right]=? \\ $$

Question Number 167666    Answers: 1   Comments: 1

I_n =∫(dx/(cos^n x)) Prove that I_n =((n−2)/(n−1))I_(n−2) +((sin x)/((n−1)cos^(n−1) x))

$${I}_{{n}} =\int\frac{{dx}}{\mathrm{cos}\:^{{n}} {x}} \\ $$$${Prove}\:{that} \\ $$$${I}_{{n}} =\frac{{n}−\mathrm{2}}{{n}−\mathrm{1}}{I}_{{n}−\mathrm{2}} +\frac{\mathrm{sin}\:{x}}{\left({n}−\mathrm{1}\right)\mathrm{cos}\:^{{n}−\mathrm{1}} {x}} \\ $$

Question Number 167664    Answers: 0   Comments: 0

a=3k,b=4k,c=5k 3k+4k+5k=1000⇒k=500/6 a=1500/6,b=200/6,c=2500/6

$${a}=\mathrm{3}{k},{b}=\mathrm{4}{k},{c}=\mathrm{5}{k} \\ $$$$\mathrm{3}{k}+\mathrm{4}{k}+\mathrm{5}{k}=\mathrm{1000}\Rightarrow{k}=\mathrm{500}/\mathrm{6} \\ $$$${a}=\mathrm{1500}/\mathrm{6},{b}=\mathrm{200}/\mathrm{6},{c}=\mathrm{2500}/\mathrm{6} \\ $$

Question Number 167663    Answers: 1   Comments: 2

lim_(x→2) [log((1/x)+(1/(2x))+(1/(4x)).......)]=?

$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left[{log}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{4}{x}}.......\right)\right]=? \\ $$

Question Number 167650    Answers: 1   Comments: 4

{: (( a^2 +b^2 =c^2 )),((a+b+c=1000)) }; a^(?) , b^(?) , c^(?) ∈Z Q#167533 reposted

$$\left.\begin{matrix}{\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} }\\{{a}+{b}+{c}=\mathrm{1000}}\end{matrix}\right\};\:\overset{?} {{a}},\:\:\overset{?} {{b}},\:\:\overset{?} {{c}}\in\mathbb{Z} \\ $$$${Q}#\mathrm{167533}\:\mathrm{reposted} \\ $$

Question Number 167648    Answers: 0   Comments: 6

log_(sinx) 2+log_(cosx) 2+log_(sin x) 2×log_(cos x) 2=0 x=?

$$\mathrm{log}_{{sinx}} \mathrm{2}+\mathrm{log}_{{cosx}} \mathrm{2}+{log}_{\mathrm{sin}\:{x}} \mathrm{2}×{log}_{\mathrm{cos}\:{x}} \mathrm{2}=\mathrm{0} \\ $$$${x}=? \\ $$

Question Number 167647    Answers: 2   Comments: 0

Question Number 167626    Answers: 0   Comments: 0

∫_0 ^∞ (e^(−t) /( (√t))) e^(−(1/(4t))) dt

$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{\:\sqrt{{t}}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{4}{t}}} \:{dt} \\ $$

Question Number 167624    Answers: 2   Comments: 0

solve Ω =lim_( n→∞) n^( 2) . ln( n . sin((1/n)))=?

$$ \\ $$$$\:\:{solve} \\ $$$$\:\:\Omega\:={lim}_{\:{n}\rightarrow\infty} {n}^{\:\mathrm{2}} .\:{ln}\left(\:{n}\:.\:{sin}\left(\frac{\mathrm{1}}{{n}}\right)\right)=? \\ $$$$ \\ $$

Question Number 167633    Answers: 1   Comments: 6

Question Number 167630    Answers: 0   Comments: 0

Question Number 167617    Answers: 3   Comments: 0

(1)lim_(x→0) [tan((π/4)−x)]^(cotx) =? (2)lim_(x→0) [(1/(sin x))−(1/x)]=?

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[{tan}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right]^{{cotx}} =? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{\mathrm{1}}{\mathrm{sin}\:{x}}−\frac{\mathrm{1}}{{x}}\right]=? \\ $$

Question Number 167616    Answers: 0   Comments: 0

How do i show that A\B⊕C=(A\B)⊕(A\C)

$$\boldsymbol{{How}}\:\boldsymbol{{do}}\:\boldsymbol{{i}}\:\boldsymbol{{show}}\:\boldsymbol{{that}} \\ $$$$\:\boldsymbol{{A}}\backslash\boldsymbol{{B}}\oplus\boldsymbol{{C}}=\left(\boldsymbol{{A}}\backslash\boldsymbol{{B}}\right)\oplus\left(\boldsymbol{{A}}\backslash\boldsymbol{{C}}\right) \\ $$

  Pg 488      Pg 489      Pg 490      Pg 491      Pg 492      Pg 493      Pg 494      Pg 495      Pg 496      Pg 497   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com