Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 493

Question Number 169655    Answers: 1   Comments: 0

Question Number 169654    Answers: 2   Comments: 0

∫_0 ^1 ((3x^3 −x^2 +2x−4)/( (√(x^2 −3x+2)))) dx = ?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{3}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{4}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}}}\:\mathrm{d}{x}\:=\:? \\ $$

Question Number 169653    Answers: 1   Comments: 0

solve for x x^2 + (x^2 /((x+1)^2 )) = 3

$$ \\ $$$$\:\:\:{solve}\:{for}\:{x} \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\frac{{x}^{\mathrm{2}} }{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:\:\:=\:\:\mathrm{3} \\ $$

Question Number 169650    Answers: 0   Comments: 1

f(x)= 3∣ sin(x)∣ −4∣cos(x)∣ R_( f) =?

$$ \\ $$$$\:\:\:\:\:\:\:{f}\left({x}\right)=\:\mathrm{3}\mid\:{sin}\left({x}\right)\mid\:−\mathrm{4}\mid{cos}\left({x}\right)\mid \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{R}_{\:{f}} \:=? \\ $$

Question Number 169646    Answers: 0   Comments: 0

If f(x)=[(x^(2x^4 ) /(x^x^2 +3))] then what will be the unit digit of f(10)?

$${If}\:{f}\left({x}\right)=\left[\frac{{x}^{\mathrm{2}{x}^{\mathrm{4}} } }{{x}^{{x}^{\mathrm{2}} } +\mathrm{3}}\right]\:{then}\:{what}\:{will}\:{be}\:{the}\:{unit}\:{digit}\:{of}\:{f}\left(\mathrm{10}\right)? \\ $$

Question Number 169640    Answers: 0   Comments: 1

∫cos(x^7 )dx =

$$\int\mathrm{cos}\left({x}^{\mathrm{7}} \right){dx}\:= \\ $$

Question Number 169635    Answers: 1   Comments: 1

lim_(x→−3) (((√(x^2 +7))+(√(25−x^2 ))−8)/( (√(−3x))−6+(√(18+3x)))) =?

$$\:\:\:\underset{{x}\rightarrow−\mathrm{3}} {\mathrm{lim}}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{7}}+\sqrt{\mathrm{25}−{x}^{\mathrm{2}} }−\mathrm{8}}{\:\sqrt{−\mathrm{3}{x}}−\mathrm{6}+\sqrt{\mathrm{18}+\mathrm{3}{x}}}\:=? \\ $$

Question Number 169631    Answers: 1   Comments: 4

Question Number 169620    Answers: 0   Comments: 3

Question Number 169626    Answers: 1   Comments: 0

Question Number 169613    Answers: 0   Comments: 3

Question Number 169612    Answers: 1   Comments: 0

Differentiate w.r.t ′x′ x^y +y^x =c Mastermind

$${Differentiate}\:{w}.{r}.{t}\:'{x}'\: \\ $$$${x}^{{y}} +{y}^{{x}} ={c} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 169610    Answers: 1   Comments: 0

Question Number 169600    Answers: 3   Comments: 2

give : x,y,z∈R x+y+xy=8 y+z+yz=15 z+x+zx=35 ⇒x+y+z+xyz=?

$${give}\::\:{x},{y},{z}\in\mathbb{R}\: \\ $$$${x}+{y}+{xy}=\mathrm{8} \\ $$$${y}+{z}+{yz}=\mathrm{15} \\ $$$${z}+{x}+{zx}=\mathrm{35} \\ $$$$\Rightarrow{x}+{y}+{z}+{xyz}=? \\ $$

Question Number 169585    Answers: 1   Comments: 2

Question Number 169582    Answers: 0   Comments: 0

Question Number 169579    Answers: 0   Comments: 0

Question Number 169569    Answers: 1   Comments: 0

f(x) = x −⌊(x/2)⌋−⌊(x/3)⌋−⌊(x/6)⌋ R_( f) = ?

$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:{x}\:−\lfloor\frac{{x}}{\mathrm{2}}\rfloor−\lfloor\frac{{x}}{\mathrm{3}}\rfloor−\lfloor\frac{{x}}{\mathrm{6}}\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:\: \\ $$

Question Number 169709    Answers: 0   Comments: 1

Question Number 169708    Answers: 0   Comments: 0

Question Number 169565    Answers: 0   Comments: 1

lim_(x→0) ((a^(sinx) −c^(sinx) )/(m^(sinx) −n^(sinx) ))=? ∀{a,c,m,n}∈[0,∞]

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{a}^{{sinx}} −{c}^{{sinx}} }{{m}^{{sinx}} −{n}^{{sinx}} }=? \\ $$$$\forall\left\{{a},{c},{m},{n}\right\}\in\left[\mathrm{0},\infty\right] \\ $$

Question Number 169563    Answers: 0   Comments: 1

Question Number 169559    Answers: 1   Comments: 1

Question Number 169558    Answers: 3   Comments: 0

(dy/dx) = ((2x−y+1)/(x−4y+3))

$$\:\:\:\:\:\:\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}−{y}+\mathrm{1}}{{x}−\mathrm{4}{y}+\mathrm{3}}\:\:\: \\ $$

Question Number 169573    Answers: 0   Comments: 0

find real matrix A such that: t_A ×A=O , where O is null marix

$${find}\:{real}\:{matrix}\:{A}\:{such}\:{that}: \\ $$$${t}_{{A}} ×{A}={O}\:,\:{where}\:{O}\:{is}\:{null}\:{marix} \\ $$

Question Number 169572    Answers: 1   Comments: 0

  Pg 488      Pg 489      Pg 490      Pg 491      Pg 492      Pg 493      Pg 494      Pg 495      Pg 496      Pg 497   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com