Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 492

Question Number 170547    Answers: 0   Comments: 0

lim_(x→+∞) (x)^(1/3) ∫_x ^(x+1) ((sin t)/( (√(t+cos t))))dt=?

$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{x}}\int_{\mathrm{x}} ^{\mathrm{x}+\mathrm{1}} \frac{\mathrm{sin}\:\mathrm{t}}{\:\sqrt{\mathrm{t}+\mathrm{cos}\:\mathrm{t}}}\mathrm{dt}=? \\ $$

Question Number 170546    Answers: 1   Comments: 0

Solve:quadratic equation about t: 1.h=v_0 t+(1/2)gt^2 ,2.x=v_0 t+(1/2)at^2 solve v:v^2 −v_0 ^2 =2ax

$${Solve}:{quadratic}\:{equation}\:{about}\:{t}: \\ $$$$\mathrm{1}.\mathrm{h}=\mathrm{v}_{\mathrm{0}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} ,\mathrm{2}.\mathrm{x}=\mathrm{v}_{\mathrm{0}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{at}^{\mathrm{2}} \\ $$$$\mathrm{solve}\:\mathrm{v}:{v}^{\mathrm{2}} −{v}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2}{ax} \\ $$

Question Number 170545    Answers: 0   Comments: 1

please help me to find this. a= ∫∫_D ((ydxdy)/(a^2 +x^2 )) D:{x≥0.y≥0.x^2 +y^2 ≤a^2 } b=∫∫∫_v (x−y+z)^2 dxdydz v:{x=0.y=0.z=0 x+z=1.y+z=1} c=∫∫∫_V xydxdydz V:{0≤z≤1. x^2 +y^2 ≤z^2 }

$$\:\:\:\:{please}\:{help}\:{me}\:{to}\:{find}\:{this}. \\ $$$$\:\:\:{a}=\:\int\int_{{D}} \frac{{ydxdy}}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:{D}:\left\{{x}\geqslant\mathrm{0}.{y}\geqslant\mathrm{0}.{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{a}^{\mathrm{2}} \right\} \\ $$$$\:\:\:{b}=\int\int\int_{{v}} \left({x}−{y}+{z}\right)^{\mathrm{2}} {dxdydz} \\ $$$$\:\:{v}:\left\{{x}=\mathrm{0}.{y}=\mathrm{0}.{z}=\mathrm{0}\:{x}+{z}=\mathrm{1}.{y}+{z}=\mathrm{1}\right\} \\ $$$$\:\:\:\:{c}=\int\int\int_{{V}} {xydxdydz} \\ $$$$\:\:\:\:\:\:\:\:{V}:\left\{\mathrm{0}\leqslant{z}\leqslant\mathrm{1}.\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{z}^{\mathrm{2}} \right\} \\ $$

Question Number 170537    Answers: 1   Comments: 1

Question Number 170536    Answers: 2   Comments: 0

Question Number 170535    Answers: 0   Comments: 2

∫_c (cosxsiny−xy)dx+(sinx ∙cosy)dy faind integral on the opposite sid of the clock face in the c unit circle? solve this

$$\int_{{c}} \left({cosxsiny}−{xy}\right){dx}+\left({sinx}\:\centerdot{cosy}\right){dy} \\ $$$${faind}\:{integral}\:{on}\:{the}\:{opposite} \\ $$$${sid}\:{of}\:{the}\:{clock}\:{face}\:{in}\:{the} \\ $$$${c}\:{unit}\:{circle}? \\ $$$${solve}\:{this} \\ $$

Question Number 170520    Answers: 1   Comments: 2

solve for x (1+(1/x))^(x+1) =(1+(1/(10)))^(10)

$${solve}\:{for}\:{x} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{10}} \\ $$

Question Number 170515    Answers: 2   Comments: 0

8 men and 12 women can complete a certain job for 6 days. The men work at 6/5 the rate at which the women work. How many men will be required to complete the job in 4 days

8 men and 12 women can complete a certain job for 6 days. The men work at 6/5 the rate at which the women work. How many men will be required to complete the job in 4 days

Question Number 170519    Answers: 1   Comments: 0

Evaluate : ∫_(−1) ^( +1) (x^2 /(1+2^x ))dx Please help me..

$$\:\:\:\:{Evaluate}\::\:\:\:\int_{−\mathrm{1}} ^{\:+\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$$$\:\:\:\:{Please}\:{help}\:{me}.. \\ $$

Question Number 170512    Answers: 1   Comments: 1

How to find relative charge of an proton or electron?

$${How}\:{to}\:{find}\:{relative}\:{charge}\:{of}\:{an} \\ $$$${proton}\:{or}\:{electron}? \\ $$

Question Number 170511    Answers: 1   Comments: 1

what does relative charge mean?

$${what}\:{does}\:{relative}\:{charge}\:{mean}? \\ $$

Question Number 170522    Answers: 1   Comments: 0

Question Number 170503    Answers: 0   Comments: 1

tan90°=?

$$\mathrm{tan90}°=? \\ $$

Question Number 170502    Answers: 2   Comments: 0

Question Number 170501    Answers: 1   Comments: 0

solve this: ∫∫_D x^2 e^(xy) dxdy D:{(x.y)∈R^2 /0≤x≤1. 0≤y≤2} ∫∫_D ((ydxdy)/((1+x^2 +y^2 )^(3/2) )). 0≤x≤1.0≤y≤1.

$$\:\:\:\:\:\:\:\:\:\:{solve}\:{this}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\int_{{D}} {x}^{\mathrm{2}} {e}^{{xy}} {dxdy} \\ $$$${D}:\left\{\left({x}.{y}\right)\in{R}^{\mathrm{2}} \:/\mathrm{0}\leqslant{x}\leqslant\mathrm{1}.\:\:\mathrm{0}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\int\underset{{D}} {\int}\frac{{ydxdy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }.\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}.\mathrm{0}\leqslant{y}\leqslant\mathrm{1}. \\ $$

Question Number 170497    Answers: 0   Comments: 0

Given that R is at the point with positive vector 4−2j when t=2 Find the position vector of R when t=3

$${Given}\:{that}\:{R}\:{is}\:{at}\:{the}\:{point}\:{with} \\ $$$${positive}\:{vector}\:\mathrm{4}−\mathrm{2}{j}\:{when}\:{t}=\mathrm{2} \\ $$$${Find}\:{the}\:{position}\:{vector}\:{of}\:{R} \\ $$$$\:{when}\:{t}=\mathrm{3} \\ $$

Question Number 170494    Answers: 0   Comments: 0

Question Number 170495    Answers: 1   Comments: 0

Question Number 170492    Answers: 0   Comments: 0

Question Number 170491    Answers: 1   Comments: 0

1) Help 5^x −3^x =9

$$\left.\mathrm{1}\right)\:{Help} \\ $$$$\mathrm{5}^{{x}} −\mathrm{3}^{{x}} =\mathrm{9}\: \\ $$

Question Number 170488    Answers: 1   Comments: 0

Question Number 170486    Answers: 0   Comments: 0

Question Number 170485    Answers: 2   Comments: 0

Question Number 170480    Answers: 0   Comments: 3

Question Number 170479    Answers: 0   Comments: 0

Question Number 170478    Answers: 2   Comments: 0

(( 9 + 4(√5) ))^(1/3) + (( 9 − 4(√5) ))^(1/3) = ?

$$\sqrt[{\mathrm{3}}]{\:\mathrm{9}\:+\:\mathrm{4}\sqrt{\mathrm{5}}\:}\:+\:\sqrt[{\mathrm{3}}]{\:\mathrm{9}\:−\:\mathrm{4}\sqrt{\mathrm{5}}\:}\:=\:? \\ $$

  Pg 487      Pg 488      Pg 489      Pg 490      Pg 491      Pg 492      Pg 493      Pg 494      Pg 495      Pg 496   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com