Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 492

Question Number 169612    Answers: 1   Comments: 0

Differentiate w.r.t ′x′ x^y +y^x =c Mastermind

$${Differentiate}\:{w}.{r}.{t}\:'{x}'\: \\ $$$${x}^{{y}} +{y}^{{x}} ={c} \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 169610    Answers: 1   Comments: 0

Question Number 169600    Answers: 3   Comments: 2

give : x,y,z∈R x+y+xy=8 y+z+yz=15 z+x+zx=35 ⇒x+y+z+xyz=?

$${give}\::\:{x},{y},{z}\in\mathbb{R}\: \\ $$$${x}+{y}+{xy}=\mathrm{8} \\ $$$${y}+{z}+{yz}=\mathrm{15} \\ $$$${z}+{x}+{zx}=\mathrm{35} \\ $$$$\Rightarrow{x}+{y}+{z}+{xyz}=? \\ $$

Question Number 169585    Answers: 1   Comments: 2

Question Number 169582    Answers: 0   Comments: 0

Question Number 169579    Answers: 0   Comments: 0

Question Number 169569    Answers: 1   Comments: 0

f(x) = x −⌊(x/2)⌋−⌊(x/3)⌋−⌊(x/6)⌋ R_( f) = ?

$$ \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:{x}\:−\lfloor\frac{{x}}{\mathrm{2}}\rfloor−\lfloor\frac{{x}}{\mathrm{3}}\rfloor−\lfloor\frac{{x}}{\mathrm{6}}\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:{R}_{\:{f}} \:=\:? \\ $$$$\:\:\:\:\: \\ $$

Question Number 169709    Answers: 0   Comments: 1

Question Number 169708    Answers: 0   Comments: 0

Question Number 169565    Answers: 0   Comments: 1

lim_(x→0) ((a^(sinx) −c^(sinx) )/(m^(sinx) −n^(sinx) ))=? ∀{a,c,m,n}∈[0,∞]

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{a}^{{sinx}} −{c}^{{sinx}} }{{m}^{{sinx}} −{n}^{{sinx}} }=? \\ $$$$\forall\left\{{a},{c},{m},{n}\right\}\in\left[\mathrm{0},\infty\right] \\ $$

Question Number 169563    Answers: 0   Comments: 1

Question Number 169559    Answers: 1   Comments: 1

Question Number 169558    Answers: 3   Comments: 0

(dy/dx) = ((2x−y+1)/(x−4y+3))

$$\:\:\:\:\:\:\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}−{y}+\mathrm{1}}{{x}−\mathrm{4}{y}+\mathrm{3}}\:\:\: \\ $$

Question Number 169573    Answers: 0   Comments: 0

find real matrix A such that: t_A ×A=O , where O is null marix

$${find}\:{real}\:{matrix}\:{A}\:{such}\:{that}: \\ $$$${t}_{{A}} ×{A}={O}\:,\:{where}\:{O}\:{is}\:{null}\:{marix} \\ $$

Question Number 169572    Answers: 1   Comments: 0

Question Number 169553    Answers: 1   Comments: 0

solve the D.E 2dx−e^(y−x) dy=0

$${solve}\:{the}\:{D}.{E} \\ $$$$\mathrm{2}{dx}−{e}^{{y}−{x}} {dy}=\mathrm{0} \\ $$

Question Number 169549    Answers: 1   Comments: 0

convert this D.E to exact D.E and solve it ydx+x(1+y)dy=0

$${convert}\:{this}\:{D}.{E}\:{to}\:{exact}\:{D}.{E}\:{and}\:{solve}\:{it} \\ $$$${ydx}+{x}\left(\mathrm{1}+{y}\right){dy}=\mathrm{0} \\ $$

Question Number 169548    Answers: 0   Comments: 1

Question Number 169541    Answers: 1   Comments: 0

Question Number 169539    Answers: 1   Comments: 2

Question Number 169538    Answers: 0   Comments: 1

Question Number 169537    Answers: 0   Comments: 2

Question Number 169533    Answers: 0   Comments: 1

{ ((x+(1/y)=1)),(((1/x)+y=2)) :}⇒x^(2022) +(1/y^(2022) ) =?

$$\:\:\begin{cases}{{x}+\frac{\mathrm{1}}{{y}}=\mathrm{1}}\\{\frac{\mathrm{1}}{{x}}+{y}=\mathrm{2}}\end{cases}\Rightarrow{x}^{\mathrm{2022}} +\frac{\mathrm{1}}{{y}^{\mathrm{2022}} }\:=? \\ $$

Question Number 169527    Answers: 1   Comments: 1

evaluate the limit(if it exists) lim_(n→∞) [(((√(n^4 −2n^3 ))−n^2 )/(n+2))]^3

$$\boldsymbol{{evaluate}}\:\boldsymbol{{the}}\:\boldsymbol{{limit}}\left(\boldsymbol{{if}}\:\boldsymbol{{it}}\:\boldsymbol{{exists}}\right) \\ $$$$\boldsymbol{{lim}}_{\boldsymbol{{n}}\rightarrow\infty} \left[\frac{\sqrt{\boldsymbol{{n}}^{\mathrm{4}} −\mathrm{2}\boldsymbol{{n}}^{\mathrm{3}} }−\boldsymbol{{n}}^{\mathrm{2}} }{\boldsymbol{{n}}+\mathrm{2}}\right]^{\mathrm{3}} \\ $$

Question Number 169526    Answers: 1   Comments: 0

solve the D.E. y^′ =tan(x+y)−1

$${solve}\:{the}\:{D}.{E}. \\ $$$${y}^{'} ={tan}\left({x}+{y}\right)−\mathrm{1} \\ $$

Question Number 169508    Answers: 1   Comments: 0

Evaluate if the limit exist lim_(n→∞) (((3^n +(−2)^(n+1) )/(3^(n−2) −2^(2n−1) )))

$${Evaluate}\:{if}\:{the}\:{limit}\:{exist} \\ $$$${lim}_{\boldsymbol{{n}}\rightarrow\infty} \left(\frac{\mathrm{3}^{\boldsymbol{{n}}} +\left(−\mathrm{2}\right)^{\boldsymbol{{n}}+\mathrm{1}} }{\mathrm{3}^{\boldsymbol{{n}}−\mathrm{2}} −\mathrm{2}^{\mathrm{2}\boldsymbol{{n}}−\mathrm{1}} }\right) \\ $$

  Pg 487      Pg 488      Pg 489      Pg 490      Pg 491      Pg 492      Pg 493      Pg 494      Pg 495      Pg 496   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com