Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 488
Question Number 169736 Answers: 0 Comments: 0
$${Given}\:{a}\:\in\:\left[\frac{\mathrm{3}\pi}{\mathrm{2}};\mathrm{2}\pi\right]. \\ $$$${Determinate}\:{a}\:{values}\:{for}\:{which} \\ $$$${the}\:{sequence}\:{u}_{{n}} ={cos}\left({a}\right)\left({sin}\left({a}\right)\right)^{{n}} \:{is} \\ $$$${constant}\:{from}\:{a}\:{certain}\:{value}\:{of}\:{n}. \\ $$
Question Number 169733 Answers: 1 Comments: 0
Question Number 169727 Answers: 0 Comments: 6
Question Number 169725 Answers: 0 Comments: 0
Question Number 169760 Answers: 1 Comments: 0
$$\mathrm{Find}\:\:\boldsymbol{\mathrm{x}} \\ $$$$\left(\mathrm{5}\:-\:\mathrm{2x}\right)\left(\mathrm{5}\:+\:\mathrm{2}\:\sqrt{\mathrm{4}\:-\:\mathrm{2x}^{\mathrm{2}} }\right)\:=\:\mathrm{25} \\ $$
Question Number 169751 Answers: 0 Comments: 0
$${find}\:\:{the}\:{forier}\:{transform}\:{of} \\ $$$${g}\left({t}\right)=\mathrm{cos}^{\mathrm{2}} \left(\mathrm{2}\pi\:\mathrm{f}_{\mathrm{c}} \:\mathrm{t}\right)\:\:\: \\ $$
Question Number 169745 Answers: 2 Comments: 0
Question Number 169743 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\underset{\mathrm{0}} {\int}\overset{\:{x}} {\:}\sqrt{\mathrm{1}\:+\:\mathrm{sin}\:{t}}\:{dt}}{{x}}\:=\:{a}\:\:,\:\: \\ $$$${then}\:\:\:{a}^{\mathrm{2}} \:−\:\mathrm{1}\:\:=\:\:...\:? \\ $$
Question Number 169713 Answers: 0 Comments: 4
Question Number 169712 Answers: 0 Comments: 0
Question Number 169711 Answers: 2 Comments: 3
$$ \\ $$$$\:\:\:\:{prove}\:{that}: \\ $$$$\:\: \\ $$$$\:\:{lim}_{\:{x}\:\rightarrow\:\mathrm{0}} \left(\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:\:−\:\frac{{e}^{\:{x}} }{\left({e}^{\:{x}} −\mathrm{1}\:\right)^{\:\mathrm{2}} }\:\right)\:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 169808 Answers: 0 Comments: 0
$${If}\:{the}\:{Real}\:{component}\:{of}\:{an}\:{analytic} \\ $$$${function}\:{is}\:{given}\:{by}\:{log}_{{e}} \left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} , \\ $$$${find}\:{the}\:{function}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 169706 Answers: 0 Comments: 0
$$\mathrm{using}\:\mathrm{cylindrical}\:\mathrm{coordinates}\:\begin{cases}{{x}={r}\mathrm{cos}\theta}\\{{y}\:=\:{r}\mathrm{sin}\:\theta}\\{{z}={z}}\end{cases} \\ $$$$\mathrm{to}\:\mathrm{evaluate}\:\mathrm{the}\:\mathrm{integral} \\ $$$${K}=\:\int\int\int_{{S}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} }\:{dxdydz} \\ $$$$\mathrm{where} \\ $$$$\:{S}=\:\left\{\left({x},{y},{z}\right)\:\in\mathbb{R}^{\mathrm{3}} :\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:\leqslant\:\mathrm{4},\:\mathrm{0}\:\leqslant{z}\leqslant\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right\} \\ $$
Question Number 169807 Answers: 0 Comments: 0
$${Given}\:{that}\:{U}={x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{4}} ,\:{find} \\ $$$${v}\:{and}\:{w}\:{such}\:{that}\:{w}={u}+{iv}\:{is}\:{analytic} \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 169702 Answers: 1 Comments: 0
$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{4}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{4}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{5}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{2}}&{\mathrm{5}}&{\mathrm{1}}\end{vmatrix}=\: \\ $$
Question Number 169774 Answers: 1 Comments: 3
Question Number 169771 Answers: 3 Comments: 0
$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:+\:\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{1}}\:=\:\frac{\mathrm{48}}{\mathrm{35}} \\ $$
Question Number 169770 Answers: 0 Comments: 4
Question Number 169677 Answers: 2 Comments: 0
$$\:\:\:\:{M}\:=\:\int\:\frac{{dx}}{\left({x}−\mathrm{4}\right)\sqrt{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{8}}}\:=? \\ $$
Question Number 169671 Answers: 0 Comments: 0
Question Number 169669 Answers: 1 Comments: 0
Question Number 169668 Answers: 0 Comments: 1
Question Number 169667 Answers: 1 Comments: 0
$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{domain}}\:\boldsymbol{{of}} \\ $$$$\left(\boldsymbol{{i}}\right)\:\frac{\boldsymbol{{x}}}{\:\sqrt{\boldsymbol{{x}}+\mathrm{5}}} \\ $$$$\left(\boldsymbol{{ii}}\right)\:\sqrt{\boldsymbol{{x}}}+\mathrm{2} \\ $$$$\left(\boldsymbol{{iii}}\right)\:\frac{\mathrm{3}}{\:\sqrt{\boldsymbol{{x}}+\mathrm{2}}+\mathrm{5}} \\ $$
Question Number 169664 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{Given}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{A}}\right)=\mathrm{10}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{B}}\right)=\mathrm{6} \\ $$$$\left.\:\boldsymbol{\mathrm{i}}\right)\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{largest}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\right) \\ $$$$\left.\:\boldsymbol{\mathrm{ii}}\right)\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{smallest}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{value}} \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{A}}\cup\boldsymbol{\mathrm{B}}\right) \\ $$$$\left.\boldsymbol{\mathrm{iii}}\right)\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{smallest}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{value}} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{n}}\left(\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}\right) \\ $$$$ \\ $$
Question Number 169658 Answers: 1 Comments: 2
Question Number 169655 Answers: 1 Comments: 0
Pg 483 Pg 484 Pg 485 Pg 486 Pg 487 Pg 488 Pg 489 Pg 490 Pg 491 Pg 492
Terms of Service
Privacy Policy
Contact: info@tinkutara.com