Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 488

Question Number 170891    Answers: 0   Comments: 1

Question Number 170888    Answers: 0   Comments: 0

Question Number 170890    Answers: 2   Comments: 0

Find the equation of a circle which touches the line x−3y+13 = 0 and passes through the points (6, 3) and (4, −1).

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{which} \\ $$$$\mathrm{touches}\:\mathrm{the}\:\mathrm{line}\:{x}−\mathrm{3}{y}+\mathrm{13}\:=\:\mathrm{0}\: \\ $$$$\mathrm{and}\:\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{points}\:\left(\mathrm{6},\:\mathrm{3}\right) \\ $$$$\mathrm{and}\:\left(\mathrm{4},\:−\mathrm{1}\right). \\ $$

Question Number 170889    Answers: 1   Comments: 1

Question Number 170878    Answers: 1   Comments: 0

Question Number 170868    Answers: 1   Comments: 0

Solve: ∣x − 1∣ + ∣x − 2∣ ≥ 4

$$\mathrm{Solve}:\:\:\:\mid\mathrm{x}\:\:\:−\:\:\:\mathrm{1}\mid\:\:\:\:+\:\:\:\mid\mathrm{x}\:\:\:\:−\:\:\:\mathrm{2}\mid\:\:\:\:\geqslant\:\:\:\:\mathrm{4} \\ $$

Question Number 170856    Answers: 1   Comments: 2

in AB^Δ C : cos (A)+cos(B)+cos(C)=(7/4) (R/r) =?

$$ \\ $$$$\:\:{in}\:{A}\overset{\Delta} {{B}C}\::\:\:{cos}\:\left({A}\right)+{cos}\left({B}\right)+{cos}\left({C}\right)=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$\:\:\:\frac{{R}}{{r}}\:=? \\ $$

Question Number 170855    Answers: 1   Comments: 0

⌊x⌋= log_2 (4^( x) −2^( x) −1)⇒ ⌊ 4^( x) ⌋=?

$$ \\ $$$$\:\:\:\lfloor{x}\rfloor=\:{log}_{\mathrm{2}} \left(\mathrm{4}^{\:{x}} −\mathrm{2}^{\:{x}} −\mathrm{1}\right)\Rightarrow\:\lfloor\:\mathrm{4}^{\:{x}} \rfloor=? \\ $$$$ \\ $$

Question Number 181349    Answers: 0   Comments: 0

Question Number 170872    Answers: 1   Comments: 0

Question Number 170871    Answers: 1   Comments: 0

Why is it equal? (1/2)∫_0 ^π sin^(2p) udu=∫_0 ^(π/2) sin^(2p) udu

$${Why}\:{is}\:{it}\:{equal}? \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\pi} {\int}}{sin}^{\mathrm{2}{p}} {udu}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{sin}^{\mathrm{2}{p}} {udu} \\ $$

Question Number 170849    Answers: 1   Comments: 0

2x+(√x)=(1/2) 8x+(1/( (√x)))=?

$$\mathrm{2}{x}+\sqrt{{x}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{8}{x}+\frac{\mathrm{1}}{\:\sqrt{{x}}}=? \\ $$

Question Number 170847    Answers: 0   Comments: 1

Question Number 170844    Answers: 2   Comments: 0

solve x^2 +(√(3−x))=3

$${solve}\:{x}^{\mathrm{2}} +\sqrt{\mathrm{3}−{x}}=\mathrm{3} \\ $$

Question Number 170843    Answers: 1   Comments: 0

Question Number 170838    Answers: 1   Comments: 0

if a<b, show that a<((mb+na)/(m+n))<b a,b,m,n are arbitrary constants

$$\mathrm{if}\:{a}<{b},\:\mathrm{show}\:\mathrm{that}\:{a}<\frac{{mb}+{na}}{{m}+{n}}<{b} \\ $$$${a},{b},{m},{n}\:\mathrm{are}\:\mathrm{arbitrary}\:\mathrm{constants} \\ $$

Question Number 170836    Answers: 2   Comments: 1

x^3 − 2x^2 − 5x + 6 = 0 α^3 + β^3 + γ^3 = ?

$${x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{5}{x}\:+\:\mathrm{6}\:=\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\alpha^{\mathrm{3}} \:+\:\beta^{\mathrm{3}} \:+\:\gamma^{\mathrm{3}} \:=\:? \\ $$

Question Number 170833    Answers: 1   Comments: 0

Solve { ((C_x ^y =C_x ^(y+1) )),((4C_x ^y =5C_x ^(y−1) )) :} or C_n ^k =((n!)/(k!(n−k)!))

$${Solve}\: \\ $$$$\begin{cases}{{C}_{{x}} ^{{y}} ={C}_{{x}} ^{{y}+\mathrm{1}} }\\{\mathrm{4}{C}_{{x}} ^{{y}} =\mathrm{5}{C}_{{x}} ^{{y}−\mathrm{1}} }\end{cases}\:{or}\:{C}_{{n}} ^{{k}} =\frac{{n}!}{{k}!\left({n}−{k}\right)!} \\ $$

Question Number 170832    Answers: 0   Comments: 9

Question Number 170831    Answers: 2   Comments: 0

Question Number 170958    Answers: 1   Comments: 0

log _5 (x+3)=log _6 (x+14)

$$\:\:\:\:\:\:\mathrm{log}\:_{\mathrm{5}} \left({x}+\mathrm{3}\right)=\mathrm{log}\:_{\mathrm{6}} \left({x}+\mathrm{14}\right) \\ $$

Question Number 170824    Answers: 1   Comments: 0

Question Number 170820    Answers: 0   Comments: 0

Solve y^((4)) +2y^((3)) +y^((2)) =xe^(−x)

$${Solve} \\ $$$${y}^{\left(\mathrm{4}\right)} +\mathrm{2}{y}^{\left(\mathrm{3}\right)} +{y}^{\left(\mathrm{2}\right)} ={xe}^{−{x}} \\ $$

Question Number 170812    Answers: 1   Comments: 0

f(x)=((x+1)/( (√(x^2 +9)))) find the horizontal asymptote

$$\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\frac{\boldsymbol{\mathrm{x}}+\mathrm{1}}{\:\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{9}}} \\ $$$$\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{horizontal}}\:\boldsymbol{\mathrm{asymptote}} \\ $$

Question Number 170811    Answers: 0   Comments: 0

find minimum and maximum z = x^3 −3x^2 −4y^2 +2 ?

$${find}\:{minimum}\:{and}\:{maximum}\:{z}\:=\:{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} +\mathrm{2}\:? \\ $$

Question Number 170810    Answers: 0   Comments: 0

The mean height of a population of girls aged 15 to 19 years in a northern province in Ghana was found to be 165 cm with a standard deviation of 15 cm. Assuming that the heights are normally distributed, find the heights in centimetres that correspond to the following percentiles: a. Between the 20th and 50th percentiles.

$$ \\ $$The mean height of a population of girls aged 15 to 19 years in a northern province in Ghana was found to be 165 cm with a standard deviation of 15 cm. Assuming that the heights are normally distributed, find the heights in centimetres that correspond to the following percentiles: a. Between the 20th and 50th percentiles.

  Pg 483      Pg 484      Pg 485      Pg 486      Pg 487      Pg 488      Pg 489      Pg 490      Pg 491      Pg 492   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com