Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 488

Question Number 169966    Answers: 1   Comments: 0

lim_(x→0) ((sin (tan x)−tan (sin x))/(2x cos (tan x)−2x cos (sin x)+x^5 )) =?

$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{tan}\:{x}\right)−\mathrm{tan}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{2}{x}\:\mathrm{cos}\:\left(\mathrm{tan}\:{x}\right)−\mathrm{2}{x}\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)+{x}^{\mathrm{5}} }\:=? \\ $$

Question Number 169949    Answers: 0   Comments: 7

Question Number 169947    Answers: 2   Comments: 1

Question Number 169944    Answers: 0   Comments: 1

Question Number 169945    Answers: 1   Comments: 5

Question Number 169942    Answers: 0   Comments: 0

Question Number 170006    Answers: 0   Comments: 0

Question Number 170005    Answers: 2   Comments: 3

Question Number 170004    Answers: 0   Comments: 0

q(x,y,z)=xy+4xz+3yz determier la reduction de gauss en carre

$${q}\left({x},{y},{z}\right)={xy}+\mathrm{4}{xz}+\mathrm{3}{yz} \\ $$$${determier}\:{la}\:{reduction}\:{de}\:{gauss}\:{en}\:{carre} \\ $$

Question Number 169932    Answers: 0   Comments: 0

if x+(1/x)=cosθ find x^n +(1/x^n ) interm of θ

$${if}\:{x}+\frac{\mathrm{1}}{{x}}={cos}\theta\:\:{find} \\ $$$${x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\:{interm}\:{of}\:\theta \\ $$

Question Number 169930    Answers: 0   Comments: 0

find f(α)=∫_0 ^1 ((arctan(αx))/(1+x^2 ))dx

$${find}\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$

Question Number 169925    Answers: 0   Comments: 0

Question Number 169924    Answers: 0   Comments: 3

Question Number 169923    Answers: 0   Comments: 0

Σ_(d∣6) d=?

$$\underset{{d}\mid\mathrm{6}} {\sum}{d}=? \\ $$

Question Number 169922    Answers: 1   Comments: 0

Let f(x)=((2x−7)/(x+1)) . Compute f^(1989) (x). note f^2 (x)= f(f(x))

$$\:\:{Let}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{7}}{{x}+\mathrm{1}}\:.\:{Compute}\:{f}^{\mathrm{1989}} \left({x}\right). \\ $$$$\:{note}\:{f}^{\mathrm{2}} \left({x}\right)=\:{f}\left({f}\left({x}\right)\right) \\ $$

Question Number 169920    Answers: 0   Comments: 0

Question Number 169918    Answers: 3   Comments: 0

A={z∈C: 2<∣z∣<4} fine log(A) where log is complex logaritmique

$${A}=\left\{\boldsymbol{{z}}\in\mathbb{C}:\:\mathrm{2}<\mid\boldsymbol{{z}}\mid<\mathrm{4}\right\} \\ $$$$\boldsymbol{{fine}}\:\boldsymbol{{log}}\left(\boldsymbol{{A}}\right) \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{log}}\:\boldsymbol{{is}}\:\boldsymbol{{complex}}\:\boldsymbol{{logaritmique}} \\ $$

Question Number 169916    Answers: 1   Comments: 0

Question Number 169915    Answers: 2   Comments: 0

Question Number 169913    Answers: 0   Comments: 1

solve the D.E dx+(−sin(y)+(x/y))dy=0

$${solve}\:{the}\:{D}.{E} \\ $$$${dx}+\left(−{sin}\left({y}\right)+\frac{{x}}{{y}}\right){dy}=\mathrm{0} \\ $$

Question Number 169906    Answers: 0   Comments: 0

Evaluate ∫∫e^(2x+3y) dxdy over the triangle bounded by the lines x = 0, y = 0, x+y = 1.

$$\mathrm{Evaluate}\:\int\int{e}^{\mathrm{2}{x}+\mathrm{3}{y}} {dxdy}\:\mathrm{over}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{lines}\:{x}\:=\:\mathrm{0},\:{y}\:=\:\mathrm{0},\:{x}+{y}\:=\:\mathrm{1}. \\ $$

Question Number 170010    Answers: 1   Comments: 1

Question Number 170012    Answers: 1   Comments: 0

Question Number 169901    Answers: 0   Comments: 0

Question Number 169900    Answers: 0   Comments: 0

montrer que ∀z∈C/ ∣z∣=2, ∣(1/(z^4 −5z+1))∣≤(1/5)

$$\boldsymbol{{montrer}}\:\boldsymbol{{que}}\:\forall\boldsymbol{{z}}\in\mathbb{C}/\:\mid\boldsymbol{{z}}\mid=\mathrm{2}, \\ $$$$\mid\frac{\mathrm{1}}{\boldsymbol{{z}}^{\mathrm{4}} −\mathrm{5}\boldsymbol{{z}}+\mathrm{1}}\mid\leqslant\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Question Number 169899    Answers: 1   Comments: 2

  Pg 483      Pg 484      Pg 485      Pg 486      Pg 487      Pg 488      Pg 489      Pg 490      Pg 491      Pg 492   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com