Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 488
Question Number 169966 Answers: 1 Comments: 0
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{tan}\:{x}\right)−\mathrm{tan}\:\left(\mathrm{sin}\:{x}\right)}{\mathrm{2}{x}\:\mathrm{cos}\:\left(\mathrm{tan}\:{x}\right)−\mathrm{2}{x}\:\mathrm{cos}\:\left(\mathrm{sin}\:{x}\right)+{x}^{\mathrm{5}} }\:=? \\ $$
Question Number 169949 Answers: 0 Comments: 7
Question Number 169947 Answers: 2 Comments: 1
Question Number 169944 Answers: 0 Comments: 1
Question Number 169945 Answers: 1 Comments: 5
Question Number 169942 Answers: 0 Comments: 0
Question Number 170006 Answers: 0 Comments: 0
Question Number 170005 Answers: 2 Comments: 3
Question Number 170004 Answers: 0 Comments: 0
$${q}\left({x},{y},{z}\right)={xy}+\mathrm{4}{xz}+\mathrm{3}{yz} \\ $$$${determier}\:{la}\:{reduction}\:{de}\:{gauss}\:{en}\:{carre} \\ $$
Question Number 169932 Answers: 0 Comments: 0
$${if}\:{x}+\frac{\mathrm{1}}{{x}}={cos}\theta\:\:{find} \\ $$$${x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\:{interm}\:{of}\:\theta \\ $$
Question Number 169930 Answers: 0 Comments: 0
$${find}\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arctan}\left(\alpha{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 169925 Answers: 0 Comments: 0
Question Number 169924 Answers: 0 Comments: 3
Question Number 169923 Answers: 0 Comments: 0
$$\underset{{d}\mid\mathrm{6}} {\sum}{d}=? \\ $$
Question Number 169922 Answers: 1 Comments: 0
$$\:\:{Let}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{7}}{{x}+\mathrm{1}}\:.\:{Compute}\:{f}^{\mathrm{1989}} \left({x}\right). \\ $$$$\:{note}\:{f}^{\mathrm{2}} \left({x}\right)=\:{f}\left({f}\left({x}\right)\right) \\ $$
Question Number 169920 Answers: 0 Comments: 0
Question Number 169918 Answers: 3 Comments: 0
$${A}=\left\{\boldsymbol{{z}}\in\mathbb{C}:\:\mathrm{2}<\mid\boldsymbol{{z}}\mid<\mathrm{4}\right\} \\ $$$$\boldsymbol{{fine}}\:\boldsymbol{{log}}\left(\boldsymbol{{A}}\right) \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{log}}\:\boldsymbol{{is}}\:\boldsymbol{{complex}}\:\boldsymbol{{logaritmique}} \\ $$
Question Number 169916 Answers: 1 Comments: 0
Question Number 169915 Answers: 2 Comments: 0
Question Number 169913 Answers: 0 Comments: 1
$${solve}\:{the}\:{D}.{E} \\ $$$${dx}+\left(−{sin}\left({y}\right)+\frac{{x}}{{y}}\right){dy}=\mathrm{0} \\ $$
Question Number 169906 Answers: 0 Comments: 0
$$\mathrm{Evaluate}\:\int\int{e}^{\mathrm{2}{x}+\mathrm{3}{y}} {dxdy}\:\mathrm{over}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{lines}\:{x}\:=\:\mathrm{0},\:{y}\:=\:\mathrm{0},\:{x}+{y}\:=\:\mathrm{1}. \\ $$
Question Number 170010 Answers: 1 Comments: 1
Question Number 170012 Answers: 1 Comments: 0
Question Number 169901 Answers: 0 Comments: 0
Question Number 169900 Answers: 0 Comments: 0
$$\boldsymbol{{montrer}}\:\boldsymbol{{que}}\:\forall\boldsymbol{{z}}\in\mathbb{C}/\:\mid\boldsymbol{{z}}\mid=\mathrm{2}, \\ $$$$\mid\frac{\mathrm{1}}{\boldsymbol{{z}}^{\mathrm{4}} −\mathrm{5}\boldsymbol{{z}}+\mathrm{1}}\mid\leqslant\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Question Number 169899 Answers: 1 Comments: 2
Pg 483 Pg 484 Pg 485 Pg 486 Pg 487 Pg 488 Pg 489 Pg 490 Pg 491 Pg 492
Terms of Service
Privacy Policy
Contact: info@tinkutara.com