Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 488
Question Number 170578 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \sqrt{{x}}\:{sin}^{\:−\mathrm{1}} \left(\:{x}\:\right){dx}\:=\:? \\ $$$$ \\ $$
Question Number 170572 Answers: 1 Comments: 0
Question Number 170568 Answers: 1 Comments: 0
Question Number 170566 Answers: 2 Comments: 0
$$\:\:\mathrm{Find}\:\mathrm{min}\:\mathrm{value}\: \\ $$$$\:\:{f}\left({x}\right)=\:\left({x}+\mathrm{4}\right)\left({x}+\mathrm{5}\right)\left({x}+\mathrm{6}\right)\left({x}+\mathrm{7}\right) \\ $$
Question Number 170565 Answers: 1 Comments: 0
Question Number 170563 Answers: 0 Comments: 0
Question Number 170552 Answers: 1 Comments: 1
Question Number 170551 Answers: 2 Comments: 0
Question Number 170550 Answers: 0 Comments: 0
Question Number 170549 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} {xarctan}^{\mathrm{6}} {x}\:{dx}=? \\ $$
Question Number 170547 Answers: 0 Comments: 0
$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{x}}\int_{\mathrm{x}} ^{\mathrm{x}+\mathrm{1}} \frac{\mathrm{sin}\:\mathrm{t}}{\:\sqrt{\mathrm{t}+\mathrm{cos}\:\mathrm{t}}}\mathrm{dt}=? \\ $$
Question Number 170546 Answers: 1 Comments: 0
$${Solve}:{quadratic}\:{equation}\:{about}\:{t}: \\ $$$$\mathrm{1}.\mathrm{h}=\mathrm{v}_{\mathrm{0}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} ,\mathrm{2}.\mathrm{x}=\mathrm{v}_{\mathrm{0}} \mathrm{t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{at}^{\mathrm{2}} \\ $$$$\mathrm{solve}\:\mathrm{v}:{v}^{\mathrm{2}} −{v}_{\mathrm{0}} ^{\mathrm{2}} =\mathrm{2}{ax} \\ $$
Question Number 170545 Answers: 0 Comments: 1
$$\:\:\:\:{please}\:{help}\:{me}\:{to}\:{find}\:{this}. \\ $$$$\:\:\:{a}=\:\int\int_{{D}} \frac{{ydxdy}}{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\:{D}:\left\{{x}\geqslant\mathrm{0}.{y}\geqslant\mathrm{0}.{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{a}^{\mathrm{2}} \right\} \\ $$$$\:\:\:{b}=\int\int\int_{{v}} \left({x}−{y}+{z}\right)^{\mathrm{2}} {dxdydz} \\ $$$$\:\:{v}:\left\{{x}=\mathrm{0}.{y}=\mathrm{0}.{z}=\mathrm{0}\:{x}+{z}=\mathrm{1}.{y}+{z}=\mathrm{1}\right\} \\ $$$$\:\:\:\:{c}=\int\int\int_{{V}} {xydxdydz} \\ $$$$\:\:\:\:\:\:\:\:{V}:\left\{\mathrm{0}\leqslant{z}\leqslant\mathrm{1}.\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{z}^{\mathrm{2}} \right\} \\ $$
Question Number 170537 Answers: 1 Comments: 1
Question Number 170536 Answers: 2 Comments: 0
Question Number 170535 Answers: 0 Comments: 2
$$\int_{{c}} \left({cosxsiny}−{xy}\right){dx}+\left({sinx}\:\centerdot{cosy}\right){dy} \\ $$$${faind}\:{integral}\:{on}\:{the}\:{opposite} \\ $$$${sid}\:{of}\:{the}\:{clock}\:{face}\:{in}\:{the} \\ $$$${c}\:{unit}\:{circle}? \\ $$$${solve}\:{this} \\ $$
Question Number 170520 Answers: 1 Comments: 2
$${solve}\:{for}\:{x} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{10}} \\ $$
Question Number 170515 Answers: 2 Comments: 0
8 men and 12 women can complete a certain job for 6 days. The men work at 6/5 the rate at which the women work. How many men will be required to complete the job in 4 days
Question Number 170519 Answers: 1 Comments: 0
$$\:\:\:\:{Evaluate}\::\:\:\:\int_{−\mathrm{1}} ^{\:+\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{2}^{{x}} }{dx} \\ $$$$\:\:\:\:{Please}\:{help}\:{me}.. \\ $$
Question Number 170512 Answers: 1 Comments: 1
$${How}\:{to}\:{find}\:{relative}\:{charge}\:{of}\:{an} \\ $$$${proton}\:{or}\:{electron}? \\ $$
Question Number 170511 Answers: 1 Comments: 1
$${what}\:{does}\:{relative}\:{charge}\:{mean}? \\ $$
Question Number 170522 Answers: 1 Comments: 0
Question Number 170503 Answers: 0 Comments: 1
$$\mathrm{tan90}°=? \\ $$
Question Number 170502 Answers: 2 Comments: 0
Question Number 170501 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:{solve}\:{this}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\int_{{D}} {x}^{\mathrm{2}} {e}^{{xy}} {dxdy} \\ $$$${D}:\left\{\left({x}.{y}\right)\in{R}^{\mathrm{2}} \:/\mathrm{0}\leqslant{x}\leqslant\mathrm{1}.\:\:\mathrm{0}\leqslant{y}\leqslant\mathrm{2}\right\} \\ $$$$\:\:\:\:\:\:\int\underset{{D}} {\int}\frac{{ydxdy}}{\left(\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }.\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}.\mathrm{0}\leqslant{y}\leqslant\mathrm{1}. \\ $$
Question Number 170497 Answers: 0 Comments: 0
$${Given}\:{that}\:{R}\:{is}\:{at}\:{the}\:{point}\:{with} \\ $$$${positive}\:{vector}\:\mathrm{4}−\mathrm{2}{j}\:{when}\:{t}=\mathrm{2} \\ $$$${Find}\:{the}\:{position}\:{vector}\:{of}\:{R} \\ $$$$\:{when}\:{t}=\mathrm{3} \\ $$
Pg 483 Pg 484 Pg 485 Pg 486 Pg 487 Pg 488 Pg 489 Pg 490 Pg 491 Pg 492
Terms of Service
Privacy Policy
Contact: info@tinkutara.com