Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 482

Question Number 171694    Answers: 2   Comments: 0

Question Number 171693    Answers: 2   Comments: 0

Question Number 171688    Answers: 0   Comments: 0

In △ABC AA^′ , BB^′ , CC^′ - cevians AA^′ ∩ BB^′ ∩ CC^′ = {P} Prove that: min([APC^′ ],[BPA^′ ],[CPB^′ ])+min([APB^′ ],[BPC^′ ],[CPA^′ ]) ≤ ((Rr (√3))/2)

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{AA}^{'} \:,\:\mathrm{BB}^{'} \:,\:\mathrm{CC}^{'} \:-\:\mathrm{cevians} \\ $$$$\mathrm{AA}^{'} \:\cap\:\mathrm{BB}^{'} \:\cap\:\mathrm{CC}^{'} \:=\:\left\{\mathrm{P}\right\} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{min}\left(\left[\mathrm{APC}^{'} \right],\left[\mathrm{BPA}^{'} \right],\left[\mathrm{CPB}^{'} \right]\right)+\mathrm{min}\left(\left[\mathrm{APB}^{'} \right],\left[\mathrm{BPC}^{'} \right],\left[\mathrm{CPA}^{'} \right]\right)\:\leqslant\:\frac{\mathrm{Rr}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 171684    Answers: 1   Comments: 0

Question Number 171681    Answers: 1   Comments: 0

Question Number 171677    Answers: 1   Comments: 0

Question Number 171673    Answers: 0   Comments: 0

Question Number 171667    Answers: 1   Comments: 0

Question Number 171666    Answers: 0   Comments: 1

Question Number 171665    Answers: 1   Comments: 0

Ω=∫_0 ^1 Log(((Log^2 (x))/x^(x^5 −x^4 +x^3 −x^2 +x−1) ))dx Anyone?

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {Log}\left(\frac{{Log}^{\mathrm{2}} \left({x}\right)}{{x}^{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{1}} }\right){dx} \\ $$$$ \\ $$$${Anyone}? \\ $$

Question Number 171664    Answers: 1   Comments: 1

Solve ∫(x^2 /(1+x^2 ))tan^(−1) xdx

$${Solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\mathrm{tan}^{−\mathrm{1}} {xdx} \\ $$

Question Number 171649    Answers: 0   Comments: 0

Question Number 171642    Answers: 1   Comments: 5

evaluate ((√(((a−b)^7 + (b−c)^7 + (c−a)^7 )/((a−b)^3 + (b−c)^3 + (c−a)^3 )))/(a^2 +b^2 +c^2 −ab−bc−ca)) = ??

$$\:\:\:\:\:\:\:\:{evaluate}\:\:\: \\ $$$$\:\:\:\:\frac{\sqrt{\frac{\left({a}−{b}\right)^{\mathrm{7}} \:+\:\left({b}−{c}\right)^{\mathrm{7}} \:+\:\left({c}−{a}\right)^{\mathrm{7}} }{\left({a}−{b}\right)^{\mathrm{3}} \:+\:\left({b}−{c}\right)^{\mathrm{3}} \:+\:\left({c}−{a}\right)^{\mathrm{3}} }}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ab}−{bc}−{ca}}\:=\:\:?? \\ $$

Question Number 176844    Answers: 0   Comments: 0

If x, y, z are prime digits. What is the remainder of the smallest negative number generated by these digits divided by 11 ?

$$\mathrm{If}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{prime}\:\mathrm{digits}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{negative}\:\mathrm{number}\:\mathrm{generated} \\ $$$$\mathrm{by}\:\mathrm{these}\:\mathrm{digits}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{11}\:? \\ $$

Question Number 176841    Answers: 0   Comments: 0

If 3 of 10 elective courses are been delivered at the same time. How many possibilities are there to take 5 courses ?

$$\mathrm{If}\:\mathrm{3}\:\mathrm{of}\:\mathrm{10}\:\mathrm{elective}\:\mathrm{courses}\:\mathrm{are}\:\mathrm{been}\:\mathrm{delivered}\: \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{possibilities}\: \\ $$$$\mathrm{are}\:\mathrm{there}\:\mathrm{to}\:\mathrm{take}\:\mathrm{5}\:\mathrm{courses}\:? \\ $$

Question Number 171627    Answers: 0   Comments: 5

A mass 10kg is placed at the foot of an inclined plane 13m long, whose upper end is 5m higher than the foot. The mass is connected by a light inextensible string, passing over a smooth pulley at the top of the plane, to another mass 10kg which hangs level with the top of the plane, 5m above the floor. If the coefficient of friction between the first mass and then plane is ½ and the system is released from rest, find the acceleration and tension In the string. [Take g = 9.8m/s²]

A mass 10kg is placed at the foot of an inclined plane 13m long, whose upper end is 5m higher than the foot. The mass is connected by a light inextensible string, passing over a smooth pulley at the top of the plane, to another mass 10kg which hangs level with the top of the plane, 5m above the floor. If the coefficient of friction between the first mass and then plane is ½ and the system is released from rest, find the acceleration and tension In the string. [Take g = 9.8m/s²]

Question Number 171626    Answers: 0   Comments: 0

x=(√(19)) +((91)/( (√(19))+((91)/( (√(19))+((91)/( (√(19))+((91)/( (√(19))+…))))))))

$$\:\:\:{x}=\sqrt{\mathrm{19}}\:+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\ldots}}}} \\ $$

Question Number 171622    Answers: 0   Comments: 0

Question Number 171620    Answers: 0   Comments: 4

Question Number 171614    Answers: 0   Comments: 11

A particle is moving along a straight line such that it's position from a fixed point is S = ( 12 - 15t² + 5t³ )m where t is in seconds. Determine: A. Total distance travelled by the particle from t = 1sec to t = 3sec B. The average speed of the particle during this time.

A particle is moving along a straight line such that it's position from a fixed point is S = ( 12 - 15t² + 5t³ )m where t is in seconds. Determine: A. Total distance travelled by the particle from t = 1sec to t = 3sec B. The average speed of the particle during this time.

Question Number 171613    Answers: 0   Comments: 0

Question Number 171612    Answers: 0   Comments: 4

f(f(x))=(1/(1+x^2 )) f(x)=?

$${f}\left({f}\left({x}\right)\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:{f}\left({x}\right)=? \\ $$

Question Number 171611    Answers: 1   Comments: 0

∫_0 ^∞ xe^(−x) cos(x)log^n (x)dx how can we do these

$$\int_{\mathrm{0}} ^{\infty} \boldsymbol{\mathrm{xe}}^{−\boldsymbol{\mathrm{x}}} \boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{log}}^{\boldsymbol{\mathrm{n}}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{these}} \\ $$

Question Number 171608    Answers: 1   Comments: 0

montrer que ∫_o ^(+oo) ((sin^2 t)/t^2 )e^(−xt) dt est continu sur R^+

$${montrer}\:{que} \\ $$$$\int_{{o}} ^{+{oo}} \frac{{sin}^{\mathrm{2}} {t}}{{t}^{\mathrm{2}} }{e}^{−{xt}} {dt} \\ $$$${est}\:{continu}\:{sur}\:{R}^{+} \\ $$

Question Number 171601    Answers: 0   Comments: 0

Question Number 171599    Answers: 0   Comments: 0

Ω=∫_0 ^1 Log(((Log^2 (x))/x^(x^5 −x^4 +x^3 −x^2 +x−1) ))dx Mastermind

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {Log}\left(\frac{{Log}^{\mathrm{2}} \left({x}\right)}{{x}^{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{1}} }\right){dx} \\ $$$$ \\ $$$${Mastermind} \\ $$

  Pg 477      Pg 478      Pg 479      Pg 480      Pg 481      Pg 482      Pg 483      Pg 484      Pg 485      Pg 486   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com