Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 482

Question Number 171512    Answers: 1   Comments: 0

Question Number 171507    Answers: 0   Comments: 0

Question Number 171502    Answers: 0   Comments: 1

Solve (dy/dx)(xcos y+asin 2y)=−1 (dy/dx)=(((y+2)/(x+y−1)))^2

$${Solve} \\ $$$$\frac{{dy}}{{dx}}\left({x}\mathrm{cos}\:{y}+{a}\mathrm{sin}\:\mathrm{2}{y}\right)=−\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\left(\frac{{y}+\mathrm{2}}{{x}+{y}−\mathrm{1}}\right)^{\mathrm{2}} \\ $$

Question Number 171499    Answers: 1   Comments: 0

The sum of a sample of 20 numbers is 320 and the sum of their squares is 5840. Calculate the mean of the first nineteen numbers if the 20^(th) observation is 25.

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{sample}}\:\boldsymbol{\mathrm{of}}\:\mathrm{20}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{\mathrm{is}} \\ $$$$\mathrm{320}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{sum}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{their}}\:\boldsymbol{\mathrm{squares}}\: \\ $$$$\:\boldsymbol{\mathrm{is}}\:\mathrm{5840}.\:\boldsymbol{\mathrm{Calculate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{mean}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\: \\ $$$$\:\boldsymbol{\mathrm{first}}\:\boldsymbol{\mathrm{nineteen}}\:\boldsymbol{\mathrm{numbers}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\mathrm{20}^{\boldsymbol{\mathrm{th}}} \: \\ $$$$\boldsymbol{\mathrm{observation}}\:\boldsymbol{\mathrm{is}}\:\mathrm{25}. \\ $$

Question Number 171497    Answers: 0   Comments: 3

Question Number 171493    Answers: 1   Comments: 0

Question Number 171491    Answers: 0   Comments: 0

Question Number 171490    Answers: 0   Comments: 0

Question Number 171479    Answers: 1   Comments: 5

tan^2 (𝛑/7) +tan^2 ((3𝛑)/7) +tan^2 ((5𝛑)/7)=?

$$\:\boldsymbol{{tan}}^{\mathrm{2}} \frac{\boldsymbol{\pi}}{\mathrm{7}}\:+\boldsymbol{{tan}}^{\mathrm{2}} \frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{7}}\:+\boldsymbol{{tan}}^{\mathrm{2}} \frac{\mathrm{5}\boldsymbol{\pi}}{\mathrm{7}}=? \\ $$

Question Number 171477    Answers: 0   Comments: 0

Question Number 171475    Answers: 1   Comments: 0

Question Number 171472    Answers: 0   Comments: 0

lim_(a→∞) Σ_(n=1) ^a ((e^(in) .ln∣(1/x)∣)/(πn^2 )).tan^(−1) (n(√π)) Mastermind

$${li}\underset{{a}\rightarrow\infty} {{m}}\:\underset{{n}=\mathrm{1}} {\overset{{a}} {\sum}}\frac{{e}^{{in}} .{ln}\mid\frac{\mathrm{1}}{{x}}\mid}{\pi{n}^{\mathrm{2}} }.{tan}^{−\mathrm{1}} \left({n}\sqrt{\pi}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$

Question Number 171560    Answers: 1   Comments: 1

Nice Integral Ω = ∫_0 ^( (π/4)) (( tan(x))/(( cos^( 2) (x) + 2sin^( 2) (x))))dx =

$$ \\ $$$$\:\:\:\:\:\mathrm{Nice}\:\:\:\mathrm{Integral} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\:{tan}\left({x}\right)}{\left(\:{cos}^{\:\mathrm{2}} \left({x}\right)\:\:+\:\mathrm{2}{sin}^{\:\mathrm{2}} \left({x}\right)\right)}{dx}\:= \\ $$

Question Number 171484    Answers: 3   Comments: 1

let f(x) = x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +......... ∀x∈(0,1) the value of f((1/( (√2)))) = ?

$$ \\ $$$$\:\:\:\:{let}\:{f}\left({x}\right)\:=\:{x}+\frac{\mathrm{2}}{\mathrm{1}.\mathrm{3}}{x}^{\mathrm{3}} +\frac{\mathrm{2}.\mathrm{4}}{\mathrm{1}.\mathrm{3}.\mathrm{5}}{x}^{\mathrm{5}} +\frac{\mathrm{2}.\mathrm{4}.\mathrm{6}}{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}{x}^{\mathrm{7}} +......... \\ $$$$\:\:\:\:\forall{x}\in\left(\mathrm{0},\mathrm{1}\right)\:\:{the}\:{value}\:{of}\:\:{f}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\:=\:? \\ $$

Question Number 171464    Answers: 0   Comments: 0

Question Number 171456    Answers: 1   Comments: 1

Question Number 171455    Answers: 1   Comments: 1

find the sum of z = sinx + sin2x+sin3x+......+sinnx

$${find}\:{the}\:{sum}\:{of}\:{z}\:=\:{sinx}\:+\:{sin}\mathrm{2}{x}+{sin}\mathrm{3}{x}+......+{sinnx}\: \\ $$

Question Number 174435    Answers: 0   Comments: 0

sec^2 1°+sec^2 2°+sec^2 3°+...+sec^2 89°=?

$$\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{1}°+\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}°+\mathrm{sec}\:^{\mathrm{2}} \mathrm{3}°+...+\mathrm{sec}\:^{\mathrm{2}} \mathrm{89}°=? \\ $$

Question Number 171448    Answers: 0   Comments: 0

∫_0 ^(𝛑/2) x(√(cos(x)))dx evaluate!!!!

$$\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{\mathrm{x}}\sqrt{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}\boldsymbol{\mathrm{dx}}\:\:\:\boldsymbol{\mathrm{evaluate}}!!!! \\ $$

Question Number 171443    Answers: 2   Comments: 0

Question Number 171442    Answers: 0   Comments: 1

Question Number 171437    Answers: 2   Comments: 0

make r the subject of the formula y=(((pr)/m) − (p^3 /1))^(−3/2) find r if y=−8 , m=−1, p=3

$$\mathrm{make}\:\boldsymbol{\mathrm{r}}\:\:\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{y}}=\left(\frac{\boldsymbol{\mathrm{pr}}}{\boldsymbol{\mathrm{m}}}\:\:−\:\frac{\boldsymbol{\mathrm{p}}^{\mathrm{3}} }{\mathrm{1}}\right)^{−\mathrm{3}/\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{r}}\:\mathrm{if}\:\mathrm{y}=−\mathrm{8}\:\:\:,\:\:\mathrm{m}=−\mathrm{1},\:\:\mathrm{p}=\mathrm{3} \\ $$

Question Number 171435    Answers: 1   Comments: 7

Let f:R→R be polynomial function satisfying f(x) f((1/x))=f(x)+f((1/x)) and f(3)=28, then f(x) is

$$\:\:{Let}\:{f}:{R}\rightarrow{R}\:{be}\:{polynomial} \\ $$$$\:{function}\:{satisfying}\: \\ $$$$\:{f}\left({x}\right)\:{f}\left(\frac{\mathrm{1}}{{x}}\right)={f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)\:{and} \\ $$$$\:{f}\left(\mathrm{3}\right)=\mathrm{28},\:{then}\:{f}\left({x}\right)\:{is} \\ $$

Question Number 171441    Answers: 0   Comments: 1

I_n = −((2n)/(2n + 1)) I_(n−1) I_0 = 1 Show that I_n = (((−4)^n (n!)^2 )/((2n+1)!))

$${I}_{{n}} \:=\:−\frac{\mathrm{2}{n}}{\mathrm{2}{n}\:+\:\mathrm{1}}\:{I}_{{n}−\mathrm{1}} \\ $$$${I}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${Show}\:{that}\:{I}_{{n}} \:=\:\frac{\left(−\mathrm{4}\right)^{{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$

Question Number 171440    Answers: 0   Comments: 0

Question Number 171431    Answers: 0   Comments: 0

  Pg 477      Pg 478      Pg 479      Pg 480      Pg 481      Pg 482      Pg 483      Pg 484      Pg 485      Pg 486   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com