Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 482

Question Number 168787    Answers: 0   Comments: 1

Question Number 168781    Answers: 0   Comments: 1

Question Number 168776    Answers: 1   Comments: 4

Question Number 168823    Answers: 2   Comments: 0

Q#168480 reposted. n^2 +n+109=x^2 x∈Z, n(∈Z^+ )=?

$$\boldsymbol{\mathrm{Q}}#\mathrm{168480}\:\mathrm{reposted}. \\ $$$$\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}+\mathrm{109}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}\in\mathbb{Z},\:\boldsymbol{\mathrm{n}}\left(\in\mathbb{Z}^{+} \right)=? \\ $$

Question Number 168772    Answers: 1   Comments: 1

Question Number 168771    Answers: 0   Comments: 0

Question Number 168762    Answers: 0   Comments: 2

Question Number 168755    Answers: 0   Comments: 5

∫(1/(x+(√(1−x)))) dx

$$\int\frac{\mathrm{1}}{{x}+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$

Question Number 168753    Answers: 0   Comments: 1

∫(dx/( (√(sin^(−1) (x)))))=?

$$\int\frac{{dx}}{\:\sqrt{{sin}^{−\mathrm{1}} \left({x}\right)}}=? \\ $$

Question Number 168745    Answers: 1   Comments: 1

∫(1/(x+(√(x−1)))) dx = ??

$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}−\mathrm{1}}}\:{dx}\:=\:?? \\ $$

Question Number 168744    Answers: 3   Comments: 0

Resolve 1) ∫((√(1+cos x))/(sin x))dx 2) ∫(dx/(1+((x+1))^(1/3) )) 3) ∫((xtan x)/(cos^4 x))dx 4) ∫(dx/(1+(√x)+(√(1+x))))

$${Resolve} \\ $$$$\left.\mathrm{1}\right)\:\int\frac{\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}{\mathrm{sin}\:{x}}{dx} \\ $$$$\left.\mathrm{2}\right)\:\int\frac{{dx}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}} \\ $$$$\left.\mathrm{3}\right)\:\int\frac{{x}\mathrm{tan}\:{x}}{\mathrm{cos}\:^{\mathrm{4}} {x}}{dx} \\ $$$$\left.\mathrm{4}\right)\:\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$

Question Number 168743    Answers: 1   Comments: 1

∫_0 ^∞ ((√t)/(1+t^2 ))dt FAILED TO CALCULATE

$$\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$$$ \\ $$

Question Number 168742    Answers: 1   Comments: 0

Resolve y=xy′+a(√(1+(y′)^2 ))

$${Resolve} \\ $$$${y}={xy}'+{a}\sqrt{\mathrm{1}+\left(\mathrm{y}'\right)^{\mathrm{2}} } \\ $$

Question Number 168737    Answers: 1   Comments: 1

Question Number 168734    Answers: 0   Comments: 0

Question Number 168732    Answers: 2   Comments: 0

Question Number 168723    Answers: 0   Comments: 2

Resolve (x+5)^5 y^(′′) =1

$${Resolve}\: \\ $$$$\left({x}+\mathrm{5}\right)^{\mathrm{5}} {y}^{''} =\mathrm{1} \\ $$

Question Number 168722    Answers: 0   Comments: 1

Resolve x^2 y^(′′) +xy^′ +y=1

$${Resolve}\: \\ $$$${x}^{\mathrm{2}} {y}^{''} +{xy}^{'} +{y}=\mathrm{1} \\ $$

Question Number 168721    Answers: 1   Comments: 0

Question Number 168710    Answers: 0   Comments: 4

Question Number 168709    Answers: 0   Comments: 3

Question Number 168707    Answers: 1   Comments: 1

Question Number 168698    Answers: 3   Comments: 0

3f(x)+2f(((x+59)/(x−1)))=10x+30 for all rael x=1 faind volue of f(7)=?

$$\mathrm{3}{f}\left({x}\right)+\mathrm{2}{f}\left(\frac{{x}+\mathrm{59}}{{x}−\mathrm{1}}\right)=\mathrm{10}{x}+\mathrm{30}\:{for}\:{all} \\ $$$${rael}\:\:{x}\cancel{=}\mathrm{1}\:{faind}\:{volue}\:{of} \\ $$$${f}\left(\mathrm{7}\right)=? \\ $$$$ \\ $$

Question Number 168696    Answers: 1   Comments: 0

Calculate :: lim_(x→0) ((∫_(2x−1) ^(2x+1) e^t^2 dt−∫_(−1) ^1 e^t^2 dt)/x^2 )=8e ,Don′t use L′Hospital′s rule.

$$\mathrm{Calculate}\:\:\:::\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{2x}−\mathrm{1}} ^{\mathrm{2x}+\mathrm{1}} \mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \mathrm{dt}−\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \mathrm{dt}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{8e}\:\:\:,\mathrm{Don}'\mathrm{t}\:\mathrm{use}\:\mathrm{L}'\mathrm{Hospital}'\mathrm{s}\:\mathrm{rule}. \\ $$

Question Number 168686    Answers: 0   Comments: 0

Question Number 168679    Answers: 2   Comments: 0

  Pg 477      Pg 478      Pg 479      Pg 480      Pg 481      Pg 482      Pg 483      Pg 484      Pg 485      Pg 486   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com