Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 482
Question Number 171314 Answers: 1 Comments: 0
$${If}\:{C}_{{r}} ,\:{C}_{{s}} \:{are}\:{cyclic}\:{groups}\:{such}\:{that} \\ $$$${g}.{c}.{d}\left({r},{s}\right)=\mathrm{1},\:{then}\:{show}\:{that}\:{C}_{{r}} ×{C}_{{s}} \:{is} \\ $$$${a}\:{cyclic}\:{group}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 171312 Answers: 0 Comments: 4
Question Number 171311 Answers: 0 Comments: 0
$$\mathrm{2}^{{x}^{−{i}^{\mathrm{2}} } } +\mathrm{2}^{{x}^{\mathrm{2}} } =\mathrm{2}^{{x}^{\mathrm{3}} −{i}^{\mathrm{2}} } \\ $$$${x}=? \\ $$
Question Number 171318 Answers: 1 Comments: 1
$${if}\:{f}\left({x}\right)={x}^{\frac{\mathrm{13}}{\mathrm{5}}} \:{and}\:{g}\left({x}\right)=\sqrt[{\mathrm{5}}]{{x}^{\mathrm{13}} }\: \\ $$$${Which}\:{one}\:{is}\:{correct}? \\ $$$$\left.\mathrm{1}\left.\right)\:{f}\left({x}\right)={g}\left({x}\right)\:\:\:\:\mathrm{2}\right){f}\left({x}\right)\neq{g}\left({x}\right) \\ $$
Question Number 171307 Answers: 1 Comments: 1
$$\mathrm{Simplify} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\mathrm{3}^{{k}} \mathrm{2}^{{n}−{k}} \\ $$
Question Number 171301 Answers: 0 Comments: 1
$$\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{6}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3} \\ $$
Question Number 171296 Answers: 0 Comments: 1
Question Number 176853 Answers: 2 Comments: 0
Question Number 171289 Answers: 1 Comments: 0
$$\left({x},{y}\right)\in{R}\:\:\:{x}^{\mathrm{2}} −{xy}−\mathrm{12}{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} }{{xy}}=? \\ $$
Question Number 171284 Answers: 2 Comments: 0
$${g}\left({x}\right)=−{x}^{\mathrm{2}} +\mathrm{1}−{ln}\mid{x}\mid \\ $$Study the variations of the function g and draw up its table of variations
Question Number 171281 Answers: 0 Comments: 0
Question Number 171283 Answers: 0 Comments: 2
Question Number 171267 Answers: 0 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{y}=\frac{{x}}{\mathrm{1}+{x}}\:\mathrm{at}\:\mathrm{which}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{to}\:\mathrm{the}\:\mathrm{line}\:{x}−{y}+\mathrm{8}=\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangents}\:\mathrm{at} \\ $$$$\mathrm{these}\:\mathrm{points}. \\ $$
Question Number 171265 Answers: 0 Comments: 0
$${find}\:{the}\:{drivative}\:{of}\: \\ $$$${f}\left({x},{y},{z}\right)={cos}\left({xy}\right)+{e}^{{zy}} +{ln}\left({zy}\right) \\ $$$${at}\:{point}\:\left(\mathrm{1},\mathrm{0},\frac{\mathrm{1}}{\mathrm{2}}\right)\:{in}\:{the}\:{direction} \\ $$$${v}={i}+\mathrm{2}{j}+\mathrm{2}{k} \\ $$
Question Number 171260 Answers: 1 Comments: 0
$$\underline{{Change}\:{to}\:{polar}\:{coordinates}:} \\ $$$$\underset{\mathrm{0}} {\int}^{\:\:\mathrm{4}{a}} \underset{{y}^{\mathrm{2}} /\mathrm{4}{a}} {\int}\overset{{a}} {\:}\:\:\left(\frac{{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)\:{dx}\:{dy} \\ $$
Question Number 171255 Answers: 1 Comments: 2
Question Number 171253 Answers: 2 Comments: 0
Question Number 171247 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}−\mathrm{2}}=... \\ $$
Question Number 171244 Answers: 2 Comments: 3
$$\frac{{x}}{{y}}+\frac{{y}}{{x}}=\frac{\mathrm{26}}{\mathrm{5}} \\ $$$$\frac{{x}+{y}}{{x}−{y}}=? \\ $$$$\frac{}{} \\ $$
Question Number 171243 Answers: 1 Comments: 3
Question Number 171237 Answers: 0 Comments: 2
Question Number 171235 Answers: 1 Comments: 2
Question Number 171229 Answers: 0 Comments: 1
Question Number 171226 Answers: 0 Comments: 4
$${Possible}\:{number}\:{of}\:{order}\:{pairs} \\ $$$${satisfy}\:\mathrm{16}^{{x}^{\mathrm{2}} +{y}} +\mathrm{16}^{{y}^{\mathrm{2}} +{x}} =\mathrm{1}\:{is} \\ $$
Question Number 171223 Answers: 0 Comments: 0
$${In}\:{how}\:{many}\:{ways}\:{can}\:{you}\:{select}\:\mathrm{4} \\ $$$${from}\:\mathrm{40}\:{persons}\:{if}\:{every}\:{two}\:{persons} \\ $$$${may}\:{be}\:{selected}\:{together}\:{at}\:{most}\:{one}\: \\ $$$${time}? \\ $$
Question Number 171221 Answers: 0 Comments: 0
Pg 477 Pg 478 Pg 479 Pg 480 Pg 481 Pg 482 Pg 483 Pg 484 Pg 485 Pg 486
Terms of Service
Privacy Policy
Contact: info@tinkutara.com