Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 482

Question Number 169922    Answers: 1   Comments: 0

Let f(x)=((2x−7)/(x+1)) . Compute f^(1989) (x). note f^2 (x)= f(f(x))

$$\:\:{Let}\:{f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{7}}{{x}+\mathrm{1}}\:.\:{Compute}\:{f}^{\mathrm{1989}} \left({x}\right). \\ $$$$\:{note}\:{f}^{\mathrm{2}} \left({x}\right)=\:{f}\left({f}\left({x}\right)\right) \\ $$

Question Number 169920    Answers: 0   Comments: 0

Question Number 169918    Answers: 3   Comments: 0

A={z∈C: 2<∣z∣<4} fine log(A) where log is complex logaritmique

$${A}=\left\{\boldsymbol{{z}}\in\mathbb{C}:\:\mathrm{2}<\mid\boldsymbol{{z}}\mid<\mathrm{4}\right\} \\ $$$$\boldsymbol{{fine}}\:\boldsymbol{{log}}\left(\boldsymbol{{A}}\right) \\ $$$$\boldsymbol{{where}}\:\boldsymbol{{log}}\:\boldsymbol{{is}}\:\boldsymbol{{complex}}\:\boldsymbol{{logaritmique}} \\ $$

Question Number 169916    Answers: 1   Comments: 0

Question Number 169915    Answers: 2   Comments: 0

Question Number 169913    Answers: 0   Comments: 1

solve the D.E dx+(−sin(y)+(x/y))dy=0

$${solve}\:{the}\:{D}.{E} \\ $$$${dx}+\left(−{sin}\left({y}\right)+\frac{{x}}{{y}}\right){dy}=\mathrm{0} \\ $$

Question Number 169906    Answers: 0   Comments: 0

Evaluate ∫∫e^(2x+3y) dxdy over the triangle bounded by the lines x = 0, y = 0, x+y = 1.

$$\mathrm{Evaluate}\:\int\int{e}^{\mathrm{2}{x}+\mathrm{3}{y}} {dxdy}\:\mathrm{over}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{bounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{lines}\:{x}\:=\:\mathrm{0},\:{y}\:=\:\mathrm{0},\:{x}+{y}\:=\:\mathrm{1}. \\ $$

Question Number 170010    Answers: 1   Comments: 1

Question Number 170012    Answers: 1   Comments: 0

Question Number 169901    Answers: 0   Comments: 0

Question Number 169900    Answers: 0   Comments: 0

montrer que ∀z∈C/ ∣z∣=2, ∣(1/(z^4 −5z+1))∣≤(1/5)

$$\boldsymbol{{montrer}}\:\boldsymbol{{que}}\:\forall\boldsymbol{{z}}\in\mathbb{C}/\:\mid\boldsymbol{{z}}\mid=\mathrm{2}, \\ $$$$\mid\frac{\mathrm{1}}{\boldsymbol{{z}}^{\mathrm{4}} −\mathrm{5}\boldsymbol{{z}}+\mathrm{1}}\mid\leqslant\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Question Number 169899    Answers: 1   Comments: 2

Question Number 169897    Answers: 0   Comments: 1

Question Number 169896    Answers: 1   Comments: 0

Question Number 169892    Answers: 1   Comments: 0

(dy/dx) = 2xe^(−y) , y(1) = 0

$$\frac{{dy}}{{dx}}\:=\:\mathrm{2}{xe}^{−{y}} \:,\:\:{y}\left(\mathrm{1}\right)\:=\:\mathrm{0} \\ $$

Question Number 169885    Answers: 1   Comments: 0

∣a^→ ∣=13 ∣b^→ ∣=19 ∣a^→ +b^→ ∣=24 ∣a^→ −b^→ ∣=?

$$\mid\overset{\rightarrow} {{a}}\mid=\mathrm{13} \\ $$$$\mid\overset{\rightarrow} {{b}}\mid=\mathrm{19} \\ $$$$\mid\overset{\rightarrow} {{a}}+\overset{\rightarrow} {{b}}\mid=\mathrm{24} \\ $$$$\mid\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}\mid=? \\ $$

Question Number 169878    Answers: 2   Comments: 0

Question Number 169874    Answers: 1   Comments: 0

Σ_(d∣6) d=?

$$\underset{{d}\mid\mathrm{6}} {\sum}{d}=? \\ $$

Question Number 169873    Answers: 2   Comments: 0

∫_0 ^1 ((ln(1+x))/x)dx=?

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}{dx}=? \\ $$

Question Number 169870    Answers: 0   Comments: 0

In an artistic design by a contractor of the students’ centre in a university, four pillars were erected to form two triangular figures with the vertices at the first floor of the building and two of the pillars crossing each other. Proof that the spaces occupied by these two triangular figures are equal.

$$ \\ $$In an artistic design by a contractor of the students’ centre in a university, four pillars were erected to form two triangular figures with the vertices at the first floor of the building and two of the pillars crossing each other. Proof that the spaces occupied by these two triangular figures are equal.

Question Number 169865    Answers: 3   Comments: 2

x+y=−2 xy=4 find x^8 +8y^5 =?

$${x}+{y}=−\mathrm{2} \\ $$$${xy}=\mathrm{4} \\ $$$${find}\:{x}^{\mathrm{8}} +\mathrm{8}{y}^{\mathrm{5}} =? \\ $$

Question Number 169864    Answers: 1   Comments: 0

Question Number 169863    Answers: 1   Comments: 0

∫_o ^1 xln∣x^2 −2x∣dx

$$\int_{{o}} ^{\mathrm{1}} {xln}\mid{x}^{\mathrm{2}} −\mathrm{2}{x}\mid{dx} \\ $$

Question Number 169860    Answers: 1   Comments: 0

y = x^2 + 1 y = 0 x = - 1 x = 2 find the volume of the object obtained by rotating the figure bounded by lines around the abscissa axis

$$\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1} \\ $$$$\mathrm{y}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:=\:-\:\mathrm{1} \\ $$$$\mathrm{x}\:=\:\mathrm{2} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}\:\mathrm{obtained} \\ $$$$\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{bounded}\:\mathrm{by}\:\mathrm{lines} \\ $$$$\mathrm{around}\:\mathrm{the}\:\mathrm{abscissa}\:\mathrm{axis} \\ $$

Question Number 169859    Answers: 0   Comments: 0

Question Number 169855    Answers: 1   Comments: 0

  Pg 477      Pg 478      Pg 479      Pg 480      Pg 481      Pg 482      Pg 483      Pg 484      Pg 485      Pg 486   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com