Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 482
Question Number 168787 Answers: 0 Comments: 1
Question Number 168781 Answers: 0 Comments: 1
Question Number 168776 Answers: 1 Comments: 4
Question Number 168823 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{Q}}#\mathrm{168480}\:\mathrm{reposted}. \\ $$$$\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}+\mathrm{109}=\boldsymbol{\mathrm{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}\in\mathbb{Z},\:\boldsymbol{\mathrm{n}}\left(\in\mathbb{Z}^{+} \right)=? \\ $$
Question Number 168772 Answers: 1 Comments: 1
Question Number 168771 Answers: 0 Comments: 0
Question Number 168762 Answers: 0 Comments: 2
Question Number 168755 Answers: 0 Comments: 5
$$\int\frac{\mathrm{1}}{{x}+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$
Question Number 168753 Answers: 0 Comments: 1
$$\int\frac{{dx}}{\:\sqrt{{sin}^{−\mathrm{1}} \left({x}\right)}}=? \\ $$
Question Number 168745 Answers: 1 Comments: 1
$$\int\frac{\mathrm{1}}{{x}+\sqrt{{x}−\mathrm{1}}}\:{dx}\:=\:?? \\ $$
Question Number 168744 Answers: 3 Comments: 0
$${Resolve} \\ $$$$\left.\mathrm{1}\right)\:\int\frac{\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}{\mathrm{sin}\:{x}}{dx} \\ $$$$\left.\mathrm{2}\right)\:\int\frac{{dx}}{\mathrm{1}+\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}} \\ $$$$\left.\mathrm{3}\right)\:\int\frac{{x}\mathrm{tan}\:{x}}{\mathrm{cos}\:^{\mathrm{4}} {x}}{dx} \\ $$$$\left.\mathrm{4}\right)\:\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}} \\ $$
Question Number 168743 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \frac{\sqrt{{t}}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$$$ \\ $$
Question Number 168742 Answers: 1 Comments: 0
$${Resolve} \\ $$$${y}={xy}'+{a}\sqrt{\mathrm{1}+\left(\mathrm{y}'\right)^{\mathrm{2}} } \\ $$
Question Number 168737 Answers: 1 Comments: 1
Question Number 168734 Answers: 0 Comments: 0
Question Number 168732 Answers: 2 Comments: 0
Question Number 168723 Answers: 0 Comments: 2
$${Resolve}\: \\ $$$$\left({x}+\mathrm{5}\right)^{\mathrm{5}} {y}^{''} =\mathrm{1} \\ $$
Question Number 168722 Answers: 0 Comments: 1
$${Resolve}\: \\ $$$${x}^{\mathrm{2}} {y}^{''} +{xy}^{'} +{y}=\mathrm{1} \\ $$
Question Number 168721 Answers: 1 Comments: 0
Question Number 168710 Answers: 0 Comments: 4
Question Number 168709 Answers: 0 Comments: 3
Question Number 168707 Answers: 1 Comments: 1
Question Number 168698 Answers: 3 Comments: 0
$$\mathrm{3}{f}\left({x}\right)+\mathrm{2}{f}\left(\frac{{x}+\mathrm{59}}{{x}−\mathrm{1}}\right)=\mathrm{10}{x}+\mathrm{30}\:{for}\:{all} \\ $$$${rael}\:\:{x}\cancel{=}\mathrm{1}\:{faind}\:{volue}\:{of} \\ $$$${f}\left(\mathrm{7}\right)=? \\ $$$$ \\ $$
Question Number 168696 Answers: 1 Comments: 0
$$\mathrm{Calculate}\:\:\:::\:\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{2x}−\mathrm{1}} ^{\mathrm{2x}+\mathrm{1}} \mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \mathrm{dt}−\int_{−\mathrm{1}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{t}^{\mathrm{2}} } \mathrm{dt}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{8e}\:\:\:,\mathrm{Don}'\mathrm{t}\:\mathrm{use}\:\mathrm{L}'\mathrm{Hospital}'\mathrm{s}\:\mathrm{rule}. \\ $$
Question Number 168686 Answers: 0 Comments: 0
Question Number 168679 Answers: 2 Comments: 0
Pg 477 Pg 478 Pg 479 Pg 480 Pg 481 Pg 482 Pg 483 Pg 484 Pg 485 Pg 486
Terms of Service
Privacy Policy
Contact: info@tinkutara.com