Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 479
Question Number 171497 Answers: 0 Comments: 3
Question Number 171493 Answers: 1 Comments: 0
Question Number 171491 Answers: 0 Comments: 0
Question Number 171490 Answers: 0 Comments: 0
Question Number 171479 Answers: 1 Comments: 5
$$\:\boldsymbol{{tan}}^{\mathrm{2}} \frac{\boldsymbol{\pi}}{\mathrm{7}}\:+\boldsymbol{{tan}}^{\mathrm{2}} \frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{7}}\:+\boldsymbol{{tan}}^{\mathrm{2}} \frac{\mathrm{5}\boldsymbol{\pi}}{\mathrm{7}}=? \\ $$
Question Number 171477 Answers: 0 Comments: 0
Question Number 171475 Answers: 1 Comments: 0
Question Number 171472 Answers: 0 Comments: 0
$${li}\underset{{a}\rightarrow\infty} {{m}}\:\underset{{n}=\mathrm{1}} {\overset{{a}} {\sum}}\frac{{e}^{{in}} .{ln}\mid\frac{\mathrm{1}}{{x}}\mid}{\pi{n}^{\mathrm{2}} }.{tan}^{−\mathrm{1}} \left({n}\sqrt{\pi}\right) \\ $$$$ \\ $$$${Mastermind} \\ $$
Question Number 171560 Answers: 1 Comments: 1
$$ \\ $$$$\:\:\:\:\:\mathrm{Nice}\:\:\:\mathrm{Integral} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\:{tan}\left({x}\right)}{\left(\:{cos}^{\:\mathrm{2}} \left({x}\right)\:\:+\:\mathrm{2}{sin}^{\:\mathrm{2}} \left({x}\right)\right)}{dx}\:= \\ $$
Question Number 171484 Answers: 3 Comments: 1
$$ \\ $$$$\:\:\:\:{let}\:{f}\left({x}\right)\:=\:{x}+\frac{\mathrm{2}}{\mathrm{1}.\mathrm{3}}{x}^{\mathrm{3}} +\frac{\mathrm{2}.\mathrm{4}}{\mathrm{1}.\mathrm{3}.\mathrm{5}}{x}^{\mathrm{5}} +\frac{\mathrm{2}.\mathrm{4}.\mathrm{6}}{\mathrm{1}.\mathrm{3}.\mathrm{5}.\mathrm{7}}{x}^{\mathrm{7}} +......... \\ $$$$\:\:\:\:\forall{x}\in\left(\mathrm{0},\mathrm{1}\right)\:\:{the}\:{value}\:{of}\:\:{f}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\:=\:? \\ $$
Question Number 171464 Answers: 0 Comments: 0
Question Number 171456 Answers: 1 Comments: 1
Question Number 171455 Answers: 1 Comments: 1
$${find}\:{the}\:{sum}\:{of}\:{z}\:=\:{sinx}\:+\:{sin}\mathrm{2}{x}+{sin}\mathrm{3}{x}+......+{sinnx}\: \\ $$
Question Number 174435 Answers: 0 Comments: 0
$$\:\mathrm{sec}\:^{\mathrm{2}} \mathrm{1}°+\mathrm{sec}\:^{\mathrm{2}} \mathrm{2}°+\mathrm{sec}\:^{\mathrm{2}} \mathrm{3}°+...+\mathrm{sec}\:^{\mathrm{2}} \mathrm{89}°=? \\ $$
Question Number 171448 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{\mathrm{x}}\sqrt{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{x}}\right)}\boldsymbol{\mathrm{dx}}\:\:\:\boldsymbol{\mathrm{evaluate}}!!!! \\ $$
Question Number 171443 Answers: 2 Comments: 0
Question Number 171442 Answers: 0 Comments: 1
Question Number 171437 Answers: 2 Comments: 0
$$\mathrm{make}\:\boldsymbol{\mathrm{r}}\:\:\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formula} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{y}}=\left(\frac{\boldsymbol{\mathrm{pr}}}{\boldsymbol{\mathrm{m}}}\:\:−\:\frac{\boldsymbol{\mathrm{p}}^{\mathrm{3}} }{\mathrm{1}}\right)^{−\mathrm{3}/\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{r}}\:\mathrm{if}\:\mathrm{y}=−\mathrm{8}\:\:\:,\:\:\mathrm{m}=−\mathrm{1},\:\:\mathrm{p}=\mathrm{3} \\ $$
Question Number 171435 Answers: 1 Comments: 7
$$\:\:{Let}\:{f}:{R}\rightarrow{R}\:{be}\:{polynomial} \\ $$$$\:{function}\:{satisfying}\: \\ $$$$\:{f}\left({x}\right)\:{f}\left(\frac{\mathrm{1}}{{x}}\right)={f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)\:{and} \\ $$$$\:{f}\left(\mathrm{3}\right)=\mathrm{28},\:{then}\:{f}\left({x}\right)\:{is} \\ $$
Question Number 171441 Answers: 0 Comments: 1
$${I}_{{n}} \:=\:−\frac{\mathrm{2}{n}}{\mathrm{2}{n}\:+\:\mathrm{1}}\:{I}_{{n}−\mathrm{1}} \\ $$$${I}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${Show}\:{that}\:{I}_{{n}} \:=\:\frac{\left(−\mathrm{4}\right)^{{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$
Question Number 171440 Answers: 0 Comments: 0
Question Number 171431 Answers: 0 Comments: 0
Question Number 171426 Answers: 0 Comments: 0
Question Number 171425 Answers: 0 Comments: 0
Question Number 171423 Answers: 0 Comments: 0
Question Number 171421 Answers: 0 Comments: 0
$${Prove}\:{that}\:{arg}\left({e}^{{z}} \right)=\:{Im}\left({z}\right)\:+\:\mathrm{2}{k}\pi\:,{k}=\mathrm{0},\pm\mathrm{1},\pm\mathrm{2},...\sqrt{} \\ $$
Pg 474 Pg 475 Pg 476 Pg 477 Pg 478 Pg 479 Pg 480 Pg 481 Pg 482 Pg 483
Terms of Service
Privacy Policy
Contact: info@tinkutara.com