Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 479

Question Number 171719    Answers: 1   Comments: 2

(1/(1+sin^2 x)) + (1/(1+cos^2 x)) = ((48)/(35))

$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:=\:\frac{\mathrm{48}}{\mathrm{35}} \\ $$

Question Number 171718    Answers: 0   Comments: 0

Question Number 171717    Answers: 1   Comments: 0

Question Number 171716    Answers: 0   Comments: 0

whats the formulla of E(x) and Find ∫_1 ^( (5/2)) E(x^2 )dx

$${whats}\:{the}\:{formulla}\:{of}\:{E}\left({x}\right)\:{and}\:{Find}\: \\ $$$$\int_{\mathrm{1}} ^{\:\frac{\mathrm{5}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx} \\ $$

Question Number 171712    Answers: 0   Comments: 0

Calculate: I(α)=∫(1/(t^α ((√(t^2 −1)))))dt

$${Calculate}: \\ $$$${I}\left(\alpha\right)=\int\frac{\mathrm{1}}{{t}^{\alpha} \left(\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)}{dt} \\ $$

Question Number 171708    Answers: 1   Comments: 0

∫_0 ^∞ 2x−3 dx=...

$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{2}{x}−\mathrm{3}\:{dx}=... \\ $$

Question Number 171706    Answers: 2   Comments: 0

Question Number 171705    Answers: 1   Comments: 0

Question Number 171694    Answers: 2   Comments: 0

Question Number 171693    Answers: 2   Comments: 0

Question Number 171688    Answers: 0   Comments: 0

In △ABC AA^′ , BB^′ , CC^′ - cevians AA^′ ∩ BB^′ ∩ CC^′ = {P} Prove that: min([APC^′ ],[BPA^′ ],[CPB^′ ])+min([APB^′ ],[BPC^′ ],[CPA^′ ]) ≤ ((Rr (√3))/2)

$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC} \\ $$$$\mathrm{AA}^{'} \:,\:\mathrm{BB}^{'} \:,\:\mathrm{CC}^{'} \:-\:\mathrm{cevians} \\ $$$$\mathrm{AA}^{'} \:\cap\:\mathrm{BB}^{'} \:\cap\:\mathrm{CC}^{'} \:=\:\left\{\mathrm{P}\right\} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{min}\left(\left[\mathrm{APC}^{'} \right],\left[\mathrm{BPA}^{'} \right],\left[\mathrm{CPB}^{'} \right]\right)+\mathrm{min}\left(\left[\mathrm{APB}^{'} \right],\left[\mathrm{BPC}^{'} \right],\left[\mathrm{CPA}^{'} \right]\right)\:\leqslant\:\frac{\mathrm{Rr}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Question Number 171684    Answers: 1   Comments: 0

Question Number 171681    Answers: 1   Comments: 0

Question Number 171677    Answers: 1   Comments: 0

Question Number 171673    Answers: 0   Comments: 0

Question Number 171667    Answers: 1   Comments: 0

Question Number 171666    Answers: 0   Comments: 1

Question Number 171665    Answers: 1   Comments: 0

Ω=∫_0 ^1 Log(((Log^2 (x))/x^(x^5 −x^4 +x^3 −x^2 +x−1) ))dx Anyone?

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} {Log}\left(\frac{{Log}^{\mathrm{2}} \left({x}\right)}{{x}^{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} +{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{x}−\mathrm{1}} }\right){dx} \\ $$$$ \\ $$$${Anyone}? \\ $$

Question Number 171664    Answers: 1   Comments: 1

Solve ∫(x^2 /(1+x^2 ))tan^(−1) xdx

$${Solve} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\mathrm{tan}^{−\mathrm{1}} {xdx} \\ $$

Question Number 171649    Answers: 0   Comments: 0

Question Number 171642    Answers: 1   Comments: 5

evaluate ((√(((a−b)^7 + (b−c)^7 + (c−a)^7 )/((a−b)^3 + (b−c)^3 + (c−a)^3 )))/(a^2 +b^2 +c^2 −ab−bc−ca)) = ??

$$\:\:\:\:\:\:\:\:{evaluate}\:\:\: \\ $$$$\:\:\:\:\frac{\sqrt{\frac{\left({a}−{b}\right)^{\mathrm{7}} \:+\:\left({b}−{c}\right)^{\mathrm{7}} \:+\:\left({c}−{a}\right)^{\mathrm{7}} }{\left({a}−{b}\right)^{\mathrm{3}} \:+\:\left({b}−{c}\right)^{\mathrm{3}} \:+\:\left({c}−{a}\right)^{\mathrm{3}} }}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ab}−{bc}−{ca}}\:=\:\:?? \\ $$

Question Number 176844    Answers: 0   Comments: 0

If x, y, z are prime digits. What is the remainder of the smallest negative number generated by these digits divided by 11 ?

$$\mathrm{If}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{prime}\:\mathrm{digits}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{remainder} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{negative}\:\mathrm{number}\:\mathrm{generated} \\ $$$$\mathrm{by}\:\mathrm{these}\:\mathrm{digits}\:\mathrm{divided}\:\mathrm{by}\:\mathrm{11}\:? \\ $$

Question Number 176841    Answers: 0   Comments: 0

If 3 of 10 elective courses are been delivered at the same time. How many possibilities are there to take 5 courses ?

$$\mathrm{If}\:\mathrm{3}\:\mathrm{of}\:\mathrm{10}\:\mathrm{elective}\:\mathrm{courses}\:\mathrm{are}\:\mathrm{been}\:\mathrm{delivered}\: \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{possibilities}\: \\ $$$$\mathrm{are}\:\mathrm{there}\:\mathrm{to}\:\mathrm{take}\:\mathrm{5}\:\mathrm{courses}\:? \\ $$

Question Number 171627    Answers: 0   Comments: 5

A mass 10kg is placed at the foot of an inclined plane 13m long, whose upper end is 5m higher than the foot. The mass is connected by a light inextensible string, passing over a smooth pulley at the top of the plane, to another mass 10kg which hangs level with the top of the plane, 5m above the floor. If the coefficient of friction between the first mass and then plane is ½ and the system is released from rest, find the acceleration and tension In the string. [Take g = 9.8m/s²]

A mass 10kg is placed at the foot of an inclined plane 13m long, whose upper end is 5m higher than the foot. The mass is connected by a light inextensible string, passing over a smooth pulley at the top of the plane, to another mass 10kg which hangs level with the top of the plane, 5m above the floor. If the coefficient of friction between the first mass and then plane is ½ and the system is released from rest, find the acceleration and tension In the string. [Take g = 9.8m/s²]

Question Number 171626    Answers: 0   Comments: 0

x=(√(19)) +((91)/( (√(19))+((91)/( (√(19))+((91)/( (√(19))+((91)/( (√(19))+…))))))))

$$\:\:\:{x}=\sqrt{\mathrm{19}}\:+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\frac{\mathrm{91}}{\:\sqrt{\mathrm{19}}+\ldots}}}} \\ $$

Question Number 171622    Answers: 0   Comments: 0

  Pg 474      Pg 475      Pg 476      Pg 477      Pg 478      Pg 479      Pg 480      Pg 481      Pg 482      Pg 483   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com